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On higher order ultra —hyperbolic kernel

related to the spectrum

A.S. Abdel - Rady’, S.Z. Rida® and H.M. Abo EI - Majd®

Abstract
In this paper, the solutions of the equation —(—=D¥u, = f(x) , k> 1 in R™ where
fel(®RM and ZrE=op in R'X(0,0) , v(x0)=fi(x) , k=1 are
considered, the operator o is named the ultra —hyperbolic operator defined by o=

9? 9? 9? 92 9? is the di . £ Euclid
(a—xi‘i‘a—xé‘i"“‘i‘a—m ———— aX123+q) , P+ g =n Is the dimension of Euclidean

space R"™ .We define the ultra —hyperbolic kernels Ey of higher order, then we get
recurrence relations between u, and Ey, we obtain also an estimation of u, and Ey
related to the spectrum, then we show that u, and Ej are bounded. A relation between vy

and uy under certain conditions on fi is obtained.
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1 Introduction

The solutions of the equation

—(A—DXu(x) =f(x) ,k =1 inR™, f € L2(R™) (1.1)
where A= Z{;l% were investigated in [1], Bessel potential of higher order were

defined and recurrence relations between these solutions and these Bessel
potentials are obtained.
Now, the purpose of this work is to study the solutions of

—(@—-D*uy = f(x),k >1in R, fe > ( R™) (1.2)
and we obtain an estimation of the solutions v, such equation which is related to
the spectrum and also of the ultra-hyperbolic kernels Ey .There are a lot of
problems use the ultra —hyperbolic operator, see [3], [4] and [5].Then under certain
conditions on fiwe obtain a relation between these solutions u, and the solutions

Vi Of

2k = oy in R"X (0, 00) (1.3)

ve(x,0) = fi(x) ,k >1

2 Preliminary Notes

Definition 2.1 Fourier transform take the form

: _ —-i(€x)
f(®) = e Rf e & f(x)dx (2.1)
and its inverse
— i(Ex)F
09 = o7 J el07(E)dg (2.2)

See [2], [6] and [7].
Definition 2.2 let € = (§,,%,,......,&,) € R%denote by I', = {£€ R™ &+ .- +
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& —8nr1— - — &psq > 0 and & > 0} the set of an interior of the forward cone,

and T,denotes the closure of T.

Definition 2.3 let Q c T, is the spectrum of E, and

Ex() = Gz Jo Jo expl — (1 + 1815 + (5 018 dt (2.3)

where Ejy is called ultra hyper-bolic kernel (of order k).

Definition 2.4 Bipoolar coordinates

Let & =r1rwy,& =10y, v cne e &p = TWp
and
Ep+1 = SWpy1,Epsz = SWpyz s wer ver oo &prq = SWpiq >
where
P wZ=1 and Zf:pqﬂ w? =1 where dg = rP~s971drdsdQ,dQ, , and
dQ, , dQg are the elements of surface area of the unit sphere in  RP , RA

respectively, and we suppose 0 <r <R and 0 < s < L where R and L are constants.

3 Main Results

3.1 The solution uy
—(@O-Duy;(x) =f(x) in R" (3.1)

The Fourier transform of (3.1) is
— f (3.2)

u = )

1+|IEl|
where

2 P g2 p+q g2
||E|| = Zi:l Ei - Zj=p+1 Ej >0
and its inverse Fourier transform is

I ) (3.3)
T em2

Ug

where
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=1t (3.4)

g

and
Ei(x) =

where E; is called ultra hyperbolic kernel (of order one) , Q c T, is the spectrum

G Jo Iy exol [—t(1+|I&l]") + i(g 0]dE dt (3.5)

@2r

of E,, and the estimation of E; is
L

o

[E,(x)] < an )n/z Qqufff exp[—t+ t(s? —r?)]rP~1s971 drdsdt
0

0

1
= Op QaMy (3.6)

where

q
212

1) 2m2
M, = [, fOR fOL exp[—t +t(s? — r?)] rP~'s97 drdsdt , & = 57 and e = 17
2 2

(3.7)
Thus for any fixedt > o, E,; is bounded.
Also,
1
06 = — | E.x- ). f0)dy (38)
(2m)z-Q
0,091 < — [ IE £y ldy < — TlEuIN
(2m) 1 (2m (3.9)
< —s—= O QM N < — Q, QM;N
@n)? (212 (2m )
Where M, , Q, , Q4 are defined in (3.7) and
Jo fG)ldy = N (3.10)

i.e. u,is bounded.

3.2 The solution u,.
At first we consider now the PDE
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-(@—=D%u, =f in R" (3.11)
Which is equivalent to the system
—-(@O—-Du, =f
(@=Du, (3.12)
@—-Du, =u

Applying Fourier transform, we get

—a+|EG =g

— f f+E E+E
e T
TT TT
) (3.13)
u,(x) = — %
(2m)2

Where E; and u; are given in (3.5) and (3.8) respectively. So we have for

estimation of E, (x)

E{+*E 1
E,(x)=——7= = gfg E;(y)E1(x —y)dy
(2m)2 (2m)2

Where E,(x) is called ultra —hyperbolic kernel of second order, Q c T, is the
spectrum of E,.

