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methods; Complete CAT (0) space; Variational inequality; 4 − converge;

Demiclosed principle; Implicit iteration

1 Introduction

The concept of variational inequalities plays an important role in vari-

ous kinds of problems in pure and applied sciences,viscosity approximation

methods have attracted the attention of many authors. Many important re-

sults about viscosity approximation methods of nonexpansive mappings was

studied in CAT (0) space. In 1976, the concept of 4-convergence in general

metric spaces was coined by Lim [1], Kirk et al.[11] specialized this concept to

CAT (0) spaces and proved that it is very similar to the weak convergence in

the Banach space setting. Dhompongsa et al.[8] and Abbas et as.[4] obtained

4-convergence theorems for the Mann and Ishikawa iterations in the CAT (0)

space. In 2013, Rabian[5][6] and Xin-Dong Liu[7] proved that viscosity ap-

proximation methods for nonexpansive mappings, hierarchical optimization

problems and nonexpansive semigroups in CAT (0) spaces.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X

(or, more briefly, a geodesic from x to y) is a map c from a closed interval

[0, l] ⊂ R to X such that c(0) = x,c(l) = y, and d(c(t), c(t′)) = |t − t′| for all

t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is

called a geodesic (ormetric) segment joining x and y. When it is unique, this

geodesic segment is denoted by [x, y].The space (X, d) is said to be a geodesic

space if every two points of X are joined by a geodesic, and X is said to

be uniquely geodesic if there is exactly one geodesic joining xand y for each

x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes every geodesic

segment joining any two of its points. A geodesic triangle 4(x1, x2, x3) in a

geodesic metric space (X, d) consists of three points 4(x1, x2, x3) in X (the

vertices of 4) and a geodesic segment between each pair of vertices (the edges

of 4). A comparison triangle for the geodesic triangle 4(x1, x2, x3) in (X, d) is

a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane E2. such that

dE2(xi, xj) = d(xi, xj) for all i, j ∈ 1, 2, 3.

A geodesic space is said to be a CAT (0) space if all geodesic triangles

satisfy the following comparison axiom.
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CAT (0):Let 4 be a geodesic triangle in X, and let 4 be a comparison

triangle for 4. Then 4 is said to satisfy the CAT (0) inequality if for all

x, y ∈ 4 and all comparison points x, y ∈ 4,

d(x, y) ≤ dE2(x, y).

we write (1− t)x⊕ ty for the unique point z in the geodesic segment joining

from x to y such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (1.1)

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] = {(1− t)x⊕ ty : t ∈ [0, 1]}. A subset C of a CAT (0) space is convex if

[x, y] ⊂ C for all x, y ∈ C.

The following lemmas play an important role in our paper.

Lemma 1.1 Let X be a CAT (0) space. Then for any x, y, z, w ∈ X and

t, s ∈ [0, 1]

(i) (see[8] ) d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z);

(ii) (see[9] ) d((1− t)x⊕ ty, (1− s)x⊕ sy) ≤ |t− s|d(x, y);

(iii) (see[10] ) d((1− t)x⊕ ty, (1− t)z ⊕ tw) ≤ (1− t)d(x, z) + td(y, w);

(iv) (see[11]) d((1− t)z ⊕ tx, (1− t)z ⊕ ty) ≤ td(x, y);

(v) (see[8] ) d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z)+ td2(y, z)− t(1− t)d2(x, y);

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the

segment [y1, y2], then the CAT (0) inequality implies

d2(y0, x) ≤ 1

2
d2(y1, x) +

1

2
d2(y2, x)− 1

4
d2(y1, y2) (1.2)

This is the (CN)-inequality of Bruhat and Tits [12]. In fact ([10], p.163), a

geodesic space is a CAT (0) space if and only if it satisfies the (CN)-inequality.

It is well known that any complete, simply connected Riemannian manifold

having nonpositive sectional curvature is a CAT (0) space. Other examples

include pre-Hilbert spaces, R-trees (see [10]), Euclidean buildings (see [13]),

the complex Hilbert ball with a hyperbolic metric (see [14]), and many others.

