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Abstract 

Steady MHD Couette flow of class-II of a viscous incompressible electrically 

conducting fluid in a rotating system is studied. Exact solution of the governing 

equations is obtained in closed form. Expressions for the shear stress at lower and 

upper plates due to primary and secondary flows and mass flow rates in primary 

and secondary flow directions are derived. Asymptotic behavior of the solution for 

velocity and induced magnetic field is analyzed for small and large values of 

rotation parameter 2K  and magnetic parameter 2M  to gain some physical 

insight into flow pattern. Heat transfer characteristics of the fluid are considered 

taking viscous and Joule dissipations into account. Numerical solution of energy 

equation and numerical values of rate of heat transfer at lower and upper plates are 

computed with the help of MATLAB software. The numerical values of velocity, 

induced magnetic field and fluid temperature are displayed graphically versus 

channel width variable η  for various values of pertinent flow parameters 

whereas numerical values of the shear stress at lower and upper plates due to 
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primary and secondary flows, mass flow rates in primary and secondary flow 

directions and rate of heat transfer at lower and upper plates are presented in 

tabular form for various values of pertinent flow parameters. 

 
Mathematics Subject Classification: 76U05: Rotating Fluids 

Keywords: Magnetic field, Coriolis force, modified Ekman boundary layer, 

Hartmann boundary layer, viscous and Joule dissipations.  

 

    
1  Introduction  
Investigation of hydromagnetic flows with or without heat transfer assumes 

significance due to occurrence of such type of fluid flows in numerous areas of 

engineering and applied physics. A prominent area of focus is MHD energy 

generator flows which include disk systems [1], solar pond hydromagnetic 

generators [2] and magneto-thermo-acoustic generators [3]. Other areas of 

application are hypersonic ionized boundary layers [4], particle deposition in 

electrically-conducting systems [5] and liquid metal processing [6]. In numerous 

MHD flows rotation may also take place and Coriolis and centrifugal forces can 

exert a significant effect on fluid flows and heat transfer processes. Keeping in 

view this fact Jana et al. [7], Jana and Datta [8], Seth and Maiti [9], Mandal et al. 

[10], Mandal and Mandal [11], Seth and Ahmad [12],  Kumar et al. [13], Seth et 

al. [14-19], Chandran et al. [20], Singh et al. [21], Singh [22], Hayat et al. [23, 24] 

and Guria et al. [25] investigated MHD Couette flow of a viscous incompressible 

electrically conducting fluid in a rotating system considering different aspects of 

the problem. 

It is worthy to note that there may be two types of MHD Couette flow viz. (i) 

MHD Couette flow of class-I and (ii) MHD Couette flow of class-II. The fluid 

flow induced due to movement of a plate, when fluid is bounded by a stationary 

plate placed at a finite distance from the moving plate, may be recognized as 
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MHD Couette flow of class-I. This fluid flow is similar to the flow induced due to 

movement of a plate when the free stream is stationary. The fluid flow past a 

stationary plate, which is induced due to movement of a plate placed at a finite 

distance from the stationary plate, may be recognized as MHD Couette flow of 

class-II. This fluid flow is similar to the fluid flow past a stationary plate due to 

moving free stream. Research studies carried out by Jana et al. [7], Jana and Datta 

[8], Seth and Maiti [9], Mandal et al. [10], Mandal and Mandal [11], Seth and 

Ahmad [12], Kumar et al. [13], Seth et al. [14-18], Chandran et al. [20], Singh et 

al. [21] and Guria et al. [25] belong to MHD Couette flow of class-I. Seth et al. 

[19], Singh [22] and Hayat et al. [23, 24] investigated MHD Couette flow of 

class-II in a rotating system in the presence of a uniform transverse magnetic field 

considering different aspects of the problem. In their studies the induced magnetic 

field produced by fluid motion is negligible in comparison to the applied one. It is 

well known that the induced magnetic field produced by fluid motion is negligible 

in comparison to applied one when magnetic Reynolds number is very small. 

However, for the problems of astrophysical and geophysical interest magnetic 

Reynolds number is not very small. For such type of fluid flow problems induced 

magnetic field plays a significant role in determining flow features of the problem. 

