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Abstract

This paper concerns the estimation of the optimal initial dune height
which can favor the evolution of the dune in the depth of an aquatic
environment in two space dimension. The problem is formulated as an
optimal control problem, governed by nonlinear equations describing
the dune height formation. The control is done in a discrete framework,
where the model solution gap to the data is minimized using a quasi-
Newton method. The functional gradient is computed by the backward
time integration of the corresponding discrete adjoint model. Numerical
tests are provided in order to discuss the efficiency and the effectiveness
of our approach.
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1 Introduction

In the recent decades, the silting phenomenon threatens recurrently some
rivers in many African countries : including Tchad lake, Congo river, Niger
river, etc. This phenomena is of a major concern and topical subject.
Several studies are increasingly interested to find solutions to this problem
[10, 16, 17]. However, due to the complexity of this problem, much remains to
be done in this field. The complexity is related to the fact that in most cases
some physical or hydro-geological parameters involved in the dunes formation
or movement are poorly known or poorly estimated.
The subject of our study is to estimate the optimal initial dune height which
can favor its formation in the depth of incompressible flows in two space di-
mension. To achieve this we consider an optimal control problem governed by
nonlinear equations describing the dune height formation [14, 16]. The control
function will play the role of an uncertainty on the initial data of the dune
height, and allow to estimate the optimal value of this one which can favor its
formation.
Several numerical approaches are used to solve a class of optimal control prob-
lems [4, 5, 6, 7, 14, 15, 20, 21]. In this paper, the control is done in a discrete
framework, where the model solution gap to the data is minimized using a
quasi-Newton method. The functional gradient is computed by the backward
time integration of the corresponding discrete adjoint model. To discretize the
constraints equations, we use a combinaison of the Crank-Nicholson scheme
and a Chebyshev spectral method PN,M type [2, 16]. This spectral approach
aim to approximate the functions and their derivatives by Chebyshev polyno-
mials of degree at most N according to the variable x and at most M according
to the variable y, at the Chebyshev-Gauss-Lobatto collocation points [2, 9, 16].
The paper is structured as follows : the second section is devoted to the mathe-
matical formulation of the problem, in the third section we present the discrete
adjoint method and the discrete model. The fourth section is dedicated to nu-
merical simulations which wil focus on the estimation of the optimal initial
dune heigth which will favor the evolution of the dune. We end this work by
conclusion and perspectives.
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2 Problem Formulation

The objective in this section is to formulate an optimal control problem
gouverned by nonlinear equations describing the dune formation.
Let Ω be a regular bounded domain of R2 in which involves an incompressible
flow.
We consider the presence of a dune in the depth of this flow, occupying a
domain Γ =] − 1, 1[2 in Ω. The problem that we are concerned is to estimate
the optimal initial dune height h0 which can favor the evolution of the dune.
For this we consider the following optimal control problem with constraints
given by :

min J(v) = 1
2

∫ T

0
‖ h(t, x, y)− hobs(t, x, y) ‖2

L2(Γ) dt+ α

2 ‖ v(x, y) ‖2
L2(Γ), (1)

subject to :


∂h

∂t
= ∇.(m∇h) + Φ(t, x, y) in ]0, T [×Γ (2)

‖ ∇h ‖≤ 1, m(‖ ∇h ‖ −1) = 0 in ]0, T [×Γ (3)
h(0, x, y) = h0(x, y) + v(x, y) on Γ (4)
h(t, x, y) = 0 in ∂Γ, (5)

where
• h is the dune height;
• hobs is an observation data;
• Φ(t, x, y) is a source term;
• m(t, x, y) is the mass density of the sand grains carried by the flows;
• v(x, y) is the control variable;
• α denotes a real coefficient of regularization.

