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2 Optimal control of some degenerate pseudo-parabolic variational inequality

1 Introduction

We shall study the optimal control problems governed by nonlinear pseudo-

parabolic equations of the form:




dMy
dt

+ Ay + β(y) 3 Bu a.e in Q,

M1/2y(0) = M1/2y0,
(1)

with the state constraint

F (y) ⊂ S. (2)

The pay-off functional is given by

L(y, u) =

∫ T

0

[g(t, y) + h(u)]dt, (3)

where Q = Ω× (0, T ), Ω ⊂ RN , is a bounded domain with smooth boundary.

For the data in (1)-(3), we have the following assumptions.

(H1) M is a nonnegative selfadjoint operator in H = ÃL2(Ω) with D(M) ⊂
D(A + β).

(H2) V ⊂ H is a real Hilbert space such that V is dense in H and V ⊂ H ⊂ V ′

algebraically and topologically, where V ′ is the dual of V . Further, the injection

of V into H is compact.

A : V → V ′ is a linear continuous and symmetric operator from V to V ′

satisfying the coercivity condition

(Ay, y) ≥ w ‖ y ‖2
V +α | y |2H for all y ∈ V, (4)

where w > 0 and α ∈ R.

(H3) β is a maximal monotone graph in R × R with 0 ∈ β(0). Let φ(y) :

H → R = (−∞, +∞] be the lower semicontinuous convex function defined by

φ(y) =
∫

Ω
j(y)dx, where j : R→ R̄ is such that ∂j = β. Moreover,

(Ay, βε(y)) ≥ 0 ∀ y ∈ D(A), ε > 0, (5)

where βε(r) = ε−1(r − (1 + εβ)−1r) for all ε > 0, r ∈ R. For every ξ ∈ β, there

exists a constant c > 0 such that

| ξ(u) |≤ c(1+ | u |p+1), 0 ≤ p ≤ 2/(N−2) if N > 2; 0 ≤ p < +∞ if N = 1, 2.

(6)
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(H4) B is a linear continuous operator from a real Hilbert space U to H.

The norm and the scalar product of U will be denoted by | · |U and 〈·, ·〉,
respectively. Let H be a real Hilbert space with the inner product (·, ·) and

the norm | · |.
(H5) Let Z be a Banach space with the dual Z∗ strictly convex. S ⊂ Z

is a closed convex subset with finite codimensionality (cf.[22, 4, 5]). F :

L2(0, T ; V ) → Z is of class C1.

(H6) The functional h : U → R is convex and lower semicontinuous (l. s. c),

such that

h(u) ≥ c1 | u |2U +c2, ∀ u ∈ U,

where c1 > 0, c2 ∈ R.

(H7) g : [0, T ]×H ⊆ R+ is measurable in t, and for every δ > 0, there exists

Lδ > 0 independent of t such that g(t, 0) ∈ L∞(0, T ) and

| g(t, y1)− g(t, y2) |≤ Lδ | y1 − y2 |H for all t ∈ [0, T ], | y1 |H + | y2 |H≤ δ.

Remark 1.1. From a perturbation theorem for m-accretive operators ([8]

Lemma 5) and (H2), (H3), we easily know that A+∂j is m-accretive in H×H,

we may write (1) as





dMy
dt

+ ∂ϕ(y(t)) 3 Bu a.e t ∈ (0, T ),

M1/2y(0) = M1/2y0,
(7)

where ϕ(y) = 1
2
(Ay, y) + φ(y), y ∈ V.

Remark 1.2. M is not necessarily invertible and initial condition should not

be given in the form

y(0) = y0.

Since the continuity with respect to t of the solution y(·, t) can not be expected.

As we know, by Barbu [19, 20] (see Chapter 4) and Theorem 1 of [17], we

easily obtain.
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Lemma 1.3. Let (H1) − (H4) hold. Then, for any y0 ∈ D(M) ∩ V, u ∈
L2(0, T ; U), (1) admits a unique solution y(x, t) satisfying

y ∈ L∞(0, T ; D(M) ∩ V ), My, M1/2y ∈ AC([0, T ]; H),

(d/dt)My, (d/dt)M1/2y ∈ L2(0, T ; H).

Our optimal control problem is stated as follows.

Problem (P ). Find a (ȳ, ū) ∈ Aad such that

L(ȳ, ū) = inf
(y,u)∈Aad

L(y, u). (8)

Here Aad = {(y, u) ∈ (L∞(0, T ; D(M)∩V )×L2(0, T ; U))| y is the solution

of (7) with (2) }. Any u(·) ∈ Aad satisfying (2) is called an optimal control,

and the corresponding ȳ(·) ≡ y(·; ū) is called an optimal state. The pair (ȳ, ū)

is called an optimal pair.

