Complexity Results for Flow-shop Scheduling Problems with Transportation Delays

and a Single Robot

Shi Ling¹ and Cheng Xue-guang^{2,*}

Abstract

The paper considers the problem of scheduling n jobs in a two-machine flow-shop to minimize the makespan. Between the completion of an operation and the beginning of the next operation of the same job, there is a time lag, which we refer to it as the transportation delays. All transportation delays have to be done by a single robot, which can perform at most one transportation at a time. New complexity results are derived for special case.

Mathematics Subject Classification : 90B35

Keywords: Flow-shop Scheduling problem, Complexity Results, Transportation Delay, Single Robot

¹ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China, e-mail: Shiling59@126.com

² School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

^{*} Corresponding author.

Article Info: Revised : February 15, 2011. Published online : May 31, 2011

1 Introduction

A flow-shop scheduling problem with transportation delays and a single robot can be formulated as follows. We are given *m* machines $M_1, M_2, ..., M_m$ and *n* jobs $J_1, J_2, ..., J_n$.

Each job J_j consists of m operations $Q_{i,j}$ (i = 1, 2, ..., m; j = 1, 2, ..., n), which have to be processed in the order $Q_{1,j} \rightarrow Q_{2,j} \rightarrow ... \rightarrow Q_{m,j}$.

Operation $Q_{i,j}$ has to be processed on machines M_i without preemption for $p_{i,j}$ time units. Each machine can only processed one operation at a time. In this paper, we assume that there is a known time lag between the completion of an operation and the beginning of the next operation of the same job. We refer to this lag as the transportation delays $t_{j,k}$. All transportation is done by a single robot R, which can only handle one job at a time. Thus, conflicts between transportation and a job may have to wait for the robot before its transportation. All values $p_{i,j}$ and $t_{j,k}$ are supposed to be non-negative integers.

The objective are to determine a feasible schedule, which minimizes the makespan $C_{\max} = \prod_{j=1}^{n} C_j$, where C_j is the finishing time of the last operation $Q_{m,j}$ of job J_j . Using the three-field notation scheme for scheduling problem introduced in [4], we denote this problem by Fm, $R1|p_{i,j};t_{j,k}|C_{\max}$. If we have only m = 2 machines, the robot always transports from M_1 to M_2 . Therefore, the index k in the notation $t_{j,k}$ is dropped and the transportation delays are denoted by t_j . If two operations $Q_{1,j}$ and $Q_{2,j}$ have equal processing times $p_{1,j} = p_{2,j} = p_j$, we denote

this problem by $F2, R1|p_{1,j} = p_{2,j} = p_j; t_j|C_{\max}$. If the transportation delays may take only two values T_1, T_2 ($T_1 < T_2$), we have the $F2, R1|p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|C_{\max}$ problem. The $F2|p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|C_{\max}$ problem is *NP*-hard in the strong sense, [5]. J.Hurink and S.Knust discussed the complexity results for the two-machine flow-shop scheduling problem with transportation delays and a single robot and proved the $F2, R1|p_{i,j} = p; t_j \in \{T_1, T_2\}|C_{\max}$ problem have maximal polynomial solvable, [3]. In this paper, we proof the $F2, R1|p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|C_{\max}$ problem is *NP*-hard in the strong sense.

2 Complexity of the $F2, R1|_{p_{1,j}} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|_{C_{\text{max}}}$ problem

In this section, we consider problem in which we have two machines M_1, M_2 , one robot R, and n jobs J_j with processing times $p_{1,j}$ and $p_{2,j}$ on machine M_1 and M_2 .

We may restrict the search for an optimal solution to permutation plans, since for problem $F3||C_{max}$ has an optimal permutation plan always exists, [1].

We now derive an expression for the makespan when the sequences σ and τ in which the jobs are executed by M_1 and M_2 are given. Let $C(\sigma, \tau)$ denote the minimal makespan of such a schedule for the

$$F2, R1 | p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\} | C_{\max}$$

problem.