Then we can find |E,(x)] by wusing bipolar coordinates, where
dg = rP~'s97 ' drdsdQ,dQ, , and dQ, and dQq are the elements of surface area

of the unit sphere in RP and R9Y respectively. Then using (3.6) and (3.7), we

obtain
1
[E;(®0)| < —= J, [E1()-E1(x = y)| dy
(2m)2
<—1-0,30.3M2 [F [FrP-tsa-ldrds = — 5 0, 30, M2S
= 3n2fp 25q 1 Jg Jo - 3n2%p “8q U1
(2m)2 (2m) 2
P sd
Where M, , Q, , Qg are defined in (3.7) and S = %% . Thus for any fixed

t> o, E, is bounded.
Or
—_ 1
E,= ——
27 asdEpy?

1 o _ 2 .
E2(0) = 5o f J;7 emtaIEIDei®0 g gt
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1

21)2
Where
R (L poo
M, =J. f f exp[—t(1 + r?—s?)?] rP~1s971drdsdt (3.14)
0 0o Y0
And for the estimation of u, we have
w00 = = — [, fE;(x—y)dy
(2m)2

1
0ol < — | OB G- )l dy
(2m)z’aQ

303N\ 2
Q303MINS

<1
- (21-[)211

or
<1
- emn

|u, | 0,QqM,N (3.15)

Where M, , M;,Q, , Q4 and N are defined in (3.7), (3.14) and (3.10)

3.3. Recurrence relations
Theorem 3.3.1

For all k = 1 the unique solution of the equation — (o — D¥Xuy, = f(x)

is given via
— (-Dk1f
u = —Sm———
KT i)k
_ 1 k=1 _f*Ex
we= o0 (3.16)
where
Fo= —1 2 . .
B = arepx and |18l s defined in (3.2)
Proof.
The formula
_1\k—-1¢
iy = (-1D)k-1f

(+1gl
was shown for k=1, 2. Let (3.16) be true for some k . In order to prove that
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D
A+ e

holds for the solution to the equation
—(@—=D"ugyy = f

This equation is written as equivalent system

—(@—Dvgyq =1
(@ — D¥Us1 = Vi

Using (3.16), we get

— (=D (~Vir1) _ (—1)*@ier1)

(1 + |18k (1 + |18k
But since
Vk+1 = ;z Then, Uk+1 = L)zkf
@+El ! (1+]18]|")k+1

So we get our result.
Also we note that

f*Ek Lk_lf 1

— (_1 k-1 _BEx . —~ =f E. Ex =
u = (—1) 2o’ Since T = (1+||E||2)k =f Ex where Ex —(1+||E||2)k ,

and from properties of Fourier transform (u * v)" = (2m) /20 9

Theorem 3.3.2

Forany k = 1 the equation —(o — I)Xuy = f, is uniquely solvable by

(e = — X121 for k=2 and up = X222 for k=3
(2mz @m?

More over, if 22k

(i) f* Ex = (—1)™tu, *E, for 1Sr=k—1

(iii) By, = Sexefr
(m)?
Proof.

: oo D Lo
Since Yk = 7 gAx  Can be written in the form

95

(3.17)

(3.18)

(3.19)

(3.20)
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_ (—Dk2f (-1
Uk = PN 2.’
L+ IO @+]ED
we get forallk = 2
Ug-q * Eq
Uy = _—E
(2m)2
Also since
_ (-D*3f (-1)?
Uk =

2 ' 2
(L+[IE[DR2 @+ |I8]])?
We get forall k = 3
Uk * E;

Ug = ——x—
(2m)2

Thus (i) is proven. Similarly, since
(_1)k—1+r—rf

(1+|[g]|Fyk-r+r

f (-pk-r
A+IEl*rT i *kr

—~

Uk = =(-D!

So

_rur*xEg_p _
u = (DT e = (DR
(emz

fx Ek
(2my2
Thus we get

fx Ek = (_1)r_1ur * Ek—r

where 1 = r = k — 1, and thus (ii) is proven.

. R A n R R (u*v)
From properties of Fourier transform (u* V)" = 2m) /209 = 09 = .
we obtain
E. 1 1 1 J—
Ey = = . =E., . v
T e U
_ Ex—r*Er _ Eg—1*Eq
Ek - (zn)n/z and then Ek - (Zﬁ)n/Z

Thus (iii) is proven.

3.4. Estimation of Eg(x)
It holds



S. Abdel - Rady, S.Z. Rida and H.M. Abo EI - Majd

1 — — — —
|Ek| S (_D)Zk 1Qp2k 1Qq2k 1M11( Sk 1

(2m)2
or
1
[Exl < —20,0My 1> 1
(2m)2 K=
where Q,, , Qq are defined in (3.7), S = ;; Janlf(O)]dx =

My = [ fOR fOL exp[—t(1 + r2—s?)K]rP~1s9 1 drdsdt , k>1
We have,

|E1| < Q, QM, |, [Ezl £ —= *0,°M2S
) @m?