 The purpose of the present investigation is to study steady MHD Couette 

flow of class-II of a viscous incompressible electrically conducting fluid in a 

rotating system in the presence of a uniform transverse magnetic field applied 

parallel to the axis of rotation by taking induced magnetic field into account. 

 

2  Formulation of the Problem and Its Solution 
Consider a steady flow of a viscous incompressible electrically conducting 

fluid between two parallel plates 0z =  and z L=  in the presence of a uniform 

transverse magnetic field 0H  applied parallel to z axis. The lower plate is 

perfectly conducting whereas upper plate is non-conducting. Both the fluid and 

channel are in a state of rigid body rotation with uniform angular velocity Ω  
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about z-axis. Flow within the channel is induced due to movement of the upper 

plate z L=  with a uniform velocity 0U  in x-direction while lower plate 0z =  

is kept fixed. Since plates of the channel are of infinite extent in x and y- 

directions and fluid flow is steady so all physical quantities, except pressure, 

depend on z only. Therefore, fluid velocity q  and induced magnetic field H  

are given by  

          
* *( , ,0)q u v=  and * *

0( , , )x yH H H H= .          (1) 

This assumption is in agreement with the fundamental equations of 

Magnetohydrodynamics in a rotating frame of reference. 

 Taking into consideration of the assumption made above, the governing 

equations for fluid flow of a viscous incompressible electrically conducting fluid 

in a rotating frame of reference are 

 
** 2 *

* 0
2

12 e xH dHp d uv
x dz dz

μυ
ρ ρ
∂

− Ω = − + +
∂

,            (2) 

 
** 2 *

* 0
2

12 ye dHHp d vu
y dz dz

μυ
ρ ρ
∂

Ω = − + +
∂

,             (3) 

 
*10 p

zρ
∂

= −
∂

,                  (4) 

 
2 **

0 20 x
m

d HduH
dz dz

η= + ,                (5) 

 
2 **

0 20 y
m

d HdvH
dz dz

η= + ,                (6) 

where 1/m eη μ σ=  and ρ , υ , eμ , σ  and *p  are, respectively, fluid density, 

kinematic coefficient of viscosity, magnetic permeability, electrical conductivity 

of the fluid and modified pressure including centrifugal force. 

The boundary conditions for the velocity and induced magnetic field are  

 * * 0u v= =   at 0z = ,                 (7a) 

 *
0u U= , * 0v =  at z L= ,                 (7b) 
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**

0yx dHdH
dz dz

= =  at 0z = ,                 (8a) 

 * * 0x yH H= =   at z L= .                 (8b) 

Equation (4) shows constancy of modified pressure *p  along z-axis i.e. axis of 

rotation. It may be noted that a number of investigations on MHD Couette flow 

are carried out in the past. Keeping in view the research studies made on MHD 

Couette flow till now, we are the opinion that MHD Couette flow may be 

classified in two forms, namely, (i) MHD Couette flow of class-I and (ii) MHD 

Couette flow of class-II. The fluid flow induced due to movement of a plate, when 

fluid is bounded by a stationary plate placed at a finite distance from the moving 

plate, may be recognized as MHD Couette flow of class-I. This fluid flow is 

similar to the flow induced due to movement of a plate when the free stream is 

stationary. The fluid flow past a stationary plate, which is induced due to 

movement of a plate placed at a finite distance from the stationary plate, may be 

recognized as MHD Couette flow of class-II. This fluid flow is similar to the fluid 

flow past a stationary plate due to moving free stream. For MHD Couette flow of 

class-I the pressure gradient terms 
*1 p

xρ
∂

−
∂

 and 
*1 p

yρ
∂

−
∂

, which are present in 

equations (2) and (3) respectively, are not considered by researchers [7-18, 20, 21, 

25]. This assumption is justified and it is clearly evident from conditions (7a) and 

(8a). For MHD Couette flow of class-II values of the pressure gradient terms in 

equations (2) and (3) are evaluated with the help of boundary conditions (7b) and 

(8b) which are given by     

                  
*1 0p

xρ
∂

− =
∂

 and 
*

0
1 2p U

yρ
∂

− = Ω
∂

.      (9) 