Lemma 2.1 [5] Consider the $F2, R1 | p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\} | C_{\text{max}}$ problem with processing times $p_{i,j}$ and transportation delays t_j , where i = 1, 2 and j = 1, 2, ..., n. Then

$$C(\sigma,\tau) = \max_{1 \le k \le n} \{ \sum_{j \le \sigma^{-1}(k)} p_{1,\sigma(j)} + t_k + \sum_{j \ge \tau^{-1}(k)} p_{2,\tau(j)} \}$$
(2.1)

where $\sigma^{-1}(k)$ and $\tau^{-1}(k)$ denote the positions of job k in sequence σ and τ , respectively.

Theorem 2.1 The $F2, R1 | p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\} | C_{\text{max}}$ problem is *NP*-hard in the strong sense.

Proof We prove the $F2, R1|p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|C_{\max}$ problem is NP -hard in the strong sense through a reduction from the 3 – Partition problem, which is known to be NP -hard in the strong sense, [2]. The 3 – Partition problem is then stated as:

3 – *Partition*: Given a set of positive integers $X = \{x_1, x_2, ..., x_{3m}\}$, and a positive integer *b* with:

$$\sum_{j=1}^{3m} x_j = mb, \ b/4 < x_j < b/2, \forall j = 1, 2, ..., 3m$$
(2.2)

Decide whether there exists a partition of X into m disjoint 3-element subset $\{X_1, X_2, ..., X_m\}$ such that

$$\sum_{x_j \in X_i} x_j = b \quad (i = 1, 2, ..., m)$$
(2.3)

Given any instance of the 3-*Partition* problem, we define the following instance of the $F2, R1|p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\}|C_{\max}$ problem with two types of jobs:

(1) 3*m* Partition jobs, or P-jobs with:

$$p_{1,j} = x_j, \quad t_j = 0; \quad p_{2,j} = x_j \quad (j = 1, 2, ..., 3m)$$

(2) m Large jobs, or L-jobs with;

$$p_{1,j} = 2b, \quad t_j = 2b; \quad p_{2,j} = 2b \quad (j = 3m + 1, 3m + 2, ..., 4m)$$

The threshold y = 3mb + 3b and the corresponding decision problem is: Is there a schedule *S* with makespan *C*(*S*) not greater than y = 3mb + 3b?

Assume that the answer to 3 - Partition is "yes", Let $\{X_1, X_2, ..., X_m\}$ be a

partition satisfying (2.3), where $X_i = (x_{\xi(i)}, x_{\eta(i)}, x_{\zeta(i)})$ (i = 1, 2, ..., m).

We construct for each *j* consisting of jobs $\xi(j), \eta(j), \varsigma(j)$ and jobs 3m + j in the order

$$((3m+1);\xi(1),\eta(1),\varsigma(1);(3m+2);\xi(2),\eta(2),\varsigma(2);...;(4m-1);\xi(m),\eta(m),\varsigma(m);4m)$$

as indicated in Figure 1.

Figure 1: Gantt chart for the $F2, R1 | p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\} | C_{\text{max}}$ problem

Then we define a permutation σ shown in Figure 1. Obviously, this permutation σ fulfills $C(\sigma) \le y$. Conversely, assume that the flow-shop scheduling problem has a solution σ with $C(\sigma) \le y$. By setting $k = 1, i = n, t_i = 0$ in (2.1), we get for all

permutation
$$\sigma: C(\sigma) \ge p_{1,\sigma_{\lambda}} + \sum_{\lambda=1}^{n} p_{2,\sigma_{\lambda}} = 3b + 3mb = y.$$

Thus, for a permutation σ with $C(\sigma) = y$. We may conclude that:

- (1) job (3m+1) is processed at the first position, since $p_{1,j} > 0$ for $j \neq 0$;
- (2) job 4*m m* is processed at the last position, since $p_{2,j} > 0$ for $j \neq m$;
- (3) machine M_1 processed jobs in the interval [0,3mb], without idle times;
- (4) machine M_2 processed jobs in the interval [3b, 3mb + 3b], without idle times;
- (5) robot *R* transport jobs in the interval [(3i+2)b, (3i+4)b](*i* = 0,1,...,(*m*-1)), without idle times.

Without loss of generality, we can assume that the jobs in $\{1,2,...,m-1,m\}$ are processed w.r.t. increasing numbers. Let $X_1 = \{i_1, i_2, ..., i_k\}$ be the set of jobs scheduled between job (3m+1) and job(3m+2), showing in Figure 2.