Let (3.21) is true for some k. We prove now that

1
|Eqal < [—]2KH Q210 2N MEHL sk

n p
(2m)2
Proof.
Ey * E; 1
Bien = ot = —— | Bk ()EaGx— y)dy
(2m) /2 (2m)2 /e
Then

|Eeq] < [ 1 ]2k+1Q 2k+1Q 2k+1Mk+1 gk
(2m)z

Thus we get the result (3.21). Also from (3.16) we get

ok
E(x) = f J exp[—t (1+]1gl]") + i x)]dede
So

|Ex| < ;nﬂpﬂq fooo fOR fOL exp[—t(1 + r2—s?)X] rP~1s9-1drdsdt
(2m2

—— QM
(211)2
Thus for any fixed t > o, Ey is bounded
Now we consider the problem
—(@—Dku, =f

or equivalent

97

(3.21)

(3.22)

and

(3.23)
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(O—=Dug =ug_; ,k=1,uy=—f (3.24)
Then
Uk = f By X =Yu-1 Ny = —f
(211)
Iy | < [—=]2Q,0qM;.N |, Juy| < [—=]*0,%Q, M12NS
(2m)z (2m)z

3.5. The estimation of uy(x)

We now prove that

2k
k_
lug| < |— l 0,210, Mf NS k> 1 (3.25)
(2m)2
or
1

|uk|_(2 )n.Q.QMkN
where Q,, , Qq, My are defined in (3.7), (3.23), S = > — and Jpul fCO | dx =
Proof.

Let (3.25) is true for some k, we prove for k + 1

1
Uk = — Ef Eq (x — y)uk(y)dy
(21‘[)2 Q

1
Iuk+1| < n |E1||uk(Y)|'Qp'QqS

(2m)2
[Ugerq | < [( )n]2k+lﬂp2k+lﬂq2k+1M1k+1N gk
2m)2
Then
lug | < [(2111)2]21( 10,210, "MK N sK-1

is true forall k> 1.0Or
—(@—=Dku =f

Which equivalent (@ —Duy=uxy k=>1,uy=—-f ;
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k- f*Ek
uk(X) —( 1) 1(21_[)n/2
0= B =yt (3.26)
w00 =Sy ) B G Iy :
= _ 1
i = (1+||s||2)k

B0 = G Jo Sy expl=t (1 + [Ig[)* + i 01dg dt

1
|Ex(®)| < —7 QpQqMy (3.27)
(2m)2
From (3.26) and (3.27)
1

3.6. The relation between v, and wuy, under certain conditions on fy

Consider now the ultra-hyperbolic equation (3.24) for the solution u, and

%% — Oy in ROX (0,00), v (x,0) = (%) (3.29)

ot
Where

fy = —ux_q, K =21 uy = —f(x); vlf(x, s) is the Laplace transform with
respect to time t,

i.e.
vi(x,s) = f e St v (x, )dt (s > 0)
0

Theorem 3.6.1
u(x) = v (x,5)
Where uy and vy are the solutions of (3.24) and (3.29) respectively.

Proof.
We perform Laplace transform w.r.t. time t for (3.29), we get

ka(x s) = f

0

(o) (o8]

e St Ov, (x, t)dt =f e St () (x, t)dt
0
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= svy #(x,5) — v (x,0)
when
s=1,u(x) =v(xs), we get

—(@ = Dug = f(x)

3.6.1 Estimation of v (x,t)  k > 1

1
v D] < [—=
(2m)2

k-1 21 2Ty K M(pN skt

Or

|V (%, 1) <|—Q 39 M_; M(t)NS

(2m)z

where Q, , Q4 , My, N are defined in (3.7), (3.23) and

M(t) = fOR fOLet(sz-rz) rP~1s9-1drds ,t >0 k > 1

Proof.
Since
_Ug—q *Eq
U = (D —— ,up = —f
(2m)2

then using (3.3),(3.5)and (3.8) we get

k-1
- J‘ .f f. (e, (y)dydede
(211)2

where () is the spectrum of u(x). Since uy = v}’ then
_1)k 1

(27)2
Then by changing to blpolar coordinates

J J o= B +HiEx—y) k-4 (y)dydg

Vk (X, t) =

v (6, )] < =575 Qp Q4 fOR fOLet(Sz‘rz) rP~1s9-1drds

(2 )n/z

R L ,_ _
X1 (1190 [ [ 1P159-1drds

1
S Gz QpQqM (6). [ue—1 (Y 12,0245
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_1r
= (2m)n/2

Q% Qg° M (©)S|ug—1 (y)|

So using (3.25) we obtain the result.

4 Conclusion

We find the solutions of the equation (1.1). We define the ultra —hyperbolic

kernels E, of higher order, then we get recurrence relations between u, and

E, . we obtain also an estimation of u, and E, related to the spectrum, then we

show that u, and E, are bounded. A relation between u, and v, of (3.29)

under certain conditions on f, is obtained.
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