(1) cover cases of the following type: surface waves of long wavelength in

liquids, acoustic-gravity waves in compressible fluids, hydromagnetic waves in

cold plasma, acoustic waves in anharmonic crystals, etc. The wide applicabil-

ity of these equations is the main reason why, during the last decades, they

have attracted so much attention from mathematicians. Recently, some op-

timal control problems governed by pseudoparabolic equations have already

been discussed. Linear optimal control problems for pseudoparabolic equa-

tions were considered by S. I. Lyashko [21, 15, 7, 18, 12, 13, 9]. However, these

problems studied in [15, 7, 18, 12, 13, 9] do not involve state constraints and

maximal monotone graph. On the other hand, optimal control governed by

some parabolic variational inequalities (cf. [11, 14, 10, 3, 23, 19, 20, 1]) have

already been discussed. Li and Yong [22] studied the maximal principle for op-

timal control governed by some nonlinear parabolic equations with two point

boundary (time variable) state constraints. In Cases’ work [2], the state con-

straint was considered, but the state equation did not involve monotone graph.

He [25] studied the optimal control problems involving some special maximal

monotone graph (Lipschitz continuous) with state constraint. Wang [4, 5] also

discussed the optimal control problem governed by the state equation involv-

ing some maximal monotone graph. Xu [24] have established the maximal

principle for optimal control to problem (P ) under the following conditions on

M and A + β:
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D(M) ⊂ D(A + β) and M has the bounded inverse.

The present work in this paper is concerned with the optimal control prob-

lem governed by the pseudoparabolic equations where the operator M is not

necessarily invertible. The method in [4, 5, 19] can not be used directly. The

methods which be used primarily here are the theory of m-accretive operators

in a Hilbert space. Especially the properties of subdifferentials will play an

essential role in the approximating control process.

The plan of this paper is as follows. Section 2 gives an approximating

control process. In section 3, we state and prove the necessary conditions on

optimality for the problem (P ).

2 The approximating control process

Let (y∗, u∗) be optimal for the problem (P ). Then




dMy∗
dt

+ Ay∗ + ∂φ(y∗(t)) 3 Bu∗ a.e t ∈ (0, T ),

M1/2y∗(0) = M1/2y0,
(9)

with

F (y∗) ∈ S,

and

L(y∗, u∗) = inf L(y, u) over (y, u) ∈ Aad.

Now consider the following approximating equations for (7):




(ε + M)dy
dt

+ CεJ
M
ε y = Bu a.e in Q,

y(0) = y0,
(10)

where C = ∂ϕ, Cε = ε−1(I − JC
ε ) and JC

ε = (I + εC)−1.

In virtue of (H1), for every fixed ε > 0, it is seen that the operator

Pε(t) ≡ (ε + M)−1CεJ
M
ε is locally Lipschitz continuous in H and the map-

ping t → Pε(t)y is strongly continuous on [0, T ] for every u ∈ H. Then we

easily obtain that any y0 ∈ D(M) ∩ V , u ∈ L2(0, T ; U), (10) has a unique

solution W 1,2([0, T ]; H)∩C([0, T ]; H)∩L2(0, T ; V ) and dMy/dt = M(dy/dt).

We also have the following result on (10).
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Lemma 2.1. For ε > 0 given, un ∈ L2(0, T ; U), un → ũ weakly in L2(0, T ; U).

Then there exists some subsequence of {yn}, still denoted by itself, such that

yn → ỹ strongly in C([0, T ]; H), where ỹ, yn is the solutions of (10) correspond-

ing to ũ and un, respectively.

Proof. Multiplying (10) by JM
ε yn(t) and using the selfadjointness of M , we see

ε(y′n(t), JM
ε yn(t)) +

d

dt
| M1/2

ε yn(t) |2 +2(CεJ
M
ε yn(t), JM

ε yn(t))

= 2(Bun, JM
ε yn(t)).

From the identity JM
ε w = εCεJ

M
ε w + JC

ε JM
ε w yields

ε
d

2dt
| (JM

ε )1/2yn(t) |2 +
d

dt
| M1/2

ε yn(t) |2 +ε | CεJ
M
ε yn(t) |2 +c | JC

ε JM
ε yn(t) |2

≤ c | un |2U +
1

4
ε | CεJ

M
ε yn(t) |2 +

1

4
c | JC

ε JM
ε yn(t) |2,

where Mε = ε−1(I − JM
ε ). It is well known that Mε is m-accretive on H and

Lipschitz continuous with 1/ε as a Lipschitz constant and | Mεy |≤| M0y |
with Mεy → M0y as ε → 0 for every y ∈ D(M). For an m-accretive operator

M , My(y ∈ D(M)) is closed and convex; so My has a unique element of the

least norm which is denoted by M0y. Integrating the above inequality from 0

to T , we see

ε | (JM
ε )1/2yn(t) |2C([0,T ];H) + | M1/2

ε yn(t) |C([0,T ];H)

+ ε1/2 | CεJ
M
ε yn(t) |L2(0,T ;H) + | JC

ε JM
ε yn |L2(0,T ;H)≤ c.