Equations (2) and (3) with the use of (9) become 

                  
*2 *

* 0
22 e xH dHd uv

dz dz
μυ
ρ

− Ω = + ,         (10) 
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*2 *

* 0
0 22 ( ) ye dHHd vu U

dz dz
μυ
ρ

Ω − = + .                (11) 

Representing equations (10), (11), (5) and (6), in non-dimensional form, we obtain 

             
2 2

2
22 x

m

dHd u MK v
d R dη η

− = + ,                    (12) 

              
2 2

2
22 ( 1) y

m

dHd v MK u
d R dη η

− = + ,             (13) 

              
2

2

10 x

m

d Hdu
d R dη η

= + ,                        (14) 

              
2

2

10 y

m

d Hdv
d R dη η

= + ,               (15) 

where  

      
* * * *

0 0 0 0

2 2 2 2 2 2
0 0

/ , / , / , / , / ,

/ , ( / ), / .
x x y y

e m m

z L u u U v v U H H H H H H

K L M H L R U L

η

υ μ σ ρυ η

⎫= = = = = ⎪
⎬

= Ω = = ⎪⎭
   (16) 

Here 2K  is rotation parameter which is reciprocal of Ekman number, 2M  is 

magnetic parameter which is square of Hartmann number and mR is magnetic 

Reynolds number.   

 
The boundary conditions (7a) to (8b), in non-dimensional form, become 

     0u v= =   at 0η = ; 1u = , 0v =   at 1η = ,            (17)

          

        0yx dHdH
d dη η

= =  at 0η = ; 0x yH H= =  at 1η = .           (18) 

Equations (12) to (15) are presented in compact form as 

     
2

2 2
22 ( 1) d f dbiK f M

d dη η
− = + ,                    (19) 

  

2

20 df d b
d dη η

= + ,                         (20) 

where f u iv= + , x yb h ih= + , /x x mh H R=  and /y y mh H R= . 
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The boundary conditions (17) and (18), in compact form, become 

 0f =  at 0η =  and 1f =  at  1η = ,              (21) 

 0db
dη

=  at 0η =  and  0b =  at 1η = .              (22) 

Equations (19) and (20) together with the boundary conditions (21) and (22) are 

solved and solution for the velocity field and induced magnetic field are expressed 

in the following form 

 [ ]1 sinh( ) (cosh( ) 1)f A Bλη λη
λ

= + − ,               (23) 

2

2 2

1 2 (1 )(cosh cosh( )) sinh sinh( ) iKb A B
M
λ ηλ λη λ λη

λ
⎡ ⎤⎧ ⎫−

= − + − +⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

 

  
2

2

2 (1 )iK
M

η−
+ ,                   (24) 

where { }
1/21/24 4 21; , 4 ,

2
i M K Mλ α β α β ⎡ ⎤= + = + ±⎢ ⎥⎣ ⎦

           (25a)  

   
2

2 21 22 cosh ; .
sinh

iKA M iK Bλ
λ λ λ

⎡ ⎤= + = −⎣ ⎦             (25b) 

 
 

Shear Stress at the plates 

The non-dimensional shear stress components xτ  and yτ  at lower and 
upper plates, due to the primary and secondary flows respectively, are given by 
       0 1, cosh sinh .x y x yi A i A Bη ητ τ τ τ λ λ= =+ = + = +            (26) 
 
 

Mass Flow Rates 

The non-dimensional mass flow rates xQ  and yQ , in the primary and 
secondary flow directions, are given by 

           [ ]2

1 (cosh 1) (sinh )x yQ iQ A Bλ λ λ
λ

+ = − + − .           (27) 
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3  Asymptotic Solutions 
We shall now discuss asymptotic behavior of the solution given by (23) to 

(25) for small and large values of 2M  and 2K  to gain some physical insight 

into the flow pattern. 