Complete CAT (0) spaces are often called Hadamard spaces.
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It is proved in [10] that a normed linear space satisfies the (CN)-inequality

if and only if it satisfies the parallelogram identity, i.e., is a pre-Hilbert space;

hence it is not so unusual to have an inner product-like notion in Hadamard

spaces. Berg and Nikolaev [15] introduced the concept of quasilinearization as

follows.

Let us formally denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector.

Then quasilinearization is defined as a map 〈., .〉 : (X×X,X×X) → R defined

by

〈−→ab,
−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), a, b, c, d ∈ X. (1.3)

It is easily seen that 〈−→ab,
−→
cd〉 = 〈−→cd,

−→
ab〉, 〈−→ab,

−→
cd〉 = −〈−→ba,

−→
cd〉,and 〈−→ax,

−→
cd〉+

〈−→xb,
−→
cd〉 = 〈−→ab,

−→
cd〉 for all a, b, c, d, x ∈ X.

We say that X satisfies the Cauchy-Schwarz inequality if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d), a, b, c, d ∈ X. (1.4)

It is known [15] that a geodesically connected metric space is a CAT (0)

space if and only if it satisfies the Cauchy-Schwarz inequality.

In 2010, Kakavandi and Amini [16] introduced the concept of a dual space

for CAT (0) spaces as follows. Consider the map Θ : R × X × X → C(X)

difined by

Θ(t, a, b)(x) = t〈−→ab,−→ax〉,

where C(X) is the space of all continuous real-valued functions on X. Then

the Cauchy-Schwarz inequality implies that Θ(t, a, b) is a Lipschitz function

with a Lipschitz semi-norm L(Θ(t, a, b)) = td(a, b) for all t ∈ R and a, b ∈ X,

where

L(f) = sup{f(x)− f(y)

d(x, y)
: x, y ∈ X, x 6= y}

is the Lipschitz semi-norm of the function f : X → R. Now, define the

pseudometric D on R×X ×X by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)).

Lemma 1.2 (see[16]) D((t, a, b), (s, c, d)) = 0 if and only if t〈−→ab,−→xy〉 = s〈−→cd,−→xy〉
for all x, y ∈ X.
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For a complete CAT (0) space (X, d), the pseudometric space (R×X ×X, D)

can be considered as a subspace of the pseudometric space (Lip(X,R), L) of

all real-valued Lipschitz functions. Also, D defines an equivalence relation on

R×X ×X, where the equivalence class of t
−→
ab := (t, a, b) is

[t
−→
ab] = {s−→cd : t〈−→ab,−→xy〉 = s〈−→cd,−→xy〉, ∀x, y ∈ X}.

The set X∗ := {[t−→ab] : (t, a, b) ∈ R×X ×X} is a metric space with metric D,

which is called the dual metric space of (X, d).

In 2012, Dehghan and Rooin [17] introduced the duality mapping in CAT (0)

spaces and studied its relation with subdifferential, by using the concept of

quasilinearization. Then they presented a characterization of metric projec-

tion in CAT (0) spaces as follows.

Lemma 1.3 ([17],Theorem 2.4) Let C be a nonempty convex subset of a com-

plete CAT (0) space X, x ∈ X and u ∈ C. Then u = PCx if and only if

〈−→yu,−→ux〉 ≥ 0 for all y ∈ C

Definition 1.1 Let C be a nonempty subset of a complete CAT (0) space

X,and let N(C) and CB(C) denote the family of nonempty subsets and nonempty

bounded closed subsets of C, respectively.The multi-valued mapping T : C →
CB(C) is called nonexpansive iff H(Tx, Ty) ≤ d(x, y) for all x, y ∈ C, where

H(., .) is Hausdorff metric,i.e.,H(Tx, Ty) = max{ sup
x∈Tx

d(x, Ty), sup
y∈Ty

d(y, Tx)}.

A point x ∈ C is called a fixed point of T if x ∈ Tx. We denote by F (T )

the set of all fixed points of T .

Remark 1.1 The existence of fixed points for multivalued nonexpansive map-

pings in a CAT (0) space was proved by S. Dhompongsa et al.[8].

Definition 1.2 Let C be a nonempty subset of a complete CAT (0) space X,

the multi-valued mapping T : C → CB(C) is called quasi- nonexpansive iff

F (T ) 6= ∅ and H(Tx, p) ≤ d(x, p) for all x ∈ C, p ∈ F (T ).

