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Abstract 

In this paper we propose another ridge type estimator, namely Stochastic 
Restricted Ordinary Ridge Estimator (SRORE) in the multiple linear regression 
model when the stochastic restrictions are available in addition to the sample 
information and when the explanatory variables are multicollinear. Necessary and 
sufficient conditions for the superiority of the Stochastic Restricted Ordinary 
Ridge Estimator over the Mixed Estimator (ME), Ridge Estimator (RE) and 
Stochastic Mixed Ridge Estimator (SMRE) are obtained by using the Mean 
Square Error Matrix (MSEM) criterion. Finally the theoretical findings of the 
proposed estimator are illustrated by using a numerical example and a Monte 
Carlo simulation. 
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1  Introduction  
 Instead of using the Ordinary Least Square Estimator (OLSE), the biased 
estimators are considered in the regression analysis in the presence of 
multicollinearity. Some of these are namely the Ridge Estimator (RE) (Hoerl and 
Kennard, 1970), Liu Estimator (LE) (Liu, 1993) and Almost Unbiased Liu 
Estimator (AULE) (Akdeniz and Kaçiranlar, 1995).  In the presence of 
stochastic prior information in addition to the sample information, Theil and 
Goldberger (1961) proposed the Mixed Estimator (ME). By replacing OLSE by 
ME in the RE and LE respectively, the Stochastic Mixed Ridge Estimator (SMRE) 
(Li and Yang, 2010) and Stochastic Restricted Liu Estimator (SRLE) (Hubert and 
Wijekoon, 2006) are introduced.  

 Also by replacing OLSE by LE in the ME, Yang and Xu (2007) introduced 
an Alternative Stochastic Restricted Liu Estimator (ASRLE). In this paper we 
propose the Stochastic Restricted Ordinary Ridge Estimator (SRORE) by 
replacing OLSE by RE in the ME. The proposed estimator is a generalization of 
the ME and RE. Rest of the paper is organized as follows. The model 
specification and the proposed estimator are given in section 2. In section 3 we 
see the comparisons among biased estimators. In section 4 a numerical example 
and a Monte Carlo Simulation are given to illustrate the theoretical findings of the 
proposed estimator. Finally we state the conclusions in section 5. 

 
 
2  Model Specification and the Proposed Estimator 

We consider the standard multiple linear model 

                       y X β ε= +                       (2.1) 

where y is an 1n× vector of observations on the response variable, X is an 
n p× full column rank matrix of observations on p non stochastic explanatory 
regressors variables, β is a 1p× vector of unknown parameters associated with 
p regressors and ε is an 1n× vector of disturbances with ( ) 0E ε = and the 

dispersion matrix ( ) 2D Iε σ= .  
In addition to former model (2.1), related only to sample information, let us 

be given some prior information about β in the form of a set of j  independent 
stochastic linear restrictions as follows: 

                        r Rβ ν= +                                           (2.2)                                                  

where r is an 1j× stochastic known vector, R is a j p× random vector of 
disturbances with ( ) 0E ν = and ( ) 2D ν σ= Ω , and Ω is assumed to be known and 
positive definite. Further it is assumed that ν is stochastically independent ofε . 
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The Ordinary Least Square Estimator for the model (2.1) and Mixed 
Estimator (Theil and Goldberger, 1961) due to a stochastic prior restriction (2.2) 
are given by 

     1ˆ
OLSE S X yβ − ′=  and ( ) ( )11 1ˆ

ME S R R X y R rβ
−− −′ ′ ′= + Ω + Ω                 (2.3) 

respectively, where S X X′= . 
When different estimators are available for the same parameter vector β  in 

the linear regression model one must solve the problem of their comparison. 
Usually as a simultaneous measure of covariance and bias, the mean square error 
matrix is used, and is defined by 

        ( )( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( , )MSE E D B Bβ β β β β β β β β
 ′ ′= − − = + 
 

            (2.4) 

where ˆ( )D β is the dispersion matrix and ( ) ( )ˆ ˆB Eβ β β= − denotes the bias 

vector. We recall that the Scalar Mean Square Error 

( ) ( )( )ˆ ˆ, ,SMSE trace MSEβ β β β= . 