We solve this problem using the variational data assimilation method [1, 3, 8]
via the discrete adjoint method [19] and a quasi-Newton method.
This method (The variational data assimilation method) aim at combining
measured observations of the system with the dynamical model associated in
order to improve the estimation of some parameters [3, 13]. In this study, the
parameter that we are concerned is the initial condition h0.
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3 Discrete Adjoint Method

The discrete adjoint method aim to calculate the gradient of the discrete
cost function using the adjoint model of the discrete problem (the discrete
adjoint model) [3, 13, 19].
To discretize the dynamic model (2)-(5) we use the Crank-Nicholson method
and the spectral approach PN,M type.
So we note by PN,M(Γ) the set of Chebyshev polynomials defined on Γ, of
degree at most N according to the variable x and at most M according to the
variable y.
Let H1

0 (Γ) the space of the test functions defined on Γ and zero at the bound.
We note Q = PN,M(Γ) ∩H1

0 (Γ) and Consider Uad = {v ∈ L2(Q) : ‖ ∇v ‖≤ 1}
the admissible controls set.
We choose Φ and m in L2(0, T ;PN,M(Γ)), the dune height h and observation
data hobs in L2(0, T ;Q).

3.1 Discrete Model

In this section we present the numerical discretization of the model equation
in section 2. Then, we start with the time discretization.
For a given positive integer r, we define the knots of the interval [0, T ] by
tn = n∆t, n = 0, · · · , r, with ∆t = T

r
, a time step (T > 0).

For n = 0, · · · , r, we consider :

h(tn, x, y) ≈ hn(x, y),
m(tn, x, y) ≈ mn(x, y),
φ(tn, x, y) ≈ φn(x, y).

A two order Crank-Nicholson scheme applied to equation (2) at knots tn, leads
to :

hn+1 − hn

∆t = 1
2
(
∇.(mn+1∇hn+1) + Φn+1

)
+ 1

2
(
∇.(mn∇hn) + Φn

)
. (6)

For a given positive integers N, M consider the Chebyshev-Gauss-Lobatto
collocations points defined by :
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xi = cos( iπ
N

), i = 0, · · · , N and yj = cos( jπ
M

), j = 0, · · · ,M.

For n = 0, · · · , r, i = 0, · · · , N, j = 0, · · · ,M, we consider :

h(tn, xi, yj) ≈ hni,j,

m(tn, xi, yj) ≈ mn
i,j,

φ(tn, xi, yj) ≈ φni,j.

For a given function ψ = h,m, the PN,M spectral approach leads to the follow-
ing spatial approximations :

∂ψ(tn, xi, yj)
∂x

≈
N∑
k=0

dN,1i,k ψ
n
k,j,

∂ψ(tn, xi, yj)
∂y

≈
M∑
l=0

dM,1
j,l ψ

n
i,l; (7)

∂2ψ(tn, xi, yj)
∂x2 ≈

N∑
k=0

dN,2i,k ψ
n
k,j,

∂2ψ(tn, xi, yj)
∂y2 ≈

M∑
l=0

dM,2
j,l ψ

n
i,l, (8)

where ds,1.,. and ds,2.,. denote respectively the coefficients of Chebyshev differen-
tiation matrices of one order Ds and two order D2

s , for s = N,M, [9, 11, 18].
For the simplification reasons, we consider the case N = M.

The approximations (7)-(8) applied to the equation (6) lead to :

hn+1
i,j − hni,j

∆t = 1
2
[( N∑

k=0
dN,1i,k m

n+1
k,j

)( N∑
k=0

dN,1i,k h
n+1
k,j

)
+
( N∑
l=0

dN,1j,l m
n+1
i,l

)( N∑
l=0

dN,1j,l h
n+1
i,l

)

+mn+1
i,j

N∑
k=0

dN,2i,k h
n+1
k,j +mn+1

i,j

N∑
l=0

dN,2j,l h
n+1
i,l

]
(9)

+1
2
[( N∑

k=0
dN,1i,k m

n
k,j

)( N∑
k=0

dN,1i,k h
n
k,j

)
+
( N∑
l=0

dN,1j,l m
n
i,l

)( N∑
l=0

dN,1j,l h
n
i,l

)