 
Case I: 2 1M  and 2 1K  

Since 2M  and 2K are very small, neglecting squares and higher powers 

of 2M  and 2K  and their product in equations (23) to (25), we obtain velocity 

and induced magnetic field as 

 
2

2(1 )
6

Mu η η η= − − + ,                 (28) 

 
2

2(2 3 )
3

Kv η η η= − + + ,                 (29) 

 
2

2 2 41 (1 ) (1 2 )
2 24x

Mh η η η= − − − + + ,               (30) 

 
2

2 3 4(1 4 4 )
12y
Kh η η η= − + − + .                 (31) 

The expressions (28) to (31) reveal that in a slowly rotating system when the 

conductivity of the fluid is low and/or applied magnetic field is weak, primary 

velocity u  and primary induced magnetic field xh  are independent of rotation 

while secondary velocity v  and secondary induced magnetic field yh  are 

unaffected by applied magnetic field. 

 
Case II: 2 1K  and 2 (1)M O∼  

When 2K  is large and 2M  is of small order of magnitude fluid flow 

becomes boundary layer type. For the boundary layer flow adjacent to the upper 

plate 1η = , we introduce boundary layer co-ordinate 1ξ η= − , and obtain 

velocity and induced magnetic field from equations (23) to (25) as 



G. S. Seth, S.M. Hussain and J.K. Singh                                  39
  

 

 1

2

121 sin
2
Mu e
K

α ξ β ξ−= − ,                  (32) 

 1

2

12 1 cos
2
Mv e
K

α ξ β ξ−⎡ ⎤= −⎣ ⎦ ,                 (33) 

 { }1

2

1 13 cos sin 1
4x
Mh e
K

α ξξ β ξ β ξ−⎡ ⎤= + + −⎣ ⎦ ,              (34) 

 { }1

2 2

1 12 3 cos sin 1
2 4y
M Mh e

K K
α ξξ β ξ β ξ−⎡ ⎤= + − −⎣ ⎦ ,             (35) 

 
where 

 
2

1 21
4
MK
K

α
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, 
2

1 21
4
MK
K

β
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.               (36) 

It is revealed from the expressions (32) to (36) that there arises a thin boundary 

layer of thickness 1(1/ )O α  adjacent to the moving plate of the channel. This 

boundary layer may be identified as modified Ekman boundary layer and can be 

viewed as Ekman boundary layer modified by magnetic field. The thickness of 

this boundary layer decreases with increase in either 2M  or 2K . Similar type of 

boundary layer arises near lower plate of the channel. Exponential terms in the 

expressions (32) to (35) damp out quickly as ξ  increases. When 11/ξ α>  i.e. 

outside the boundary layer region, we obtain 

 1u ≈ , 
2

22
Mv
K

≈ ,                   (37) 

 
2

34x
Mh
K

ξ≈ − , 
2

2

1
2 2y
Mh
K K

ξ⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

.               (38) 

It is evident from the expressions in (37) and (38) that in a certain core given by 

11/ξ α>  i.e. outside the boundary layer region, fluid flows in both the primary 

and the secondary flow directions with uniform velocity. The primary flow moves 

with the velocity which is equal to the velocity of the moving plate and is 

unaffected by rotation and magnetic field. The primary and secondary induced 

magnetic fields xh  and yh  vary linearly with η  and are considerably affected 

by rotation and magnetic field. 
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 Case III: 2 1M  and 2 (1)K O∼  
In this case also boundary layer type flow is expected. For boundary layer 

flow near the upper plate η = 1, we obtain the velocity and induced magnetic field 

from the equations (23) to (25) as  

 2

2

2 22

2cos sinKu e
M

α ξ β ξ β ξ− ⎡ ⎤
= −⎢ ⎥

⎣ ⎦
,                (39) 

 2

2 2

2 22 2

2 2sin cosK Kv e
M M

α ξ β ξ β ξ− ⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
,              (40) 

 2

2

2 22

1 31 cos sinx
Kh e

M M
α ξ β ξ β ξ−⎡ ⎤⎧ ⎫

= − −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

,              (41) 

 2

2 2 2

2 22 2 2

2 1 3 3sin cosy
K K Kh e
M M M M

α ξξ β ξ β ξ−⎡ ⎤⎧ ⎫
= + − + +⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
,           (42) 

where 2 Mα =  and 
2

2
K
M

β = .                 (43) 

The expressions (39) to (43) demonstrate the existence of a thin Hartmann 

boundary layer of thickness 2(1/ )O α  adjacent to moving plate of the channel. 