(11)

Multiplying (10) by JM
ε y′n(t), we see

ε(y′n(t), JM
ε y′n(t))+ | M1/2

ε y′n(t) |2 +
d

dt
ϕε(J

M
ε yn(t)) ≤ (Bun, J

M
ε y′n(t)).

Here we have used the fact (CεJ
M
ε yn(t), JM

ε y′n(t)) = d
dt

ϕε(J
M
ε yn(t)), thus

ε(y′n(t), JM
ε y′n(t))+ | M1/2

ε y′n(t) |2 +
d

dt
ϕε(J

M
ε yn(t))

≤ c | (JM
ε )1/2Bun |2 +

1

4
ε | (JM

ε )1/2y′n(t) |2

≤ c | un |2U +
1

4
ε | (JM

ε )1/2y′n(t) |2 .

Integrating the above inequality from 0 to T , and ϕε is Fréchet differentiable

on H(see [4]), we see

ε | (JM
ε )1/2y′n(t) |L2(0,T ;H) + | M1/2

ε y′n(t) |L2(0,T ;H) +ϕε(J
M
ε yn(t)) ≤ c. (12)
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On the other hand, from (4) and (H3), we get

c | JC
ε JM

ε yn(t) |2≤ ϕ(JC
ε JM

ε yn(t)) ≤ ϕε(J
M
ε yn(t)) for any t ∈ [0, T ]. (13)

and

| JM
ε yn(t) |≤ ε | CεJ

M
ε yn(t)) | + | JC

ε JM
ε yn(t) | . (14)

This implies

ε | y′n(t) |L2(0,T ;H)≤ ε

∫ T

0

(y′n(t), JM
ε y′n(t))dt+ ε2 | M1/2

ε y′n(t) |L2(0,T ;H)≤ c. (15)

Multiplying (10) by MεJ
M
ε yn(t), we see

2ε(y′n(t), MεJ
M
ε yn(t)) +

d

dt
| Mεyn(t) |2 +2(CεJ

M
ε yn(t),MεJ

M
ε yn(t))

= 2(Bun,MεJ
M
ε yn(t)), (16)

thus

ε
d

dt
| M1/2JM

ε yn(t)) |2 +
d

dt
| Mεyn(t) |2≤ c+ | Mεyn(t) |2,

Integrating this inequality over (0, t], t ≤ T and using Gronwall’s inequality,

yields

| Mεyn(t) |L2(0,T ;H)≤ c ∀ t ∈ [0, T ]. (17)

Hence we get

| yn(t) |≤ ε | Mεyn(t) | + | JM
ε yn(t) |≤ c ∀ t ∈ [0, T ]. (18)

From (H2) and (H3), it follows that

| CεJ
M
ε yn(t) |L2(0,T ;H)≤ c,

then in view of (10) and the above inequality give

| M d

dt
yn(t) |L2(0,T ;H)≤ c, (19)

which implies

| Myn(t) |≤ c for all t ∈ [0, T ], (20)

and

| d

dt
yn(t) |L2(0,T ;H)≤ c. (21)
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For every m,n > 0

ε
d

dt
| ym − yn |2 +

d

dt
| M1/2(ym − yn) |2 +2(CεJ

M
ε (ym − yn), ym − yn)

≤ c | um − un |2U +ε | ym − yn |2,

by some calculations, we see

ε | (ym − yn)(t) |2 + | M1/2(ym − yn)(t) |2 +

∫ t

0

| (ym − yn) |2 dτ

≤ c

∫ t

0

| um − un |2U dτ for all t ∈ [0, T ].

Hence {M1/2yn} and {yn} are Cauchy sequences in C([0, T ]; H)∩L2(0, T ; H).

By (H2), then there exists a function ỹ ∈ C([0, T ]; D(M1/2)) such that as

n →∞

yn → ỹ strongly in C([0, T ]; H),

M1/2yn → M1/2ỹ strongly in C([0, T ]; H).

This completes the proof.

Next, we recall the approximation gε of g and hε of h as follows. For the

details, we refer to [4, 5, 6, 19]. Let

gε(t, y) =

∫

RN

g(t, PNy − εΛNs)ρ(s)ds, ε > 0

where ρ is a mollifier in RN , N = [ε−1]. PN : L2 → XN is the projection of

L2(Ω) on XN which is the finite dimensional space generated by {ei}N
i=1, where

{ei}∞i=1 is an orthonormal basis in L2(Ω). ΛN : RN → XN is the operator

defined by ΛN(s) =
∑N

i=1 siei, s = (s1, · · ·, sN).

Let hε : U → R be defined by

hε(u) = inf
{‖ u− v ‖2

L2(0,T ;U)

2ε
+ h(v) : v ∈ U

}
, ε > 0.