For any two given estimators 1̂β  and 2β̂ , the estimator 2β̂  is said to be 

superior to 1̂β under the MSEM criterion if and only if 

       ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆ, , , 0M MSE MSEβ β β β β β= − ≥                          (2.5)        

Since ( ) ( )1 11 1 1 1 1S R R S S R RS R RS
− −− − − − −′ ′ ′+ Ω = − Ω+ (see lemma 1 in appendix) 

the ME can be rewritten as 

         ( ) ( )11 1ˆ ˆ ˆ
ME OLSE OLSES R RS R r Rβ β β

−− −′ ′= + Ω+ − .                  (2.6) 

To deal with multicollinearity the researchers introduced alternative estimators 
based shrinkage parameters d and k , where 0 1d< < and 0k ≥ . 

Some of the estimators based on the shrinkage parameter d are Liu 
Estimator (Liu, 1993), Stochastic Restricted Liu Estimator (Hubert and Wijekoon, 
2006) and Alternative Stochastic Restricted Liu Estimator (Yang and Xu, 2007), 
and given by 

          ( )ˆ ˆ
LE d OLSEd Fβ β= ,                                        (2.7) 

          ˆ ˆ
srd d MEFβ β=                                      (2.8) 

   and  

         ( ) ( ) ( ) ( )( )11 1ˆ ˆ ˆ
SRLE LE LEd d S R RS R r R dβ β β

−− −′ ′= + Ω+ −         (2.9) 
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respectively, where ( ) ( )1
dF S I S dI−= + + for 0 1d< < . 

Note that ( )ˆ
SRLE dβ  is introduced by replacing OLSE by LE in the ME in (2.6). 

Similarly the estimators, Ridge Estimator (Hoerl and Kennard, 1970) and 
Stochastic Mixed Ridge Estimator (Li and Yang, 2010) are based on the shrinkage 
parameter k , and defined as 

       ( )ˆ ˆ
RE OLSEk Wβ β=                                     (2.10) 

and  

      ˆ ˆ
SMRE MEWβ β=                                                        (2.11) 

respectively, where ( ) 11W I kS
−−= +  for 0k ≥ . 

Now we propose the Stochastic Restricted Ordinary Ridge Estimator (SRORE) 
by replacing OLSE by RE in the ME in (2.6) and given by 

    ( ) ( ) ( ) ( )( )11 1ˆ ˆ ˆ
SRORE RE REk k S R RS R r R kβ β β

−− −′ ′= + Ω+ − .            (2.12) 

Since 
1 1WS S W− −= , we can rewrite the SRORE as follows. 

      

( ) ( ) ( )
( )( )( )

( ) ( )

11 1 1 1

11 1 1 1 1

11 1

ˆ

              

                                                             (2.13)

SRORE k S WX y S R RS R r RS WX y

S S R RS R RS WX y R r

S R R WX y R r

β
−− − − −

−− − − − −

−− −

′ ′ ′ ′= + Ω+ −

′ ′ ′ ′= − Ω+ + Ω

′ ′ ′= + Ω + Ω

 

When 0k = , ( )ˆ ˆ0SRORE MEβ β= ; When 0R = , ( ) ( )ˆ ˆ
SRORE REk kβ β=  

The expectation vector, bias vector, dispersion matrix and Mean Square Error 
Matrix of SRORE can be shown as follows. 

              ( ) ( )ˆ
SROREE k A W I Sβ β β  = + −                              (2.14) 

              ( ) ( ) ( )ˆ ˆ
SRORE SROREB k B k A W I Sβ β β β   = − = −               (2.15) 

              ( ) ( )2 1ˆ
SRORED k A WSW R R Aβ σ −  ′= + Ω                       (2.16) 

and  

( ) ( ) ( ) ( )2 1ˆ
SROREMSE k A WSW R R A A W I S S W I Aβ σ ββ−  ′ ′= + Ω + − −     (2.17) 

respectively, where ( ) 11A S R R
−−′= + Ω . 
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In this paper we mainly consider the estimators based on shrinkage 
parameter (k) and ME for comparisons. Therefore the mean square error matrices 
for the other estimators are not given. 