The thickness of this boundary layer decreases with increase in M . Similar type 

of boundary layer appears near lower plate of the channel. Outside the boundary 

layer region, fluid velocity and induced magnetic field become 

               0u ≈ ,  
2

2

2Kv
M

≈ ,                (44) 

              1
xh

M
≈ , 

2

2

32y
Kh
M M

ξ⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

.             (45) 

The expressions in (44) and (45) show that, in a certain core given by 21/ξ α>  

i.e. outside the boundary layer region, the fluid flows in secondary flow direction 

only with uniform velocity and has considerable effects of rotation and magnetic 

field. The primary induced magnetic field xh  is uniform and is unaffected by 

rotation while the secondary induced magnetic field yh  is affected by both the 
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rotation and magnetic field and varies linearly with η .  

 

4  Heat Transfer Characteristics 

We shall now discuss heat transfer characteristics of the steady 

hydromagnetic Couette flow of a viscous incompressible electrically conducting 

fluid in a rotating system when the upper and lower plates of the channel are 

maintained at uniform temperatures 1T  and 0T  respectively, where 0 1T T T< < , 

T  being fluid temperature. 

The energy equation taking viscous and Joule dissipations into account is given by  
222 2 **2 * *

*
2

10 yx

p p

dHdHd T du dv
dz C dz dz C dz dz

υα
σρ

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥= + + + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
,        (46)  

where *α
 
and pC  are thermal diffusivity and specific heat at constant pressure 

respectively. 

Boundary conditions for temperature field are 

           0T T=  at 0z =  and 1T T=  at z L= .             (47) 
Making use of the non-dimensional variables defined in equation (16), equation 

(46), in non-dimensional form, becomes  

       

22 2 22
2

2 0yx
r r

dhdhd du dvE P M
d d d d d
θ
η η η η η

⎡ ⎤⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎢ ⎥+ + + + =⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦
,     (48) 

where 0

1 0

T T
T T

θ −
=

−
, 0

1 0( )r
p

UE
C T T

=
−

 and *rP υ
α

= . θ , rE  and rP  are 

non-dimensional fluid temperature, Prandtl number and Eckert number 

respectively. 

Boundary conditions (47), in non-dimensional form, become 

                    (0) 0θ =  and (1) 1θ = .          (49) 

The analytical solution of fluid velocity and induced magnetic field from (23) to 

(25) are used in equation (48), and the resulting differential equation subject to the 
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boundary conditions (49) is solved numerically with the help of MATLAB 

software. The numerical values of the rate of heat transfer at the lower and upper 

plates are also computed with the help of MATLAB software from the energy 

equation (48). 

 

5  Results and Discussion 

To study the effects of magnetic field and rotation on the flow field the 

numerical values of both the primary and secondary fluid velocities and primary 

and secondary induced magnetic fields, computed from analytical solution (23) to 

(25) reported in section 2 by MATLAB software, are displayed graphically versus 

channel width variable η  in Figures 1 to 4 for various values of magnetic 

parameter 2M  and rotation parameter 2K . It is evident from Figure 1 that 

primary velocity u decreases whereas secondary velocity v increases on increasing 
2M  which implies that magnetic field has retarding influence on the primary 

flow whereas it has reverse influence on the secondary flow. It is revealed from 

Figure 2 that primary velocity u and secondary velocity v increases on increasing 
2K  which implies that rotation tends to accelerate fluid flow in both the primary 

and secondary flow directions. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

η

u,
 v

M2=2, 4, 6

M2=2, 4, 6

u
v

 
Figure 1: Velocity profiles when 2 7K =  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

η

u,
 v

K2=3, 5, 7

u
v

           
Figure 2: Velocity profiles when 2 6M =  

 
It is noticed from Figure 3 that primary induced magnetic field xh  decreases 

whereas secondary induced magnetic field yh  increases on increasing 2M  

which implies that magnetic field has tendency to reduce primary induced 

magnetic field whereas it has reverse effect on the secondary induced magnetic 

field. Figure 4 reveals that both the primary induced magnetic field xh  and 

secondary induced magnetic field yh  increase on increasing 2K  which implies 

that rotation tends to enhance both the primary and secondary induced magnetic 

fields  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

h x, h
y

M2=2, 4, 6

M2=2, 4, 6

hx
hy

  
Figure 3:  Magnetic field profiles when 2 7K =         
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Figure 4:  Magnetic field profiles when 2 6M =  