A mapping f of C into itself is called contraction with coefficient α ∈ (0, 1)

iff d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ C. Banach’s contraction principle

guarantees that f has a unique fixed point when C is a nonempty closed

convex subset of a complete metric space.
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In 2013, Ranbian Wangkeeree[19] studied the convergence theorems of the

following Moudafi’s viscosity iterations for a nonexpansive self mapping T : For

a contraction f on C and t(0, 1), let xt ∈ C be the unique fixed point of the

contraction x → tf(x)⊕ (1− t)Tx,i.e.,

xt = tf(xt)⊕ (1− t)Txt, (1.5)

and x0 ∈ C is arbitrarily chosen and

xn+1 = αnf(xn)⊕ (1− αn)Txn, n ≥ 0, (1.6)

where αn ∈ (0, 1).They proved that {xt}, {xn} converges strongly to x̃ ∈ F (T )

such that x̃ = PF (T )f(x̃) in the framework of a CAT(0) space,which is the

unique solution of the variational inequality (VIP)

〈−−→x̃f x̃,
−→
xx̃〉 ≥ 0, x ∈ F (T ). (1.7)

The purpose of this paper is to study the strong convergence about Moudafi’s

viscosity approximation methods for approximating a common fixed point of

a nonexpansive multi-valued mapping in CAT (0) spaces. We prove that the

proposed implicit iteration net and sequence both converges strongly to a com-

mon fixed point of nonexpansive multi-valued mappings which is also a unique

solution of the variational inequality. The convexity and closednes of a fixed

point set of such mapping and demiclosed principle for such mapping are also

studied. The results presented in the paper improve and extend Rabian’s

various results[7][19] in the current literature and other.

2 Preliminaries

In order to study our results in the general setup of CAT (0) spaces, we

first collect some basic concepts. Let {xn} be a bounded sequence in CAT (0)

space X. For p ∈ X, define a continuous functional r(., {xn}) : X → [0, +∞)

by

r(p, {xn}) = lim sup
n→∞

d(p, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(p, {xn}) : p ∈ X}.
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The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn}) = inf{r(p, {xn}) : p ∈ C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {p ∈ E : r(p, {xn}) = r({xn})}.

The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC({xn}) = {p ∈ C : r(p, {xn}) = rC({xn})}.

A sequence {xn} in CAT (0) space X is said to 4-converge to p ∈ X if p is

the unique asymptotic center of {un} for every subsequence {un} of {xn}. In

this case,we call p the 4-limit of {xn}.

Remark 2.1 The uniqueness of an asymptotic center implies that the CAT (0)

space X satisfies Opial’s property,i.e.,for given {xn} ⊂ X such that {xn} 4-

converge to x and given y ∈ X with y 6= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y)

The following lemmas are important in our paper.

Lemma 2.1 (see[8]) If C is a closed convex subset of a complete CAT (0)

space and if {xn} is a bounded sequence in C, then the asymptotic center of

{xn} is in C.

Lemma 2.2 (see[8][26]) Every bounded sequence in a complete CAT (0) space

always has a 4-convergent subsequence.

Lemma 2.3 (see[18]) If C is a closed convex subset of X and T : C → X is a

asymptotically nonexpansive mapping, then the conditions {xn} 4-convergence

to x and d(xn, Txn) → 0 imply x ∈ C and Tx = x.

Having the notion of quasilinearization, Kakavandi and Amini [20] intro-

duced the following notion of convergence. A sequence {xn} in the complete

CAT (0) space (X, d) w-converges to x ∈ X if limn→∞〈−−→xxn,−→xy〉 = 0,i.e.,limn→∞(d2(xn, x)+

d2(y, x)− d2(xn, y)) = 0 for all y ∈ X.
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It is obvious that convergence in the metric implies w-convergence, and it

is easy to check that w-convergence implies 4-convergence , but it is showed

in ([20], Example 4.7) that the converse is not valid. However, the follow-

ing lemma shows another characterization of 4-convergence as well as, more

explicitly, a relation between w-convergence and 4-convergence.