 
 
3  Comparisons Among Biased Estimators 

Now we compare the Stochastic Restricted Ordinary Ridge Estimator with 
Ridge Estimator, Mixed Estimator and Stochastic Mixed Ridge Estimator using 
mean square error matrix criterion.  
Since the ˆ

MEβ is an unbiased estimator, the mean square error matrix of ˆ
MEβ can 

be shown as 

         ( ) 2ˆ
MEMSE Aβ σ=                                                   (3.1) 

The mean square error matrices of ( )ˆ
RE kβ and ˆ

SMREβ  are given by 

        ( ) ( ) 12 1 2 1ˆ ( )REMSE k WS W k S kI S kIβ σ ββ −− −  ′= + + +                (3.2) 

and 

       ( ) ( )1 12 2ˆ
SMREMSE WAW k S kI S kIβ σ ββ− −  ′= + + +                   (3.3) 

respectively. 
The mean square error matrix differences for the above estimators are given 
below: 

         ( ) 2
1 1 2 2

ˆ ˆ
ME SROREMSEM MSEM k D b bβ β σ    ′∆ = − = −                 (3.4)                        

         ( ) ( ) 2
2 2 1 1 2 2

ˆ ˆ
RE SROREMSEM k MSEM k D b b b bβ β σ    ′ ′∆ = − = + −        (3.5)                    

         ( ) 2
3 3 1 1 2 2

ˆ ˆ
SMRE SROREMSEM MSEM k D b b b bβ β σ    ′ ′∆ = − = + −       (3.6)                       

where ( )1
1D A A WSW R R A−′= − + Ω , ( )1 1

2D WS W A WSW R R A− −′= − + Ω ,     

( )1
3D WAW A WSW R R A−′= − + Ω , 1

1 ( )b k S kI β−= − + and ( )2b A W I Sβ= − . 

Now we can state the following theorems. 

Theorem 3.1  The Stochastic Restricted Ordinary Ridge Estimator is superior to 
the Mixed Estimator in the mean square error matrix sense if and only if 

1 2
2 1 2b D b σ−′ ≤ . 
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Proof:  The MSEM difference between the SRORE and ME given in (3.4) is 
2

1 1 2 2D b bσ ′∆ = − . To apply lemma 2 (see appendix) to (3.4) we need to prove that 

1D is a positive definite matrix. 

Note that ( )1
1D A A WSW R R A−′= − + Ω  

          

( )1 1

1 1

1 1

1

   

   

   

   2

A A WSW R R A

A S R R WSW R R A

AW W SW S WA

kAW kS I WA

− −

− −

− −

−

 ′= − + Ω 
′ ′ = + Ω − − Ω 

 = − 
 = + 

 

This implies that 1D is clearly a positive definite matrix. Hence according to 
lemma 2, the SRORE is superior to ME if and only if 1 2

2 1 2b D b σ−′ ≤ . This 
completes the proof.  

Theorem 3.2 When the maximum eigenvalue of ( ) ( ) 11 1A WSW R R A WS W
−− −′+ Ω  

is less than 1, then the SRORE is superior to the RE in the mean square error sense 
if and only if ( )2

2 2 1 1 2 1b D b b bσ′ ′+ ≤ . 
Proof: The MSEM difference between the SRORE and RE given in (3.5) is 

2
2 2 1 1 2 2D b b b bσ ′ ′∆ = + − . 

To apply lemma 3 (see appendix) one required condition is that 
( )1 1

2D WS W A WSW R R A− −′= − + Ω  to be a positive definite matrix. 

It is obvious that 1 0WS W− > and ( )1 0.A WSW R R A−′+ Ω ≥  

According to lemma 4 (see appendix), ( )1 1WS W A WSW R R A− −′> + Ω if and only if 

1 1λ < , where 1λ  is the maximum eigenvalue of 

( ) ( ) 11 1A WSW R R A WS W
−− −′+ Ω . 