 
 
 To study the effects of magnetic field and rotation on fluid temperature, the 

numerical solution of energy equation, computed with the help of MATLAB 

software, is presented graphically versus channel width variable η  in Figures 5 

to 8 for various values of 2 2,M K , Prandtl number rP and Eckert number rE . It 

is evident from Figure 5 that fluid temperature θ  decreases in the region near the 

lower plate whereas it increases in the region 0.25 1η< ≤  on increasing 2M  

which implies that magnetic field tends to reduce fluid temperature in the region 

near lower plate of the channel whereas it has reverse effect on the fluid 

temperature in most of the region of the channel (i.e. 0.25 1η< ≤ ). It is noticed 

from Figure 6 that, with the increase in 2K , fluid temperature θ  increases in the 

region 0 0.85η≤ < where as it decreases in the region near upper plate of the 

channel which implies that rotation tends to enhance fluid temperature in most of 

the region of the channel (i.e. 0 0.85η≤ < ) whereas it has reverse effect on fluid 

temperature in the region near upper plate of the channel.  
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Figure 5: Fluid temperature profiles when 2 7,K =  0.71rP =  and 0.8rE =   
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Figure 6:  Fluid temperature profiles when 2 6,M =  0.71rP =  and 0.8rE =    

                         
 
It is revealed from the Figure 7 that fluid temperature θ  decreases on decreasing 

Prandtl number rP . Since rP  is a measure of the strength of viscosity and 

thermal conductivity of fluid. rP  decreases when thermal conductivity of fluid 

increases. Therefore, we conclude from above result that thermal diffusion tends 

to reduce fluid temperature throughout the channel. It may be noted that variation 

in fluid temperature θ  along the channel width is linear for liquid metal i.e. 

mercury ( 0.03rP = ) whereas it is non-linear for air and water. It is observed from 
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Figure 8 that fluid temperature θ  increases on increasing rE which implies that 

viscous dissipation has tendency to increase fluid temperature throughout the 

channel.      
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Figure 7: Fluid temperature profiles when 2 26, 7M K= =  and 0.8rE =    
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  Figure 8:  Fluid temperature profiles when 2 26, 7M K= =  and 0.71rP =  
                            

                      
The numerical values of the primary shear stress xτ  and secondary shear 

stress yτ  at the lower and upper plates, computed from the analytical expression 

(26) mentioned in section 2 by MATLAB software, are displayed in tabular form 

in tables 1 and 2 while that of primary mass flow rate xQ  and secondary mass 

flow rate yQ , computed from analytical expression (27) mentioned in section (2) 
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by MATLAB software, are presented in tabular form in table 3 for various values 

of 2M  and 2K . It is revealed from table 1 that primary shear stress at the lower 

plate i.e. 0x ητ =  decreases whereas secondary shear stress at the lower plate i.e. 

0y ητ = behaves in oscillatory manner on increasing 2M  which implies that 

magnetic field tends to reduce primary shear stress at the lower plate. It is 

observed from table 1 that both 0x ητ =  and 0y ητ =  increase on increasing 2K  

which implies that rotation has tendency to enhance both the primary and 

secondary shear stress at the lower plate. It is noticed from table 2 that primary 

shear stress at the upper plate i.e. 1x ητ =  increases on increasing 2M  whereas it 

decreases on increasing 2K  which implies that magnetic field tends to enhance 

primary shear stress at the upper plate whereas rotation has reverse effect on it. It 

is found from table 2 that, with an increase in 2M , secondary shear stress at the 

upper plate i.e. 1y ητ =  increases when 2 5K =  and 7 and it increases, attains a 

maximum, and then decreases when 2 3K = . On increasing 2K , 1y ητ =  increases, 

attains a maximum, and then decreases when 2 2M =  and 4 and it increases 

when 2 6M = . This implies that when the effects of magnetic field and rotation are 

significant, magnetic field and rotation tend to enhance secondary shear stress at 

the upper plate. It is evident from table 3 that primary mass flow rate xQ decreases 

on increasing 2M  whereas it increases on increasing 2K  which implies that 

magnetic field tends to reduce primary mass flow rate whereas rotation has reverse 

effect on it. It is noticed from table 3 that secondary mass flow rate yQ  decreases 

when 2 3K =  whereas it increases when 2 5K =  and 7 on increasing 2M  and 

yQ  increases an increasing 2K  which implies that rotation tends to enhance 

secondary mass flow rate where as magnetic field tends to enhance secondary 

mass flow rate when 2 5K ≥ . 
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Table 1: Primary and secondary shear stress at the lower plate 