Lemma 2.4 (see[20], Theorem 2.6) Let X be a complete CAT (0) space, {xn}
be a sequence in X,and x ∈ X. Then {xn} 4-convergence to x if and only if

lim supn→∞〈−−→xnx,−→xy〉 ≤ 0 for all y ∈ X.

Lemma 2.5 (see[19]) Let X be a complete CAT (0) space. Then for all u, x, y ∈
X, the following inequality holds:

d2(x, u) ≤ d2(y, u) + 2〈−→xy,−→xu〉.

Lemma 2.6 (see[19]) Let X be a complete CAT (0) space. For all u, v ∈ X

and t ∈ [0, 1], let ut = tu⊕ (1− t)v. Then,for all x, y ∈ X

(i) 〈−→utx,−→uty〉 ≤ t〈−→ux,−→uty〉+ (1− t)〈−→vx,−→uty〉;

(ii) 〈−→utx,−→uy〉 ≤ t〈−→ux,−→uy〉 + (1 − t)〈−→vx,−→uy〉 and 〈−→utx,−→uty〉 ≤ t〈−→ux,−→vy〉 + (1 −
t)〈−→vx,−→vy〉.

Lemma 2.7 (see[21],Lemma2.1) Let {an} be sequences of nonnegative num-

bers such that

an+1 ≤ (1− δn)an + δnγn, ∀n ≥ 1,

where {δn},{γn} satisfy following property

(1) {δn} ⊂ (0, 1) and {γn} ⊂ R;

(2)
∑+∞

n=1 δn = +∞;

(3) lim supn→∞ γn ≤ 0 or
∑+∞

n=0 |δnγn| < +∞.

then limn→∞ an = 0.
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3 Main results

In this section,we present strong convergence theorem of Moudafi’s viscosity

methods for multi valued nonexpansive mappings T in CAT (0) spaces.

For any t ∈ (0, 1) and a contraction f with coefficient α ∈ (0, 1), define the

mapping St : C → CB(C) by

St(x) = tf(x)⊕ (1− t)u(x), x ∈ C, u(x) ∈ Tx. (3.1)

It is not hard to see that St is a contraction on C. Indeed, since d(u(x), u(y) ≤
H(Tx, Ty) for any x, y ∈ C, we have

d(St(x), St(y)) = d(tf(x)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(y))

≤ d(tf(x)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(x)) + d(tf(y)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(y))

≤ td(f(x), f(y)) + (1− t)d(u(x), u(y))

≤ td(f(x), f(y)) + (1− t)H(Tx, Ty)

≤ (tα + (1− t))d(x, y)

= (1− t(1− α))d(x, y),

this implies that St is a contraction on C. Then there exists a unique q ∈ C

such that

q = St(q) = tf(q)⊕ (1− t)u(q), u(q) ∈ Tq

Now we prove convergence theorem for the following implicit iterative net. Let

xt ∈ C be the unique fixed point of St. thus for any t ∈ (0, 1],

xt = St(xt) = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ T (xt).

First,we prove following demiclosed principle for nonexpansive multi-valued

mapping.

Proposition 3.1 If C is a closed convex subset of X and T : C → CB(C) is

a nonexpansive multi-valued mapping, then the conditions {xn} 4-convergence

to p and d(xn, zn) → 0 (which zn ∈ Txn) imply p ∈ Tp.

Proof. By lemma 2.1,2.2, since {xn} 4-convergence to p, hence AC{xn} = p

and A{xn} = p.
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Letting ψ(x) := lim supn→∞ d(xn, x), from condition d(xn, zn) → 0, we get

that

ψ(x) = lim sup
n→∞

d(zn, x).

If p∗ ∈ Tp, then

ψ(p∗) = lim sup
n→∞

d(zn, p∗) ≤ lim sup
n→∞

H(Txn, Tp) ≤ lim sup
n→∞

d(xn, p) = ψ(p).

¿From (1.2),we have that

d2(xn,
1

2
(p⊕ p∗)) ≤ 1

2
d2(xn, p) +

1

2
d2(xn, p∗)− 1

4
d2(p, p∗).