Now we define the penalty Lε : L2(0, T ; U) → R by

Lε(u) =

∫ T

0

[gε(t, yε)+hε(u)]dt+
1

2
| u−u∗ |2L2(0,T ;U) +

1

2ε1/2
[ε1/2 + dS(F (yε))]

2,

(22)
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where yε is the solution of (10). dS(F (yε)) denotes the distance of F (yε) to S.

The approximating optimal control problems are as follows:

(P ε) Minimize Lε(u) over u ∈ L2(0, T ; U).

From Lemma 2.1, we easily obtain the following existence of optimal solu-

tions for (P ε) (see [4, 5, 19]).

Theorem 2.2. Problem (P ε) has at least one optimal solution.

The following results are useful in discussing the approximating control

problems.

Lemma 2.3. Let uε → u weakly in L2(0, T ; U) as ε → 0. Then there exists a

subsequence {yε}ε>0, still denoted it self

yε → y strongly in C([0, T ]; H),

as ε → 0. where yε is the solutions of (10) corresponding to uε and y is the

solutions of (7) corresponding to u.

Proof. Rewrite (10) as follows:





(ε + M)dyε(t)
dt

+ CεJ
M
ε yε(t) = Buε(t) a.e in Q,

yε(0) = y0.
(23)

Multiplying (23) by JM
ε yε(t), we see

2ε(y′ε(t), J
M
ε yε(t)) +

d

dt
| M1/2

ε yε(t) |2 +2(CεJ
M
ε yε(t), J

M
ε yε(t))

= 2(Buε, J
M
ε yε(t)),

from the identity JM
ε yε(t) = εCεJ

M
ε yε(t) + JC

ε JM
ε yε(t) and (H3) yield

(CεJ
M
ε yε(t), J

M
ε yε(t)) ≥ ε | CεJ

M
ε yε(t) |2 +c | JC

ε JM
ε yε(t) |2,

thus,

d

dt
| M1/2

ε yε(t) |2 +ε
d

dt
(yε(t), J

M
ε yε(t)) + 2ε | CεJ

M
ε yε(t) |2 +2c | JC

ε JM
ε yε(t) |2

≤ 1

4
ε | (JM

ε )1/2yε(t) |2 +c | (JM
ε )1/2Buε |2 .
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Integrating the above inequality from 0 to t(t ∈ (0, T ]), we have

| M1/2
ε yε(t) |C(0,T ;H)≤ c, (24)

and

ε1/2 | CεJ
M
ε yε(t) |L2(0,T ;H)≤ c, | JC

ε JM
ε yε(t) |L2(0,T ;H)≤ c, (25)

which implies

| JM
ε yε(t) |L2(0,T ;H)≤ c. (26)

Multiplying (23) by JM
ε y′ε(t), we see

ε(y′ε(t), J
M
ε y′ε(t))+ | M1/2

ε y′ε(t) |2 +
d

dt
ϕε(J

M
ε yn(t))

≤ (Buε, J
M
ε y′ε(t)) ≤ c | (JM

ε )1/2Buε |2 +
1

4
ε | (JM

ε )1/2y′ε |2 .

Here we have used the fact (CεJ
M
ε yε(t), J

M
ε y′ε(t)) = d

dt
ϕε(J

M
ε yε(t)).

Integrating the above inequality over (0, T ], and ϕε is Frechet differentiable

on H(see [4]) we see

| M1/2
ε y′ε(t) |L2(0,T ;H)≤ c, ϕε(J

M
ε yε(t)) ≤ c, ε

∫ T

0

(y′ε(t), J
M
ε y′ε(t))dt ≤ c. (27)

This implies

ε | y′ε(t) |L2(0,T ;H)≤ ε

∫ T

0

(y′ε(t), J
M
ε y′ε(t))dt + ε2 | M1/2

ε y′ε(t) |L2(0,T ;H)≤ c. (28)

Multiplying (23) by MεJ
M
ε yε(t), we see

2ε(y′ε(t),MεJ
M
ε yε(t)) +

d

dt
| Mεyε(t) |2 +2(CεJ

M
ε yε(t),MεJ

M
ε yε(t))

= 2(Buε,MεJ
M
ε yε(t)),

thus

ε
d

dt
| M1/2JM

ε yε(t)) |2 +
d

dt
| Mεyε(t) |2≤ c | Buε |2 + | Mεyε(t) |2,

Integrating this inequality over (0, t], t ≤ T and Gronwall’s inequality yield

| Mεyε(t) |≤ c. (29)

Hence we get

| yε(t) |≤ ε | Mεyε(t) | + | JM
ε yε(t) |≤ c ∀ t ∈ [0, T ]. (30)
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In view of (23) and (28), we finally obtain

| My′ε(t) |L2([0,T ];H)≤ c, | Myε(t) |≤ c ∀ t ∈ [0, T ]. (31)

For every m,n > 0, we have

(εmy′εm
− εny

′
εn

, yεm − yεn) +
d

2dt
| M1/2(yεm − yεn) |2 +(CεmJM

εm
yεm

−CεnJM
εn

yεn , yεm − yεn)