0x ητ =  0y ητ =      2M → 
 
2K ↓ 2 4 6 2 4 6 

3 1.2597 1.0055 0.8142 1.6875 1.6592 1.6085 
5 1.8450 1.5626 1.3272 2.3779 2.4075 2.3914 
7 2.3618 2.0975 1.8560 2.8348 2.9177 2.9492 

 
 

Table 2: Primary and secondary shear stress at the upper plate 

1x ητ =  1y ητ =−       2M → 
 
2K ↓ 2 4 6 2 4 6 

3 1.1484 1.6955 2.1646 0.7612 0.7853 0.7809 
5 0.7073 1.2657 1.7645 0.8664 0.9781 1.0349 
7 0.3901 0.9085 1.3945 0.7809 0.9689 1.0946 

 
 

Table 3: Primary and secondary mass flow rates 

xQ  yQ  
2M → 
 
2K ↓ 2 4 6 2 4 6 

3 0.5271 0.4633 0.4134 0.1943 0.1939 0.1883 
5 0.6277 0.5600 0.5027 0.2393 0.2537 0.2579 
7 0.7072 0.6454 0.5889 0.2419 0.2693 0.2853 

  

The numerical values of rate heat transfer at the lower and upper plates are 

computed with the help of MATLAB software and are displayed in the tabular 

form in tables 4 and 5 for various values of 2 2, , rM K P , and rE . It is evident 

from table 4 that rate of heat transfer at the lower plate i.e. 0
d
d η
θ
η =  decreases on 

increasing 2M  and it increases on increasing 2K . With an increase in 2M , the 

rate of heat transfer at the upper plate i.e. 1
d
d η
θ
η =  increases when 2 3K =  and it 
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decreases, attains a minimum and then increases when 2 5K = and 7. 1
d
d η
θ
η =  

decreases, attains a minimum, and then increases in magnitude on increasing 2K  

when 2 2M =  while it decreases on increasing 2K  when 2 4M =  and 6. Thus 

we conclude that magnetic field tends to reduce rate of heat transfer at the lower 

plate whereas rotation has reverse effect on it. Magnetic field tends to enhance rate 

of heat transfer at the upper plate and rotation has reverse effect on it when 
2 4M ≥ . It may be noted that there exists reverse flow of heat near upper plate on 

increasing 2K  when 2 2M =  and also reverse flow of heat takes place near 

upper plate on increasing 2M  when 2 5K = and 7. 

  
Table 4: Rate for heat transfer at the lower and upper plates when 0.71rP =  and 

0.8rE =  

0

d
d η

θ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1

d
d η

θ
η =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 

2M → 
 

   2K ↓ 

2 4 6 2 4 6 
3 2.2594 2.0690 1.9231 0.1071 1.1276 2.2078 
5 3.5726 3.3396 3.1245 -0.0768 0.8627 1.8924 
7 4.8665 4.6671 4.4485 -0.2156 0.6370 1.5965 

 
 

Table 5: Rate for heat transfer at the lower and upper plates when 2 6M =  and 
2 7K =  