Letting n →∞ and taking superior limit on the both sides, it gets that

ψ2(
1

2
(p⊕ p∗)) ≤ 1

2
ψ2(p) +

1

2
ψ2(p∗)− 1

4
d2(p, p∗),

that is,

d2(p, p∗) ≤ 2(ψ2(p∗)− ψ2(p)) ≤ 0.

It implies that p∗ = p, so Tp = {p},i.e., p ∈ TP .This completes the proof of

Proposition 3.1

Next, we prove the closedness and convexity of fixed point set of nonexpansive

multi-valued mapping.

Proposition 3.2 If C is a closed convex subset of X and T : C → CB(C) is

a nonexpansive multi-valued mapping, then F(T) is a closed and convex subset

of C.

Proof. As T is continuous, so F (T ) is closed. In order to prove that F (T ) is

convex, it is enough to prove that 1
2
(p⊕ q) ∈ F (T ) where p, q ∈ F (T ). Setting

w = 1
2
(p⊕ q) and w∗ ∈ Tw, using (1.2), we have

d2(w∗, w) ≤ 1

2
d2(w∗, p) +

1

2
d2(w∗, q)− 1

4
d2(p, q)

≤ 1

2
H2(Tw, Tp) +

1

2
H2(Tw, Tq)− 1

4
d2(p, q)

≤ 1

2
d2(w, p) +

1

2
d2(w, q)− 1

4
d2(p, q)

≤ 1

2
d2(

1

2
(p⊕ q), p) +

1

2
d2(

1

2
(p⊕ q), q)− 1

4
d2(p, q)

≤ 1

2
(
1

4
d2(q, p)) +

1

2
(
1

4
d2(p, q))− 1

4
d2(p, q) = 0,
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it implies that w∗ = w, so Tw = {w},i.e., w ∈ Tw.This completes the proof

of Proposition 3.2

Now, we prove strong convergence theorem of Moudafi’s viscosity methods

for multi-valued non- expansive mapping T in CAT (0) spaces.

Theorem 3.1 Let C be a closed convex subset of a complete CAT (0) space

X. Let T : C → CB(C) be a nonexpansive multi-valued mapping, let f be a

contraction on C with coefficient 0 < α < 1. For each t ∈ (0, 1], net {xt} be

given by following implicit iterative,

xt = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ T (xt). (3.2)

If F (T ) 6= ∅, then {xt} converges strongly as t → 0 to x̃ = PF (T )f(x̃) which is

equivalent to the following variational inequality:

〈−−−→x̃f(x̃),
−→
xx̃〉 ≥ 0, x ∈ F (T ). (3.3)

Proof. First, for any p ∈ F (T ), we have that

d(xt, p) = d(tf(xt)⊕ (1− t)u(xt), p)

≤ td(f(xt), p) + (1− t)d(u(xt), p)

≤ td(f(xt), p) + (1− t)H(Txt, Tp)

≤ t(d(f(xt), f(p)) + d(f(p), p)) + (1− t)d(xt, p)

≤ (tα + (1− t))d(xt, p) + td(f(p), p),

that is,

d(xt, p) ≤ 1

1− α
d(f(p), p),

hence {xt} is bounded, so are both {u(xt)} and {f(xt)}. We get that

lim
t→0

d(xt, u(xt)) = lim
t→0

d(tf(xt)⊕ (1− t)u(xt), u(xt))

≤ lim
t→0

td(f(xt), u(xt)) = 0

Now we prove that {xt} is relatively compact as t → 0. In fact,letting m ∈ N
and xm := xtm with tm ∈ (0, 1] and tm → 0 as m →∞,
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since {xm} is bounded, by Lemma 2.2,2.4,we may assume {xm} 4-converges

to a point x̃ ∈ F (T ). From Lemma 2.6, we have

d2(xm, x̃) = 〈−−→xmx̃,
−−→
xmx̃〉

≤ tm〈
−−−−→
f(xm)x̃,

−−→
xmx̃〉+ (1− tm)〈−−−−→u(xm)x̃,

−−→
xmx̃〉

≤ tm〈
−−−−→
f(xm)x̃,

−−→
xmx̃〉+ (1− tm)d(u(xm), x̃)d(xm, x̃)

≤ tm〈
−−−−→
f(xm)x̃,

−−→
xmx̃〉+ (1− tm)H(Txm, x̃)d(xm, x̃)