≤ c | B(uεm − uεn) |2 +
1

4
ε | yεm − yεn |2,

Using the identities w = JM
εm

w + εmMεmw for every w ∈ H, etc., we see

(CεmJM
εm

yεm − CεnJM
εn

yεn , yεm − yεn)

= (CεmJM
εm

yεm − CεnJM
εn

yεn , JC
εm

JM
εm

yεm − JC
εm

JM
εn

yεn)

+ (CεmJM
εm

yεm − CεnJM
εn

yεn , εmCεmJM
εm

yεm − εnCεmJM
εn

yεn)

+ (CεmJM
εm

yεm − CεnJM
εn

yεn , εmMεmyεm − εnMεnyεn)

≥ c | JC
εm

JM
εm

yεm − JC
εm

JM
εn

yεn |2 −c(εm + εn)

≥ c | yεm − yεn |2 −c(εm + εn).

Here using the estimate

| yεm − yεn |≤| JM
εm

yεm − JM
εn

yεn | +εm | Mεmyεm | +εn | Mεnyεn | .

From (28) and (30) we see

|
∫ T

0

(εmy′εm
− εny

′
εn

, yεm − yεn)dt |≤ c(ε1/2
m + ε1/2

n ).

Hence combining them, we get

| M1/2(yεm − yεn) |2 +

∫ t

0

| yεm − yεn |2 ds ≤ c

∫ t

0

| (uεm − uεn) |2U ds

+c(ε1/2
m + ε1/2

n ).

Combining this with (H2), we know that {M1/2yεn} and {yεn} are Cauchy

sequences in C([0, T ]; H) ∩ L2(0, T ; V ). Then there exists a function

y ∈ C([0, T ]; D(M1/2))

such that as n →∞, εn → 0,
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yεn → y strongly in C([0, T ]; H) ∩ L2(0, T ; V ),

M1/2yεn → M1/2y strongly in C([0, T ]; H). (32)

JM
εn

yεn → y strongly in C([0, T ]; H), εny
′
εn
→ 0 weakly in L2(0, T ; H).

(33)

Note that

M1/2JM
εn

yεn → M1/2y strongly in L2(0, T ; H), (34)

Indeed, we see

| M1/2JM
εn

yεn(t)−M1/2y |2 (t) ≤ 2 | M1/2(JM
εn

yεn(t)− yεn)(t) |2
+ | M1/2(yεn(t)− y(t)) |2

= −2εn(Mεnyεn(t),Mεnyεn(t)−Myεn(t))+ | M1/2(yεn(t)− y) |2
≤ cεn+ | M1/2(yεn(t)− y) |2→ 0,

for all t ∈ [0, T ]. In virtue of (28), (30) and (31), weakly closedness of d/dt and

β, it is shown that

dyεn/dt → dy/dt weakly in L2(0, T ; H), (35)

Mdyεn/dt → Mdy/dt weakly in L2(0, T ; H). (36)

Therefore, y ∈ AC(0, T ; D(M)) and dy/dt ∈ L2(0, T ; D(M)). We easily see

that y(t) ∈ D(C) a.e. t ∈ (0, T ) and there exists a function ξ ∈ L∞(0, T ; H)

such that as εn → 0,

CεnJM
εn

yεn → ξ weakly star in L∞(0, T ; H),

and ξ(t) ∈ Cy(= Ay + β(y)) a.e. t ∈ (0, T ). From (32), we have M1/2y(0) =

M1/2y0. Thus letting ε → 0 in (23), it follows that





dMy(t)
dt

+ Ay + ξ(t) = Bu(t) a.e in Q,

M1/2y(0) = M1/2y0.
(37)
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Lemma 2.4. Let y0 ∈ D(M) ∩ V, u ∈ L2(0, T ; U), then yε → y strongly in

C([0, T ]; H) ∩ L2(0, T ; V ) as ε → 0. where yε is the solutions of (10) corre-

sponding to u and y be the solutions of (1) corresponding to u with the initial

condition M1/2y(0) = M1/2y0. Furthermore,

| M1/2(yε − y) |C([0,T ];H) + | yε − y |L2(0,T ;H)≤ cε1/2. (38)

Proof. By the same argument in the proof of Lemma 2.3 we have yε →
y strongly in C([0, T ]; H). We have for all ε and λ,





d
dt

(εyε − λyλ) + dM(yε(t)−yλ(t))
dt

+ CεJ
M
ε yε(t)− CλJ

M
λ yλ(t) = 0 a.e in Q,

yε(0)− yλ(0) = 0.