Therefore 2D  is a positive definite matrix. Then according to lemma 3, 2∆  is a 
nonnegative definite matrix if and only if ( )2

2 2 1 1 2 1b D b b bσ′ ′+ ≤ . This completes 
the proof of the theorem. 

Theorem 3.3 When the maximum eigenvalue of 

( ) ( ) 11A WSW R R A WAW −−′+ Ω <1, then the SRORE is superior to the SMRE in 

the mean square error sense if and only if ( )2
2 3 1 1 2 1b D b b bσ′ ′+ ≤ .  
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Proof: The MSEM difference between the SRORE and SMRE given in (3.6) is 
2

3 3 1 1 2 2D b b b bσ ′ ′∆ = + − . 
To show that 3 0∆ ≥ , lemma 3 (see appendix) can be used. A requirement to 
apply lemma 3 is that 3D  to be a positive definite matrix. It is clear that 

0WAW > and ( )1 0.A WSW R R A−′+ Ω ≥    

According to lemma 4 (see appendix), ( )1WAW A WSW R R A−′> + Ω  if and only if 

2 1λ < , where 2λ is the maximum eigenvalue of ( ) ( ) 11A WSW R R A WAW −−′+ Ω . 

Therefore 3D is a positive definite matrix. Then according to lemma 3, 3∆  is a 
nonnegative definite matrix if and only if ( )2

2 3 1 1 2 1b D b b bσ′ ′+ ≤ . This completes 
the proof. 

 
 
4  Numerical Example and Monte Carlo Simulation 
 To illustrate our theoretical results, we consider the data set on Total 
National Research and Development Expenditures as a Percent of Gross National 
product originally due to Gruber (1998) and later considered by Akdeniz and Erol 
(2003) and Li and Yang (2011). The data set is given below: 

                     

1.9 2.2 1.9 3.7
1.8 2.2 2.0 3.8
1.8 2.4 2.1 3.6
1.8 2.4 2.2 3.8
2.0 2.5 2.3 3.8
2.1 2.6 2.4 3.7
2.1 2.6 2.6 3.8
2.2 2.6 2.6 4.0
2.3 2.8 2.8 3.7
2.3 2.7 2.8 3.8

X

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

,

2.3
2.2
2.2
2.3
2.4
2.5
2.6
2.6
2.7
2.7

y

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

 

      The four column of the 410× matrix X comprise the data on 1x , 2x , 3x  and 

4x respectively, and y is the predictor variable. Note that the eigen values of 
S are 1 302.9626λ = , 2  0.7283λ = , 3 0.0447λ = and 4 0.0345λ = and the condition 
number of X  is approximately 8781.53. This implies the existence of 
multicollinearity in the data set. The OLSE  
is given by 

           ( )1ˆ 0.6455,0.0896,0.1436,0.1526OLSE S X yβ − ′′= =                                          
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with ( )ˆ , 0.0808OLSEMSE β β =  and 2ˆ 0.0015σ = .

 

Consider the following stochastic restrictions (Li and Yang, 2011) 

                    r Rβ ν= + , ( )1, 2, 2, 2R ′= − − − , ( )2ˆ~ 0, 0.0015Nν σ =  
Using equations (3.1), (3.2), (3.3) and (2.17) for different shrinkage parameter (k) 
values, the SMSE values for RE, ME, SMRE and SRORE are derived, and given 
in Table 1. 

  
 

Table 1:The estimated Scalar Mean Square Error (SMSE) values of RE, ME, 
SMRE and   SRORE for different shrinkage parameter (k) values. 

k RE ME SMRE SRORE 
10 0.2636 0.0451 0.2636 0.0285 
5 0.2599 0.0451 0.2599 0.0259 
2 0.2456 0.0451 0.2456 0.0180 
1 0.2304 0.0451 0.2303 0.0120 