≤ tm〈
−−−−→
f(xm)x̃,

−−→
xmx̃〉+ (1− tm)d2(xm, x̃)

≤ tm〈
−−−−−−−→
f(xm)f(x̃),

−−→
xmx̃〉+ tm〈

−−−→
f(x̃)x̃,

−−→
xmx̃〉+ (1− tm)d2(xm, x̃)

≤ tmαd2(xm, x̃) + tm〈
−−−→
f(x̃)x̃,

−−→
xmx̃〉+ (1− tm)d2(xm, x̃),

thus

d2(xm, x̃) ≤ 1

1− α
〈−−−→f(x̃)x̃,

−−→
xmx̃〉. (3.4)

Since {xm} 4-converges to a point x̃ ∈ F (T ), by Lemma 2.4, we have

lim sup
m→∞

〈−−−→f(x̃)x̃,
−−→
xmx̃〉 ≤ 0. (3.5)

¿From (3,4),(3.5),we get that limm→∞ xm = x̃.

Now we show that x̃ ∈ F (T ) solves the variational inequality (3.3).

By Lemma 1.1, for any q ∈ F (T ), we have

d2(xt, q) ≤ td2(f(xt), q) + (1− t)d2(u(xt), q)− t(1− t)d2(f(xt), u(xt))

≤ td2(f(xt), q) + (1− t)H2(Txt, q)− t(1− t)d2(f(xt), u(xt))

≤ td2(f(xt), q) + (1− t)d2(xt, q)− t(1− t)d2(f(xt), u(xt))

= td2(f(xt), q) + (1− t)d2(xt, q)− t(1− t)d2(f(xt), u(xt)),

it implies that

d2(xt, q) ≤ d2(f(xt), q)− (1− t)d2(f(xt), u(xt)).

so we get that

d2(xm, q) ≤ d2(f(xm), q)− (1− tm)d2(f(xm), u(xm)).

Taking the limit through m →∞ and noting d(xt, u(xt)) → 0, by Proposition

3.1, we can get that

d2(x̃, q) ≤ d2(f(x̃), q)− d2(f(x̃), x̃).
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hence

〈−−−→x̃f(x̃),
−→
qx̃〉 =

1

2
(d2(f(x̃), q) + d2(x̃, x̃)− d2(f(x̃), x̃)− d2(x̃, q)) ≥ 0,

where q ∈ F (T ), it implies that x̃ solves the variational inequality (3.3).

Finally, we show the entire net {xt} converges to x̃.

Assume xsm → x∗ ∈ F (T ), where sm → 0 as m →∞. By same argument,

we get x∗ solves the variational inequality (3.3),i.e.,

〈−−−→x̃f(x̃),
−→
x̃x∗〉 ≤ 0, 〈−−−−−→x∗f(x∗),

−→
x∗x̃〉 ≤ 0. (3.6)

By (3.6), we get that

0 ≥ 〈−−−→x̃f(x̃),
−→
x̃x∗〉 − 〈−−−−−→x∗f(x∗),

−→
x̃x∗〉

= 〈−−−−→x̃f(x∗),
−→
x̃x∗〉+ 〈−−−−−−→f(x∗)f(x̃),

−→
x̃x∗〉 − 〈−→x∗x̃,

−→
x̃x∗〉 − 〈−−−−→x̃f(x∗),

−→
x̃x∗〉

= 〈−→x̃x∗,
−→
x̃x∗〉 − 〈−−−−−−→f(x∗)f(x̃),

−→
x∗x̃〉

≥ d2(x̃, x∗)− d(f(x∗), f(x̃))d(x∗, x̃)

≥ d2(x̃, x∗)− αd2(x̃, x∗) = (1− α)d2(x̃, x∗),

it implies d2(x̃, x∗) = 0, so is x̃ = x∗.Hence the net {xt} converges strongly to x̃

which is the unique solution to the variational inequality (3.3). This completes

the proof of Theorem 3.1.