(39)

Multiplying (39) by yε(t)− yλ(t), we have

2(εy′ε − λy′λ, yε − yλ)(t) +
d | M1/2(yε(t)− yλ(t)) |2

dt
+2(CεJ

M
ε yε(t)− CλJ

M
λ yλ(t), yε(t)− yλ(t)) = 0. (40)

From (H2), (H3) and (30), the third term of the left hand side of (40), using

the identities w = JM
ε w + εMεw for every w ∈ H, etc., we see

(CεJ
M
ε yε − CλJ

M
λ yλ, yε − yλ)

= (CεJ
M
ε yε − CλJ

M
λ yλ, J

C
ε JM

ε yε − JC
ε JM

λ yλ)

+ (CεJ
M
ε yε − CλJ

M
λ yλ, εCεJ

M
ε yε − λCεJ

M
λ yλ)

+ (CεJ
M
ε yε − CλJ

M
λ yλ, εMεyε − λMλyλ)

≥ c | JC
ε JM

ε yε − JC
ε JM

λ yλ |2 −c(ε + λ)

≥ c | yε − yλ |2 −c(ε + λ).

From (28) and (30) we see

|
∫ T

0

(εy′ε − λy′λ, yε − yλ)dt |≤ c(ε1/2 + λ1/2).

Hence combining them, we get

| M1/2(yε − yλ) |2 +

∫ T

0

| yε − yλ |2 ds ≤ c(ε1/2 + λ1/2).

Letting λ → 0 in the above inequality, we get (38).
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Lemma 2.5. Let uε be optimal for the problem (P ε) and yε be the solution of

(10) corresponding to uε. For ε → 0, then

yε → y∗ strongly in C([0, T ]; H) ∩ L2(0, T ; V ).

uε → u∗ strongly in L2(0, T ; U).

yε be the solutions of (10) corresponding to uε, y∗ be the solutions of (1) cor-

responding to u∗ with the initial condition M1/2y(0) = M1/2y0.

Proof. For any ε > 0, we have

Lε(uε) ≤ Lε(u∗) =

∫ T

0

[gε(t, yε) + hε(u∗)]dt +
1

2ε1/2
[ε1/2 + dS(F (yε))]

2.

By Lemma 2.3, yε → y∗ strongly in C([0, T ]; H), We have

gε(t, yε) → g(t, y∗) for all t ∈ [0, T ],

and

hε(uε) → h(u∗).

So

lim
ε→0

∫ T

0

gε(t, yε)dt =

∫ T

0

g(t, y∗)dt, lim
ε→0

∫ T

0

hε(u∗)dt =

∫ T

0

h(u∗)dt.

Similarly, By (38) and (H5), we see

1

2ε1/2
[ε1/2+dS(F (yε))]

2 ≤ 1

2ε
[ε1/2+ ‖ F (yε)−F (y∗) ‖Z ]2 ≤ cε1/2 → 0 as ε → 0,

thus,

lim sup
ε→0

Lε(uε) ≤ L(u∗). (41)

On the other hand, since {uε}ε>0 is bounded in L2(0, T ; U), there exists u1 ∈
L2(0, T ; U) such that, on some subsequence {ε}ε>0, still denoted by itself, as

ε → 0,

uε → u1 weakly in L2(0, T ; U),

and so, by Lemma 11,

yε → y1 = y(u1) strongly in C([0, T ]; H).
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By (41), one can check easily that

1

2ε1/2
[ε1/2 + dS(F (yε))]

2 ≤ c.

Thus, dS(F (yε)) → 0 as ε → 0. Since S is closed and convex, F (y1) =

lim
ε→0

F (yε) ∈ S. Since the function u → ∫ T

0
h(u)dt is weakly lower semicon-

tinuous on L2(0, T ; U), we see

lim inf
ε→0

Lε(uε) ≥ L(u1) ≥ L(u∗).

together with (41), yields

lim
ε→0

Lε(uε) = L(u∗).

Arguing as in the proof of Lemma 11, we have M1/2yε(0) → M1/2y∗(0) in H.

Hence y1 = y∗, u1 = u∗. This completes the proof.

3 Necessary conditions on optimality

Let ∂g be the generalized gradient of y → g(t, y) and ∂h be the subdiffer-

ential of h (see [4, 5, 19]). Y ∗ = (Hs(Ω))′ + V ′ is the dual of Y = Hs(Ω) ∩ V

with s > N/2.

Firstly, we consider the Cauchy problem




(ε + M)dpε

dt
− Apε − β̇ε(yε)pε − [F ′(yε)]

∗ξε = λε∇gε(t, yε) in (0, T ),

pε(T ) = 0,

(42)

where β̇ε = (βε)′. βε = ε−1(I−(I+εβ)−1), βε =
∫∞
−∞[βε(r−ε2θ)−βε(−ε2θ)]ρ(θ)

+βε(0) and ρ is a C∞
0 -mollifier on R.