0.95 0.2291 0.0451 0.229 0.0116 
0.9 0.2276 0.0451 0.2275 0.0111 
0.85 0.226 0.0451 0.2259 0.0107 
0.8 0.2242 0.0451 0.2241 0.0102 
0.75 0.2223 0.0451 0.2222 0.0097 
0.7 0.2202 0.0451 0.2201 0.0092 
0.65 0.2179 0.0451 0.2177 0.0087 
0.6 0.2152 0.0451 0.2151 0.0082 
0.55 0.2122 0.0451 0.212 0.0077 
0.5 0.2088 0.0451 0.2086 0.0072 
0.45 0.2048 0.0451 0.2045 0.0066 
0.4 0.2001 0.0451 0.1997 0.0061 
0.35 0.1944 0.0451 0.194 0.0056 
0.3 0.1873 0.0451 0.1868 0.0051 
0.25 0.1784 0.0451 0.1776 0.0047 
0.2 0.1664 0.0451 0.1653 0.0045 
0.15 0.1497 0.0451 0.1479 0.0046 
0.1 0.1247 0.0451 0.1215 0.0055 
0.05 0.0858 0.0451 0.0782 0.0096 

0 0.0808 0.0451 0.0451 0.0451 
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 From Table 1 we can notice that the proposed estimator has the smallest 
scalar mean square error values than RE, ME and SMRE for all values of k  
except 0. When k  increases, SMSE value for RE and SMRE increases. However 
there is no big difference in the SMSE between RE and SMRE for 1k > . These 
results can be graphically explained by drawing Figure 1. 
 

 
 

For further explanation we perform the Monte Carlo Simulation study by 
considering different levels of multicollinearity. Following McDonald and 
Galarneau (1975) we can get explanatory variables as follows: 

                  ( )1/22
, 11 ,  1, 2,..., ,   1, 2,..., ,ij ij i px z z i n j pρ ρ += − + = =  

where ijz  is an independent standard normal pseudo random number, and ρ  is 
specified so that the theoretical correlation between any two explanatory variables 
is given by 2ρ . A dependent variable is generated by using the equation. 

                1 1 2 2 3 3 4 4 ,  1, 2,..., ,i i i i i iy x x x x i nβ β β β ε= + + + + =  

where iε is a normal pseudo random number with mean zero and variance 2
iσ . In 

this study we choose ( ) ( )1 2 3 4, , , 1/ 2,1/ 2,1/ 2,1/ 2β β β β β ′ ′= = for which 

 
Figure 1: Estimated SMSE values of RE, ME, SMRE and SRORE 
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1β β′ = (see Kibria, 2003), 30n = , 4p = and 2 1iσ = . Three different sets of 
correlations are considered by selecting the value as 0.8ρ = , 0.9, 0.99 and 0.999.  
Using equations (3.1), (3.2), (3.3) and (2.17) for different shrinkage parameter (k) 
values to represent the different levels of multicollinearity, the SMSE values for 
RE, ME, SMRE and SRORE are derived and given in Table 2 and Table 3. 
 
Table 2: The estimated Scalar Mean Square Error values of RE, ME, SMRE and 

SRORE for different shrinkage parameter (k) values at 0.8ρ = and 0.9. 
k RE ME SMRE SRORE 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