Theorem 3.2 Let C be a nonempty bounded closed convex subset of a com-

plete CAT (0) space X. Let f be be a contraction on C with coefficient α ∈
(0, 1), and let T : C → CB(C) be nonexpansive multi-valued mapping. For the

arbitrary initial point x1 ∈ C, Let {xn} be a sequence generated by

xn+1 = tnf(xn)⊕ (1− tn)u(xn), u(xn) ∈ Txn, n ≥ 1, (3.7)

where sequence {tn} satisfies the following conditions:

(i) {tn} ⊂ (0, 1) and limn→∞ tn = 0;

(ii)
∑+∞

n=1 tn = +∞;

(iii)
∑+∞

n=0 |tn+1 − tn| < +∞.

If F (T ) 6= ∅, then the sequence {xn} converges strongly to some point

x̃ ∈ F (T ) which is equivalent to the variational inequality (3.3).
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Proof.

(I)We first show that the sequence {xn} is bounded.

Indeed, For p ∈ F (T ), we have

d(xn+1, p) = d(tnf(xn)⊕ (1− tn)u(xn), p)

≤ tnd(f(xn), p) + (1− tn)d(u(xn), p)

≤ tnd(f(xn), p) + (1− tn)H(Txn, p)

≤ tnd(f(xn), p) + (1− tn)d(xn, p)

≤ tn(d(f(xn), f(p)) + d(f(p), p)) + (1− tn)d(xn, p)

≤ tn(αd(xn, p) + d(f(p), p)) + (1− tn)d(xn, p)

= (tnα + (1− tn))d(xn, p) + tnd(f(p), p).

Let Mn = max{d(xn, p), 1
1−α

d(f(p), p)}, we have

d(xn+1, p) ≤ Mn = max{d(xn, p),
1

1− α
d(f(p), p)}

By induction, we get that

d(xn+1, p) ≤ max{d(x1, p),
1

1− α
d(f(p), p)},

hence {xn} is bounded, so are {u(xn)} and {f(xn)}.
(II) We claim that limn→∞ d(xn+1, xn) = 0.

Since

d(xn+1, xn) = d(tnf(xn)⊕ (1− tn)u(xn), tn−1f(xn−1)⊕ (1− tn−1)u(xn−1))

≤ d(tnf(xn)⊕ (1− tn)u(xn), tnf(xn)⊕ (1− tn)u(xn−1)

+ d(tnf(xn)⊕ (1− tn)u(xn−1), tnf(xn−1)⊕ (1− tn)u(xn−1))

+ d(tnf(xn−1)⊕ (1− tn)u(xn−1), tn−1f(xn−1)⊕ (1− tn−1)u(xn−1))

≤ (1− tn)d(u(xn), u(xn−1)) + tnd(f(xn), f(xn−1)) + |tn − tn−1|d(f(xn−1), u(xn−1))

≤ (1− tn)H(Txn, Txn−1) + tnd(f(xn), f(xn−1)) + |tn − tn−1|d(f(xn−1), u(xn−1))

≤ ((1− tn) + tnα)d(xn, xn−1) + |tn − tn−1|d(u(xn−1), f(xn−1))

≤ (1− tn(1− α))d(xn, xn−1) + |tn − tn−1|d(u(xn−1), f(xn−1)).

By condition (ii),(iii) and Lemma 2.7, we have

lim
n→∞

d(xn+1, xn) = 0. (3.8)
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Let the net {xt} ⊂ C and

xt = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ Txt, n ≥ 1.

By theorem 3.1, we have that {xt} converges strongly to x̃ ∈ F (T ) (as t → 0),

and which solves the variational inequality (3.3).

(III) We show that

lim sup
n→∞

〈−−−→f(x̃)x̃,
−−→
xnx̃〉 ≤ 0.

Indeed, it follows from Lemma 2.6 that

d2(xt, xn) = 〈−−→xtxn,
−−→xtxn〉

≤ t〈−−−−−→f(xt)xn,
−−→xtxn〉+ (1− t)〈−−−−→u(xt)xn,−−→xtxn〉

≤ t〈−−−−−−→f(xt)f(x̃),−−→xtxn〉+ t〈−−−→f(x̃)x̃,−−→xtxn〉+ t〈−→x̃xt,
−−→xtxn〉+ t〈−−→xtxn,

−−→xtxn〉
+ (1− t)〈−−−−−−−→u(xt)u(xn),−−→xtxn〉+ (1− t)〈−−−−−→u(xn)xn,−−→xtxn〉
≤ tαd(xt, x̃)d(xt, xn) + t〈−−−→f(x̃)x̃,−−→xtxn〉+ td(xt, x̃)d(xt, xn) + td2(xt, xn)

+ (1− t)d2(xt, xn) + (1− t)d(u(xn), xn)d(xt, xn).