Lemma 3.1. Problem (42) has a unique absolutely continuous function pε ∈
L2(0, T ; V ) ∩ C([0, T ]; H) with p′ε ∈ L2(0, T ; V ′), such that

ε | pε(t) |22 + | M1/2pε(t) |22 +

∫ T

0

‖ pε(t) ‖2
V dt ≤ c ∀ ε > 0, t ∈ [0, T ], (43)

∫

Q

| pεβ̇
ε(yε) | dxdt ≤ c ∀ ε > 0. (44)
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Proof. From (H1)−(H3), β̇ε(yε) ≥ 0, it is see that C = (ε+M)−1(A+ β̇ε(yε)) :

V → V ′ is demicontinuous monotone operator that satisfies

(Cω, ω) ≥ w ‖ ω ‖p +c ∀ω ∈ V,

‖ Cω ‖∗≤ c(1+ ‖ ω ‖p−1),

where w > 0 and p ≥ 2. It follows by Theorem 1.9′ of [19] that (42) has a

unique solution pε ∈ L2(0, T ; V ) ∩ C([0, T ]; H) with p′ε ∈ L2(0, T ; V ′). Multi-

plying (42) by pε(t) and integrating over [t, T ], we see

ε | pε(t) |2 + | M1/2pε(t) |2 +

∫ T

t

‖ pε(s) ‖2
V ds ≤ c.

Thus we obtain (43). Multiplying (42) by ζ(pε) and integrating on Q, where

ζ is a smooth monotonically increasing approximation of the sign function such

that ζ(0) = 0. For instance

ζ = ζλ(r) =

∫ ∞

−∞
(ζλ(r − λθ)− ζλ(−λθ))ρ(θ)dθ,

where ζλ(r) = r | r |−1 for | r |≥ λ, ζλ(r) = λ−1r for | r |< λ, and ρ is a C∞
0 −

mollifier. Then (Apε(t), ζ(pε(t))) ≥ 0, therefore,
∫

Q

β̇ε(yε)ζ(pε)pεdxdt ≤
∫

Q

| ∇yg
ε(t, yε)ζ(pε) | dxdt, ∀ ε > 0.

Then, letting ζ tend to the sign function, we get (44).

We state the main results of the necessary conditions on optimality as

follows.

Theorem 3.2. Suppose that (H1)− (H7) hold. Let (y∗, u∗) be an optimal pair

of problem (P ). Then there exist the function p ∈ L∞(0, T ; H)∩L2(0, T ; V )∩
BV ([0, T ]; Y ∗), the measure µ ∈ (L∞(Q))′ and λ0 ∈ R, ξ0 ∈ Z∗ satisfying

d

dt
Mp− Ap− µ− [F ′(y∗)]∗ξ0 ∈ L∞(0, T ; H), (45)





d
dt

Mp(t)− Ap(t)− µ− [F ′(y∗)]∗ξ0 ∈ λ0∂g(t, y∗) a.e. in (0, T ),

M1/2p(T ) = 0,
(46)

〈ξ0, w − F (y∗)〉 ≤ 0 for all w ∈ S, (47)

B∗p ∈ λ0∂h(u∗)(t), a.e. t ∈ (0, T ), (48)

(λ0, ξ0) 6= 0. (49)
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Proof. Since (yε, uε) is optimal for problem (P ε), we see

Lε(u
ρ
ε ) ≥ Lε(uε) for any ρ > 0, v ∈ L2(0, T ; V ),

Here uρ
ε = uε + ρv. Thus

Lε(u
ρ
ε )− Lε(uε)

ρ
≥ 0. (50)

By some calculation, we have

lim
ρ→0

∫ T

0

gε(t, yρ
ε )− gε(t, yε)

ρ
=

∫ T

0

(∇gε(t, yε), zε)dt,

where zε ∈ C([0, T ]; H) ∩ L2(0, T ; V ) ∩ W 1,2([0, T ]; H) is the solution to the

linear equation




(ε + M)dz
dt

+ Az + β̇ε(yε)z = Bv in (0, T ),

z(0) = 0,
(51)

Thus, we also have

λε

[ ∫ T

0

〈∇gε(t, yε), zε〉dt +

∫ T

0

〈∇hε(uε), v〉dt
]

+ 〈ξε, F
′(yε)zε〉

≥
∫ T

0

〈u∗ − uε, v〉dt. (52)

where

λε =
ε1/2

dS(F (yε)) + ε1/2
, ξε =

{
∇dS(F (yε)), if F (yε) /∈ S,

0 otherwise,

and ξε ∈ ∂dS(F (yε)). Since S is convex and closed, we see

‖ ξε ‖Z∗=

{
1, if F (yε) /∈ S,

0 otherwise.

and

1 ≤ ϕ2
ε+ ‖ ξε ‖2

Z∗≤ 2.

Thus, we see

λε → λ0, ξε → ξ0 weakly in Z∗.

It follows from lemma 2.5 that yε → y∗ strongly in C([0, T ]; H) ∩ L2(0, T ; V ).
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Now, since {Apε} is bounded in L2(0, T ; V ′) and β̇ε(yε)pε is bounded in

L1(0, T ; L1(Ω)), [F ′(yε)]
∗ξε is bounded in L2(0, T ; V ′), we may infer that {pε} is

bounded in L1(0, T ; L1(Ω)+V ′) and so, {(ε+M)p′ε} is bounded in L1(0, T ; Y ∗).