0

d
d η

θ
η =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1

d
d η

θ
η =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 
rE  

→ 
 
rP  
↓ 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

0.01 1.0121 1.0243 1.0364 1.0486 -0.9909 -0.9817 -0.9726 -0.9634 
0.03 1.0364 1.0729 1.1093 1.1457 -0.9726 -0.9451 -0.9177 -0.8903 
0.71 1.8621 2.7242 3.5863 4.4485 -0.3509 0.2983 0.9474 1.5965 
3.0 4.6427 8.2855 11.9282 15.5710 1.7428 4.4856 7.2285 9.9713 
7.0 9.4997 17.9995 26.4992 34.9989 5.3999 11.7998 18.1998 24.5997 
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It is noticed from table 5 that 0
d
d η
θ
η =  decreases on decreasing rP  and it 

increases on increasing rE . 1
d
d η
θ
η =  decreases, attains a minimum, and then 

increases in magnitude on decreasing rP . 1
d
d η
θ
η =  decreases in magnitude on 

increasing rE  when 0.03rP ≤ , it decreases, attains a minimum and then 

increases on increasing rE  when 0.71rP =  and increases on increasing 

rE when 3rP ≥ . Thus we conclude that thermal diffusion tends to reduce rate of 

heat transfer at the lower plate whereas viscous dissipation has reverse effect on it. 

Thermal diffusion tends to reduce rate of heat transfer at the upper plate when 

3rP ≥  whereas it has reverse effect on the rate of heat transfer at the upper plate 

when 0.03rP ≤ . Viscous dissipation tends to enhance rate of heat transfer at the 

upper plate when 3rP ≥  whereas it has reverse effect on the rate of heat transfer 

at the upper plate when 0.03.rP ≤  It may be noted that there exists reverse flow 

of heat near upper plate on decreasing rP  and also there exists reverse flow of 

heat near upper plate on increasing rE  when 0.71rP = . 

 

6  Conclusion 

 Present investigation deals with the theoretical study of steady MHD Couette 

flow of class-II in a rotating system. The significant results are summarized 

below: 

(i) Magnetic field has retarding influence on the primary flow and it has reverse 

influence on the secondary flow. 

(ii) Rotation tends to accelerate fluid flow in both the primary and secondary 

flow directions. 
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(iii) Magnetic field has tendency to reduce primary induced magnetic field 

whereas it has reverse effect on the secondary induced magnetic field. 

(iv) Rotation tends to enhance both the primary and secondary induced magnetic 

fields. 

(v) Magnetic field tends to reduce fluid temperature in the region near lower 

plate of the channel whereas it has reverse effect on fluid temperature in 

most of the region of the channel (i.e. 0.25 1η< ≤ ). 

(vi) Rotation tends to enhance fluid temperature in most of the region of the 

channel (i.e. 0 0.85η≤ < ) whereas it has reverse effect on fluid temperature 

in the region near upper plate of the channel. 

(vii) Thermal diffusion tends to reduce fluid temperature throughout the channel 

whereas viscous dissipation has reverse effect on it. 

(viii) Magnetic field tends to reduce primary shear stress at the lower plate. 

Rotation has tendency to enhance both the primary and secondary shear 

stress at the lower plate. 

(ix) Magnetic field tends to enhance primary shear stress at the upper plate 

whereas rotation has reverse effect on it. When the effects of magnetic field 

and rotation are significant, magnetic field and rotation tend to enhance 

secondary shear stress at the upper plate. 

(x) Magnetic field tends to reduce primary mass flow rate whereas rotation has 

reverse effect on it. Rotation tends to enhance secondary mass flow rate 

whereas magnetic field tends to enhance secondary mass flow rate when 
2 5K ≥ . 

(xi) Magnetic field tends to enhance rate of heat transfer at the upper plate and 

rotation has reverse effect on it when 2 4M ≥ . There exists reverse flow of 

heat on increasing 2K  when 2 2M =  and also reverse flow of heat takes 

place on increasing 2M  when  2 5K = and 7. 

(xii) Thermal diffusion tends to reduce rate of heat transfer at the lower plate 

whereas viscous dissipation has reverse effect on it. Thermal diffusion tends 
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to reduce rate of heat transfer at the upper plate when 3rP ≥  whereas it has 

reverse effect on the rate of heat transfer at the upper plate when 0.03rP ≤ . 

Viscous dissipation tends to enhance rate of heat transfer at the upper plate 

when 3rP ≥  whereas it has reverse effect on the rate of heat transfer at the 

upper plate when 0.03.rP ≤  There exists reverse flow of heat near upper 

plate on decreasing rP  and also there exists reverse flow of heat near upper 

plate on increasing rE  when 0.71rP = . 
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