Figure 2: Subscheduling for the $F2, R1 | p_{1,j} = p_{2,j} = p_j; t_j \in \{T_1, T_2\} | C_{\max}$ problem.

We have $X_1 \neq \Phi$, since otherwise there would be an idle period on the job (3m+1) and job (3m+2), which contradicts $(3) \sim (5)$.

In the following we will show that k = 3, and $\sum_{x_i \in X_1} x_i = b$ hold. We use the variable $C_{i,j}^{\sigma}$ denoting the completion time of job j on machine M_i in the permutation σ . The values of the variable for the jobs on the set X_1 are gives

by:
$$C_{1,i_{\lambda}}^{\sigma} = 2b + \sum_{\lambda=1}^{\mu} p_{1,i_{\lambda}} < 2b + 2b(\mu+1) \ (\mu = 1, 2, ..., k)$$

If
$$k \le 2$$
 holds, we have: $\sum_{\lambda=1}^{k} p_{1,i_{\lambda}} < k \cdot 2b \le 2kb + (2-k)2b = 4b$

Then $C_{1,1}^{\sigma} = 2b + \sum_{\lambda=1}^{k} p_{1,i_{\lambda}} < 3b$, and the robot finishes the transportation of job (3m+1) at time 2b. Thus, machine M_2 has an idle time period between jobs (3m+1) and job (3m+2), which contradicts (5);

If
$$k \ge 4$$
 holds, we have: $\sum_{\lambda=1}^{k} p_{2,i_{\lambda}} < k \cdot 2b \le 2bk + (k-4)2b = 4b(k-2)$.

On the other hand, job (3m+2) cannot start on machine M_2 earlier than time 2b + kb, since job (3m+1) have to be transport before. Thus, the time period between the completion time $C_{2,1}^{\sigma} = 6b$ for job (3m+1) on machine M_2 and the starting time of job (3m+2) on machine M_1 is not completely filled with jobs from X_1 , which contradicts (4); Thus, we must have k = 3. This implies that job (3m+1) and job (3m+2) transported by robot in the interval

[2b,3b] and [3b,4b], respectively. Therefore, $2b + \sum_{i \in X_1} p_{1,i_{\lambda}} \le 3b$, that is:

$$\sum_{i \in X_1} p_{1,i_{\lambda}} \le b \tag{2.4}$$

On the other hand, job (3m+1) completes on machine M_2 not after 6b. Since we have no idle time on machine M_2 in interval [4b,6b], we must have $2b + \sum_{i \in X_1} p_{1,i_{\lambda}} + \sum_{i \in X_1} p_{2,i_{\lambda}} \ge 4b$. Since $p_{1,j} = p_{2,j} = x_j$, therefore $\sum_{i \in X_1} p_{2,i_{\lambda}} \ge b$ (2.5)

Combining (2.4) and (2.5), we have $\sum_{j \in X_1} x_j = b$.

Analogously, we show that the remaining sets $X_2, X_3, ..., X_m$ separated by the jobs 1,2,..., *m* contain 3-element and fulfill $\sum_{j \in X_j} x_j = b$ for j = 1,2,...,m. Thus, $X_1, X_2, ..., X_m$ define a solution of 3 - Partition.

Reference

- M.Garey, D.S. Johnson, R. Sethi, The complexity of flow-shop and job-shop scheduling, *Mathematics of Operation Research*, 1, (1976), 117-129.
- [2] M.R. Garey, D.S. Johnson, *Computer and Intractability: A Guide to the theory of NP-Completeness*, Freeman, San Francisco, 1979.
- [3] J. Hurink, S. Knust, Flow-shop problems with transportation times and a single robot. *Discrete Applied Mathematics*, **112**(1-3), (2001), 199-216.
- [4] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms and Complexity, in: S.C.Gtaves, A.H.G.Rinnooy Kan, P.H.Zipkin(Eds.), Handbooks in Operation Research and Management Science, v. 4, Logistics of Production and Inventory, North_hollland, Amsterrdem, 445-522, 1993.
- [5] W.C. Yu, The two-machine flow shop problem with delays and the one machine total tardiness problem, *Technische Universiteit Eindhoven*, 1996.