Let M := sup d({xt, xn}), we get that

〈−−−→f(x̃)x̃,−−→xnxt〉 ≤ (1 + α)Md(xt, x̃) + M
d(u(xn), xn)

t
.

We have

lim sup
t→0

lim sup
n→∞

〈−−−→f(x̃)x̃,−−→xnxt〉

≤ lim sup
t→0

lim sup
n→∞

((1 + α)Md(xt, x̃) + M
H(Txn, xn)

t
) = 0

Since limt→0 xt = x̃ and by the continuity of d(., .). For any fixed n, we have

that

lim
t→0
〈−−−→f(x̃)x̃,−−→xnxt〉

=
1

2
lim
t→0

(d2(f(x̃), xt) + d2(x̃, xn)− d2(f(x̃), xn)− d2(x̃, xt))

=
1

2
(d2(f(x̃), x̃) + d2(x̃, xn)− d2(f(x̃), xn)− d2(x̃, x̃))

= 〈−−−→f(x̃)x̃,
−−→
xnx̃〉
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which implies that, for any ε > 0, there exists a δ > 0 such that

〈−−−→f(x̃)x̃,
−−→
xnx̃〉 < 〈−−−→f(x̃)x̃,−−→xnxt〉+ ε, t ∈ (0, δ). (3.9)

Hence, by the upper limit as n →∞ first and then t → 0, we get that

lim sup
n→∞

〈−−−→f(x̃)x̃,
−−→
xnx̃〉 ≤ ε,

which implies that

lim sup
n→∞

〈−−−→f(x̃)x̃,
−−→
xnx̃〉 ≤ 0.

(VI) Finally,we prove that xn converges strongly to x̃.

Let yn = tnx̃⊕ (1− tn)u(xn) ,by Lemma 2.5,2.6, we have that

d2(xn+1, x̃) ≤ d2(yn, x̃) + 2〈−−−−→xn+1yn,
−−−→
xn+1x̃〉

≤ (1− tn)2d2(xn, x̃) + 2(t2n〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

+ tn(1− tn)〈−−−−−−−→f(xn)u(xn),
−−−→
xn+1x̃〉+ tn(1− tn)〈−−−−→u(xn)x̃,

−−−→
xn+1x̃〉)

= (1− tn)2d2(xn, x̃) + 2(t2n〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉+ tn(1− tn)〈−−−−→f(xn)x̃,

−−−→
xn+1x̃〉)

= (1− tn)2d2(xn, x̃) + 2tn〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

= (1− tn)2d2(xn, x̃) + 2tn(〈−−−−−−→f(xn)f(x̃),
−−−→
xn+1x̃〉+ 〈−−−→f(x̃x̃),

−−−→
xn+1x̃〉)

≤ (1− tn)2d2(xn, x̃) + 2tn(αd(xn, x̃)d(xn+1, x̃) + 〈−−−→f(x̃)x̃,
−−−→
xn+1x̃〉)

≤ (1− tn)2d2(xn, x̃) + 2tn〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉) + αtn(d2(xn, x̃) + d2(xn+1, x̃)),

which implies that

d2(xn+1, x̃) ≤ 1− (2− α)tn
1− tnα

d2(xn, x̃) +
2tn

1− tnα
〈−−−→f(x̃)x̃,

−−−→
xn+1x̃〉+ α2

nL,

where L = supn≥1{d2(xn, x̃)}.
Letting δn = 2(1−α)tn

1−tnα
and γn = 1

1−α
〈−−−→f(x̃)x̃,

−−−→
xn+1x̃〉+ (1−αtn)tn

2(1−α)
L.

we have that

d2(xn+1, x̃) ≤ (1− δn)d2(xn, x̃) + δnγn.

By Lemma 2.7,we get that limn→∞ xn = x̃ and which solves the variational

inequality (3.3). This completes the proof of Theorem 3.2.
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