RE ME SMRE SRORE 
0.8ρ =  0.9ρ =  

10 0.0966 0.1966 0.0880 0.0994 0.1417 0.3287 0.1303 0.1404 

5 0.1271 0.1966 0.1127 0.1214 0.1715 0.3287 0.1476 0.1621 

2 0.1717 0.1966 0.1501 0.1551 0.2526 0.3287 0.2076 0.2207 

1 0.1955 0.1966 0.1702 0.1731 0.3124 0.3287 0.2535 0.2626 

0.95 0.1969 0.1966 0.1714 0.1742 0.3162 0.3287 0.2565 0.2652 

0.9 0.1983 0.1966 0.1725 0.1752 0.32 0.3287 0.2595 0.2679 

0.85 0.1996 0.1966 0.1737 0.1763 0.324 0.3287 0.2625 0.2707 

0.8 0.2011 0.1966 0.1749 0.1773 0.3281 0.3287 0.2657 0.2735 

0.75 0.2025 0.1966 0.1762 0.1784 0.3322 0.3287 0.2689 0.2763 

0.7 0.204 0.1966 0.1774 0.1795 0.3365 0.3287 0.2722 0.2793 

0.65 0.2054 0.1966 0.1786 0.1806 0.3409 0.3287 0.2756 0.2823 

0.6 0.2069 0.1966 0.1799 0.1818 0.3454 0.3287 0.2791 0.2854 

0.55 0.2084 0.1966 0.1812 0.1829 0.35 0.3287 0.2827 0.2885 

0.5 0.21 0.1966 0.1825 0.1841 0.3547 0.3287 0.2863 0.2918 

0.45 0.2115 0.1966 0.1838 0.1852 0.3595 0.3287 0.2901 0.2951 

0.4 0.2131 0.1966 0.1852 0.1864 0.3645 0.3287 0.294 0.2984 

0.35 0.2147 0.1966 0.1865 0.1876 0.3696 0.3287 0.2979 0.3019 

0.3 0.2163 0.1966 0.1879 0.1889 0.3748 0.3287 0.302 0.3055 

0.25 0.218 0.1966 0.1893 0.1901 0.3801 0.3287 0.3061 0.3091 

0.2 0.2196 0.1966 0.1907 0.1914 0.3856 0.3287 0.3104 0.3128 

0.15 0.2213 0.1966 0.1921 0.1926 0.3913 0.3287 0.3148 0.3167 

0.1 0.223 0.1966 0.1936 0.1939 0.3971 0.3287 0.3193 0.3206 

0.05 0.2248 0.1966 0.1951 0.1952 0.403 0.3287 0.324 0.3246 

0 0.2265 0.1966 0.1966 0.1966 0.4091 0.3287 0.3287 0.3287 
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Table 3:  The estimated Scalar Mean Square Error values of RE, ME, SMRE and 
SRORE for different shrinkage parameter (k) values at 0.99ρ = and 
0.999. 