+mn
i,j

N∑
k=0

dN,2i,k h
n
k,j −mn

i,j

N∑
l=0

dN,2j,l h
n
i,l

]
+ 1

2φ
n+1
i,j + 1

2φ
n
i,j,

for n = 0, · · · , r − 1, i = 1, · · · , N − 1; j = 1, · · · ,M − 1,
with boundaries conditions :

hni,j = 0, for n = 0, · · · , r, i = 0, N and j = 0,M. (10)

For n = 0, · · · , r − 1 note by :

Hn+1 = (hn+1
1,1 , . . . , h

n+1
N−1,1, h

n+1
1,2 , . . . , h

n+1
N−1,2, . . . , h

n+1
1,N−1, . . . , h

n+1
N−1,N−1)t
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an (N − 1)2-dimensional coordinate vector,

mn+1 = (mn+1
1,1 , . . . ,m

n+1
N−1,1,m

n+1
1,2 , . . . ,m

n+1
N−1,2, . . . ,m

n+1
1,N−1, . . . ,m

n+1
N−1,N−1)t

an (N − 1)2-dimensional coordinate vector,

mn+1
1 = (mn+1

0,0 , . . . ,m
n+1
N,0 ,m

n+1
0,1 , . . . ,m

n+1
N,1 , . . . ,m

n+1
0,N , . . . ,m

n+1
N,N)t

an (N − 1)2-dimensional coordinate vector,

mn+1
2 = (mn+1

i,j )0≤i≤N, 0≤j≤N an (N + 1)× (N + 1) matrix,

mn+1
3 = [mn+1

2 (2 : N, 1); mn+1; mn+1
2 (2 : N,N + 1)] an (N −1)2-dimensional

coordinate vector written under Matlab environment,

I an (N − 1)× (N − 1) identity matrix,

D̄N an (N − 1)× (N − 1) matrix obtained by deleting the first row and

column and the last row and column of the matrix DN ,

D̄2
N an (N − 1)× (N − 1) matrix obtained by deleting the first row and

column and the last row and column of the matrix D2
N ,

O an (N − 1)× (N − 1) zero-matrix,

Q = [DN(2 : N, 1),O, DN(2 : N,N + 1)] an (N − 1)× (N + 1) matrix written
under Matlab environment,

Φn+1 = (φn+1
1,1 , . . . , φ

n+1
N−1,1, φ

n+1
1,2 , . . . , φ

n+1
N−1,2, . . . , φ

n+1
1,N−1, . . . , φ

n+1
N−1,N−1)t

an (N − 1)2-dimensional coordinate vector.
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Let Kn+1
1 , Kn+1

2 , Kn+1
3 , Kn+1

4 , Kn+1
5 , Kn+1

6 be the (N − 1)2 × (N − 1)2

matrices defined by :

Kn+1
1 =

(
diag

((
I⊗Q

)
mn+1

1 (N + 2 : N(N + 1))
))(

I⊗ D̄N

)
,

Kn+1
2 =

(
diag

((
I⊗ D̄N

)
mn+1

))(
I⊗ D̄N

)
,

Kn+1
3 =

(
diag

((
Q⊗ I

)
mn+1

3

))(
D̄N ⊗ I

)
,

Kn+1
4 =

(
diag

((
D̄N ⊗ I

)
mn+1

))(
D̄N ⊗ I

)
,

Kn+1
5 =

(
diag

(
mn+1

))(
I⊗ D̄2

N

)
,

Kn+1
6 =

(
diag

(
mn+1

))(
D̄2

N ⊗ I
)
,

where ⊗ denotes Kronecker product [12] and diag(X) is an L × L matrix
defined from X = (X1, X2, . . . , XL)t by :

diag(X) =



X1 0
0 X2 0

. . . . . . . . .
0 XL−1 0

0 XL


, L = (N − 1)2. (11)