Since the injection of H into Y ∗ is compact and the set {pε} is bounded in H

for any t ∈ [0, T ]. By the same arguments as those in [19, 4, 5], there exists

p ∈ L∞([0, T ]; H) ∩ L2(0, T ; V ) ∩BV ([0, T ]; Y ∗) and µ ∈ (L∞(Q))∗ such that,

on some subsequence ε, still denoted itself

pε(t) → p strongly in Y ∗, ∀ t ∈ [0, T ].

Here BV ([0, T ]; Y ∗) is the space of all Y ∗-valued functions p : [0, T ] → Y ∗ with

bounded variation on [0, T ].

On the other hand, by (43) we see

pε → p weakly star in L∞(0, T ; H), weakly in L2(0, T ; V ). (53)

Note that V ↪→ H is compact, for every λ > 0 there is δ(λ) > 0 such that

| pε(t)− p(t) |2≤‖ pε(t)− p(t) ‖V +δ(λ) ‖ pε(t)− p(t) ‖Y ∗ ∀ t ∈ [0, T ].

This yields

pε → p strongly in L2(0, T ; H), (54)

and

pε(t) → p(t) weakly in H ∀ t ∈ [0, T ]. (55)

Moreover, by (44) we infer that there is µ ∈ (L∞(Q))∗ such that, on some

generalized subsequence ε,

β̇ε(yε)pε → µ weakly star in (L∞(Q))∗, (56)

∇gε(t, yε) → η weakly star in L∞(0, T ; H))∗, η(t) ∈ ∂g(t, y∗) a.e. t ∈ (0, T ).

(57)

Since F is continuously differentiable from L2(0, T ; V ) to Z,

[F ′(yε)]
∗ξε → [F ′(y∗)]∗ξ0 weakly L2(0, T ; V ′).

From (43), we infer that | (ε + M)1/2pε(T ) |2= 〈(ε + M)pε(T ), pε(T )〉 = ε |
pε(T ) |22 + | M1/2pε(T ) |22≤ c. Together with (55), we obtain

(ε + M)1/2pε(T ) → M1/2p(T ) in H.
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Now letting ε → 0 in (42), it follows that

d

dt
Mp− Ap− µ− [F ′(y∗)]∗ξ0 ∈ L∞(0, T ; H), (58)





d
dt

Mp(t)− Ap(t)− µ− [F ′(y∗)]∗ξ0 ∈ λ0∂g(t, y∗) a.e. in (0, T ),

M1/2p(T ) = 0,
(59)

It follows from (51), (52) and (42) that

−
∫ T

0

〈B∗pε, v〉dt + λε

∫ T

0

〈∇hε(uε), v〉dt ≥
∫ T

0

〈u∗ − uε, v〉dt,

for all v ∈ L2(0, T ; V ). By lemma 2.5, uε → u∗ strongly in L2(0, T ; U), it

follows∫ T

0

〈∇hε(uε), v〉dt →
∫ T

0

〈∇ζ(t), v〉dt, ζ(t) ∈ ∂h(u∗) a.e. in (0, T ), (60)

for all v ∈ L2(0, T ; V ). Thus,

−
∫ T

0

〈B∗p, v〉dt + λ0

∫ T

0

〈ζ(t), v〉dt ≥ 0 for all v ∈ L2(0, T ; V ).

Since ξε ∈ ∂dS(F (yε)), we get 〈ξε, w − F (yε)〉 ≤ 0 for all w ∈ S.

Now we claim that (λ0, ξ0) 6= 0. Indeed, if λ0 = 0, we have that {ξε}ε>0

is bounded in Z∗. By (H3), S has finite codimentionality, so dose S − F (y∗).

Thus it follows that ξε → ξ0 weakly in Z∗ and

〈ξ0, w − F (y∗)〉 ≤ 0 for all w ∈ S. (61)

Finally, if (λ0, p) = 0, it follows from (59) that µ + [F ′(y∗)]∗ξ0 = 0. So in

the case that µ /∈ R([F ′(y∗)]∗), we must have (λ0, p) 6= 0. This together with

(58), (59) and (61) completes the proof.

Example 3.3. Consider the initial-boundary vary value controlled system



−4dy(x,t)
dt

+ (I −4)y(x, t) + β(y(x, t)) 3 Bu(x, t) in Ω× (0, T ),

∂
∂ν

y(x, t) = 0 on ∂Ω× (0, T ),

(−4)1/2y(x, 0) = (−4)1/2y0 in Ω,

(62)

where Ω ⊂ RN be a bounded domain with smooth boundary.

y0 ∈ W = {y ∈ H2(Ω) :
∂

∂ν
y(x, t) = 0 a.e. on ∂Ω}, β(·)

satisfies (H3). Thus, the results of Theorem 3.2 remain true.
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