k RE ME SMRE SRORE 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

RE ME SMRE SRORE 
0.99ρ =  0.999ρ =  

10 1.9195 2.4325 1.9150 0.8768 22.4564 22.939 22.4559 8.0947 

5 1.7189 2.4325 1.7029 0.7926 22.1330 22.939 22.1309 7.9633 

2 1.4153 2.4325 1.3428 0.7086 21.2289 22.939 21.2161 7.5951 

1 1.348 2.4325 1.1611 0.7821 19.9111 22.939 19.863 7.0812 

0.95 1.3548 2.4325 1.1561 0.7954 19.7848 22.939 19.7319 7.0339 

0.9 1.3641 2.4325 1.1522 0.8105 19.6471 22.939 19.5886 6.9826 

0.85 1.3762 2.4325 1.15 0.828 19.4963 22.939 19.4313 6.9271 

0.8 1.3918 2.4325 1.1495 0.848 19.3306 22.939 19.2579 6.8667 

0.75 1.4113 2.4325 1.1514 0.8711 19.1477 22.939 19.0658 6.8008 

0.7 1.4357 2.4325 1.156 0.8976 18.9449 22.939 18.8519 6.7288 

0.65 1.4657 2.4325 1.1639 0.9283 18.7187 22.939 18.6123 6.65 

0.6 1.5025 2.4325 1.1758 0.9637 18.4652 22.939 18.3423 6.5635 

0.55 1.5475 2.4325 1.1927 1.0047 18.1794 22.939 18.0358 6.4685 

0.5 1.6024 2.4325 1.2157 1.0523 17.8553 22.939 17.6851 6.3643 

0.45 1.6693 2.4325 1.2462 1.1079 17.4852 22.939 17.2806 6.2506 

0.4 1.751 2.4325 1.2858 1.1729 17.0604 22.939 16.8096 6.1276 

0.35 1.8508 2.4325 1.337 1.2493 16.5705 22.939 16.2559 5.9981 

0.3 1.9731 2.4325 1.4025 1.3395 16.0053 22.939 15.599 5.8689 

0.25 2.1238 2.4325 1.4863 1.4466 15.3597 22.939 14.8148 5.7585 

0.2 2.3105 2.4325 1.5932 1.5747 14.6499 22.939 13.881 5.7133 

0.15 2.5434 2.4325 1.7301 1.729 13.9733 22.939 12.8067 5.8586 

0.1 2.8366 2.4325 1.9062 1.9165 13.7501 22.939 11.7707 6.5779 

0.05 3.2098 2.4325 2.1342 2.1466 16.0081 22.939 11.9179 9.3374 

0 3.6912 2.4325 2.4325 2.4325 36.2314 22.939 22.939 22.939 

 
The condition numbers of the data sets when ρ = 0.8, 0.9, 0.99 and 0.999 

are 13.23, 29.33, 319.46 and 3217.48 respectively. According to Table 2 and 3 
when multicollinearity increases the SRORE has the smallest scalar mean square 
error values than SMRE, RE and ME when k becomes large. Nevertheless the 
SMRE has smallest scalar mean square values than SROME, RE and ME 
at 0.8ρ =  and 0.9ρ = . These results can be graphically explained by drawing 
Figure 2, Figure 3, Figure 4 and Figure 5. 
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Figure 2: Estimated SMSE values of RE, ME,  

SMRE and SRORE for ρ =0.8. 
Figure 3: Estimated SMSE values of RE, ME,   

SMRE and SRORE for ρ =0.9. 

  
Figure 4: Estimated SMSE values of RE, ME, 

SMRE and SRORE for ρ =0.99. 
Figure 5:  Estimated SMSE values of RE, ME,    

SMRE and SRORE for ρ =0.999. 
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5  Conclusion 
In this paper we proposed another ridge type estimator, namely Stochastic 

Restricted Ordinary Ridge Estimator (SRORE) in the multiple linear regression 
model when the stochastic restrictions are available in addition to the sample 
information and when the explanatory variables are multicollinear. Necessary and 
sufficient conditions for the superiority of the Stochastic Restricted Ordinary 
Ridge Estimator (SROME) over the Mixed Estimator (ME), Ridge Estimator (RE) 
and Stochastic Mixed Ridge Estimator (SMRE) are obtained using Mean Square 
Error Matrix (MSEM) criterion. For the numerical example, the proposed 
estimator has the smallest scalar mean square errors than ME, RE and SMRE for 
all values of k except 0. When analyzing the simulation results it was noted that 
the proposed estimator has the smallest scalar mean square error when 
multicollinearity is large and 0.1k > . 
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Appendix 
Lemma 1 Assume square matrixes A , C are not singular, and B , D are matrixes 
with proper orders, then ( ) ( ) 11 1 1 1 1 1A BCD A A B C DA B DA

−− − − − − −+ = − + . 
Proof: see Rao and Touterburg (1995). 

Lemma 2 Let M be a positive definite matrix, namely 0M > , α be some vector, 
then 0M αα′− ≥ if and only if 1 1Mα α−′ ≤ . 
Proof: see Farebrother (1976). 

Lemma 3 Let ˆ
j jA yβ = , 1, 2j = be two competing linear estimators of β . Suppose 

that ( ) ( )1 2
ˆ ˆ 0D D Dβ β= − > , where ( )ˆ , 1, 2jD jβ =  denotes the dispersion matrix 

of ˆ
jβ . Then ( ) ( ) ( )1 2 1 1

ˆ ˆ ˆ ˆ, , , 0MSE MSEβ β β β β β∆ = − ≥ if and only if 

( )2 1 1 2 1d D d d d′ ′+ ≤ , where ( )ˆ ,jMSE β β , jd denote the mean square error matrix 

and bias vector of ˆ
jβ , respectively. 

Proof: see Trenkler and Toutenburg (1990). 

Lemma 4 Let n n×  matrices 0M > , 0N ≥ , then M N>  if and only if 
( )1

1 1NMλ − < . where ( )1
1 NMλ − is the largest eigenvalue of the matrix 1NM − . 

Proof: see Wang et al. (2006). 
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