So we get the discrete model as follow :
Hn+1 −Hn

∆t − An+1Hn+1 − AnHn = 1
2Φn+1 + 1

2Φn, n = 0, · · · , r − 1 (12)

H0 given, (13)

where An+1 = 1
2

(
Kn+1

1 +Kn+1
2 +Kn+1

3 +Kn+1
4 +Kn+1

5 +Kn+1
6 )

3.2 Discrete Adjoint Model

Using the rectangles integration method, we get the discrete form of the cost
function J in the following form :

J(V ) = 1
2

r∑
n=1

∆t
(
Hn −Hn

obs)(Hn −Hn
obs)t + α

2V V
t, (14)
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where V = (v1,1, . . . , vN−1,1, v1,2, . . . , vN−1,2, . . . , v1,N−1, . . . , vN−1,N−1)t.
We calculate the directional derivative of this function as follow :

Ĵ(V )[δV ] = lim
β→0

J(V + βδV )− J(V )
β

=
r∑

n=1
∆t Ĥn(Hn −Hn

obs)t + α(δV )V t

=
r−1∑
n=0

∆t Ĥn+1(Hn+1 −Hn+1
obs )t + α(δV )V t, (15)

where Ĥ = lim
β→0

H(V + βδV )−H(V )
β

denotes the solution of the linear model
tangent to the model (12)-(13) given by :


Ĥn+1 − Ĥn

∆t − An+1Ĥn+1 − AnĤn = 0, n = 0, · · · , r − 1 (16)

Ĥ0 = δV given. (17)

For n = 0, · · · , r note the adjoint variable by λn, an (N − 1)2-dimensional
coordinate vector.
Multiply the equation (16) by λn and integrate in time by parts in discrete
form :

0 =
r−1∑
n=0

∆t
(
Ĥn+1 − Ĥn

∆t − An+1Ĥn+1 − AnĤn
)

(λn)t

=
r−1∑
n=0

Ĥn+1(λn)t −
r−1∑
n=0

Ĥn(λn)t −
r−1∑
n=0

∆t An+1Ĥn+1(λn)t −
r−1∑
n=0

∆t AnĤn(λn)t

=
r−1∑
n=0

Ĥn+1(λn)t −
r−2∑
n=0

Ĥn+1(λn+1)t − Ĥ0(λ0)t −
r−1∑
n=0

∆t Ĥn+1
((
An+1

)t
λn
)t

−
r−2∑
n=0

∆t Ĥn+1
((
An+1

)t
λn+1

)t
−∆t Ĥ0

((
A0
)t
λ0
)t

=
r−2∑
n=0

Ĥn+1
(
λn − λn+1 −∆t

(
An+1

)t
λn −∆t

(
An+1

)t
λn+1

)t
+ Ĥr

(
λr−1 −∆t

(
Ar
)t
λr−1

)t
− Ĥ0

(
λ0 + ∆t

(
A0
)t
λ0
)t
.

(18)
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Identifying this equation with equation (15), we obtain the discrete adjoint
model as follow :
λn − λn+1

∆t −
(
An+1

)t
λn −

(
An+1

)t
λn+1 = Hn+1 −Hn+1

obs , n = 0, · · · , r − 1(19)

λr = 0̂. (20)

Using equations (15), (18) and (19)-(20) we get :

Ĵ(V )[δV ] =
r−1∑
n=0

∆t Ĥn+1(Hn+1 −Hn+1
obs )t + α(δV )V t

=
r−1∑
n=0

∆t Ĥn+1
(
λn − λn+1

∆t −
(
An+1

)t
λn −

(
An+1

)t
λn+1

)t
+ α(δV )V t

=
r−1∑
n=0

Ĥn+1
(
λn − λn+1 −∆t

(
An+1

)t
λn −

(
An+1

)t
λn+1 + α(δV )V t

= Ĥ0
(
λ0 + ∆t

(
A0
)t
λ0
)t

+ α(δV )V t (21)

= δV
(
λ0 + ∆t

(
A0
)t
λ0 + αV

)t
= δV

(
∇J(V )

)t
.

We deduce :

∇J(V ) = λ0 + ∆t
(
A0
)t
λ0 + αV. (22)

4 Numerical Result

To test our approach we realize twin experiments, considering the following
data :

h(0, x, y) = 1
π2 (1− x2)(1− y2),

m(t, x, y) = (1− x2y2) exp(−t),

φ(t, x, y) = 1
π2

[
− (1− x2)(1− y2) exp(−t) + 2(2− x2 − y2)(1− 3x2y2) exp(−2t)

]
,

α = 1, T = 1.

The observation data is constructed noising the approximate solution of the
model (2)-(5).
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We note by E(t,∆t) the normalized error calculated on the (N − 1)× (N − 1)
collocation inner points of Γ, given by :

E(t,∆t) = ‖hopt(t)− hex(t)‖NL2(Γ)

= 1
N − 1

( N−1∑
i,j=1

(
hopt(t, xi, yj)− hex(t, xi, yj)

)2
) 1

2
.

We pose ∆t = dt.

The numerical results on the estimate of the optimal initial dune height for
361 collocation inner points of Γ, are given in the following table :

Table 1: Normalized error on the estimate of the optimal initial
dune height calculated on 361 collocation inner points (N = 20)

dt 5.10−3 4.10−3 3.10−3 2.10−3 10−3

‖hopt0 − h0‖NL2(Γ) 2, 514.10−4 1, 621.10−4 1, 595.10−4 1, 178.10−4 7, 64.10−5

Figure 1: Profile of approached (on left) and optimal dune height
(on right) calculated on 361 collocation inner points (N = 20) for a
time step ∆t = 2.10−3 at t = 0, 25.
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Figure 2: Profile of approached (on left) and optimal dune height
(on right) calculated on 361 collocation inner points (N = 20) for a
time step ∆t = 2.10−3 at t = 0, 5.
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Figure 3: Profile of approached (on left) and optimal dune height
(on right) calculated on 361 collocation inner points (N = 20) for a
time step ∆t = 2.10−3 at t = 1.
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The numerical results in Table 1 show that more the time step is smaller,
more the estimate of the initial optimal dune height hopt0 is better, favoring the
dune formation. Figures 1,2,3 illustrates this result.
Figures 4 and 5 describe the temporal evolution of the error in time over the
optimal dune height calculated on 361 (N = 20), 576 (N = 25), 841 (N = 30)
collocation inner points, for a time step dt = 5.10−3 (Figure 4); and on
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Figure 4: temporal evolution of the error in time over the optimal
dune height calculated on 361 (N = 20), 576 (N = 25), 841 (N = 30)
collocation inner points, for a time step dt = 5.10−3.
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Figure 5: temporal evolution of the error in time over the optimal
dune height calculated on 361 (N = 20) collocation inner points, for
a time step dt = 5.10−3, 3.10−3, 2.10−3.
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dt=0.005
dt=0.003
dt=0.002

361 (N = 20) collocation inner points, for a time step dt = 5.10−3, 3.10−3, 2.10−3

(Figure 5).
These numerical experiments show the efficiency and the effectiveness of our
approach.
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5 Conclusion

We have presented an approach to estimate the optimal initial dune height
which can favor the evolution of the dune in the depht of an incompressible flow
in two space dimension. This is an approach that combines the discrete adjoint
method and the quasi newton method. We have considered an optimal control
problem governed by nonlinear equations describing the dune height formation.
The control is done in a discrete framework, where the model solution gap
to the data is minimized using a quasi-Newton method and The functional
gradient is computed by the backward time integration of the corresponding
discrete adjoint model. To discretize the constraints equations, we have used a
combinaison of the Crank-Nicholson scheme and a Chebyshev spectral method
PN,M type. The twin experiments that we achived and the obtained numerical
results ensure the efficiency and the effectiveness of our approach. In prospect,
we count approach the dune displacement problem.
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