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ABSTRACT
 The purpose of this paper is to address two core issues related to Capital Asset Pricing Model (CAPM). First using non orthogonal maximal overlap discrete transform wavelet analysis (MODWT), we show empirically how wavelet decomposition can provide an easy vehicle to study the systematic risk properties of a signal (time series) to serve as a protocol for different traders who view the market with different time resolutions. Second instead of limiting the analysis to focus on the conditional mean of the response variable 
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 in the CAPM equation, we perform the estimations using quantile regression to investigate the extremes of distribution so as to uncover its hidden relationships with the market. By using the separate catalogue of Large Cap, Mid Cap and Small Cap stocks comprising S&P BSE-500 index between January 01, 2005 and June 30, 2013, the findings provide some interesting results. The implications of wavelet betas are found more prudent for large cap and mid cap stocks. The results confirm that the beta coefficients estimated from CAPM equation are essentially an average of wavelet betas but the later provides a resolution more appropriate and hence need to be considered in a realistic risk assessment of securities. Finally the findings from quantile regression also exhibit the spurious use of conclusions drawn from conventional OLS estimations. Overall the results are plausible and have strong policy implications for trade and investment analysis. This paper is the first attempt to link the underlying methodologies with systematic risk component for Indian capital market.
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1. Introduction
The classic time domain approach aims at studying the underlying properties of an economic variable whose realizations are recorded at a predetermined frequency. This approach does
not convey any information regarding the frequency components of a variable. Thus it makes the pretended assumption that the relevant frequency to study the behaviour of the variable matches with its sampling frequency. However, an issue arises if the variable realizations depend on a much complicated manner on several frequency components. In such a case, the time-domain approach will not be able to efficiently process the information contained in the original data series. Time domain  by definition refers to the analysis of mathematical functions, physical signals , economic time series etc. with respect to time. In the aforesaid back drop, the paper is addressed to underline the methodology corresponding to simultaneous ‘time and frequency domain’
 analysis and to explicate why and how it can be used to mask the limitations of conventional time domain analysis which studies the evolution of an economic variable with respect to time. Frequency domain analysis is widely applied in fields such as control systems engineering, electronics and statistics and is mostly used to signals or functions that are periodic over time. In the economics literature, frequency domain techniques were ﬁrst introduced in a celebrated paper by Granger (1966)
, and the techniques used in his paper are still practiced by most economists. The methods used for frequency intervals include the spectral analysis that has its origins in 1807 when Joseph Fourier published a paper in which he used trigonometric functions to model the loss of heat in solid bodies. There are many studies in economics which refer to the use of spectral analysis like Hughes, Hallett and Richter (2008), Hughes, Hallett and Richter (2006a), Hughes, Hallett and Richter (2006b), Hughes, Hallett and Richter (2004), Valle e Azevedo (2002), Conway and Frame (2000), Collard (1999), and Baxter and King (1999). Simply put, spectral analysis uses trigonometric functions to determine the periodicity of cycles evident within the time series. As such it requires that all series be linearly generated and stationary (both globally and locally when using windowed analysis). However, restricting the research in finance to stationary time series is not very appealing since most financial time series exhibit quite complicated patterns over time (e.g. trends, abrupt changes, transient events etc.). The spectral tools therefore cannot efficiently capture these events. In fact, if the frequency components are not stationary such that they may appear, disappear and then reappear over time, spectral tools may miss such frequency components. Conversely wavelet decomposition took birth to provide an easy vehicle to study the multi-resolution properties of a signal or time series and thereby has got a unique utility for different traders who view the market with different time resolutions say hourly, daily, fortnightly or monthly to find the corresponding investment strategies. In addition to wavelet decomposition, the study relies on quantile regression
 estimation to predict the marginal effects of the overall market returns on defined quantile of the distribution of y. As Allison puts it: “The reason OLS is not optimal when heteroskedasticity is present is that it gives equal weight to all observations when, in fact, observations with larger disturbance variance contain less information than observations”. In particular, the underlying methodology provides with complete information about the relationship between the response variable and covariates on the entire conditional distribution and makes no assumption about the error term in the given equation. 
The remainder of the paper proceeds as follows. Section 2 gives a short description of the theoretical back ground of CAPM.  Section 3 provide an insights of the related past empirical literature. Section 4 discusses about the methodological aspect.  Section 5 demonstrates the data and findings of the study. We conclude in the final section 
 2. CAPM: Theoretical Backdrop
In 1964, William F. Sharpe developed the CAPM as an extension of Harry Markowitz's (1959) modern portfolio theory. Later on John Linter (1965) Jan Mossin (1966) and others also contributed towards the thought. The Model pre-supposes investors to be utility maximising agents. It also supposes that all investors act upon in the same manner. In particular, the central implication of the model is that the expected return of a security or a portfolio is equal to the rate on a risk-free security plus a risk premium multiplied by the asset's systematic risk. After the CAPM was developed, many empirical tests of the model were conducted using proxies for the different variables. Several studies showed that the CAPM doesn’t hold in many situations.  For example Richard Roll (1977) asserted that the CAPM holds theoretically but is hard to test empirically since stock indices and other measures of the market are poor proxies for the CAPM variables. The equation 
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 form the basis of this model, Where E(ri) is the expected return of the asset ; rf is the risk free return rate; rm being the  market risk; and β the sensitivity of the particular share to movements in the market return and by definition is equal to 
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 Where ri the return of the security i, rm is the return from the market as a whole, and 
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is the variance of the market portfolio.  While one the one hand French and Fama (1992) found that the CAPM's measure of systematic risk was inconsistent as the firm size and book to market value ratios were more dependable, the phenomenon of heterogeneous investment horizons on the other hand has brought much criticism to the model (See, for example Fama 1970, Pogue and Solnic 1974, Levhari and Levy (1977) Smith (1978) and Hawawini 1974.)  Fundamentally, individual investors are often characterized by multiple time horizons for wealth accumulation depending on their consumption patterns and thus owing to the different decision making time horizons, the true dynamics of the relationship between stock returns and risk factor is likely to vary depending on the time horizon of the investors. Although financial analysts have long recognized the need to incorporate different time scales in line with the investor’s decision making in the financial markets. However, due to the lack of appropriate analytical tools to decompose data into more than two time scales, the analysis was restricted, until recently, to two time scales i.e., short-run and long-run only (In & Kim, 2006).  To  accommodate for the multi-horizon nature of a systematic risk, we provide analysis with a new mathematical  model known as  Maximal Overlap Discrete Transform Wavelet analysis (MODWT) that allow us to separate the signal (Time series in finance) into multi-resolution components. In particular, the proposed methodology provides a natural platform to investigate the beta behaviour (systematic risk) at different time horizons without losing any information. 
To illustrate the effect of different time intervals on beta estimation based on conventional time series decomposition, we choose a stock Hindustan Unilever Limited (HUL) from the Indian market and calculated its beta at different time horizons. The return of HUL versus SENSEX is presented in figure 1 for different time horizons. The estimated beta of the stock decreased from 0.62 (daily) to 0.39 (monthly) with increased time intervals. This example shows that it makes a difference if one employs daily, weekly or monthly data to estimate systematic risk. 
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Figure 1. Hindustan Unilever Limited stock return (vertical axis) versus Sensex return, measured at different time periods. It can be noticed that the relation between a stock return (HUL) and the market (SENSEX) differs if the estimation is made with daily, weekly, monthly or Quarterly. When the return interval is increased in a given sample period, the number of sample points decreases, which results in loss of information.
3. Review of Literature
CAPM has become an important tool in finance for assessment of cost of capital, portfolio performance, portfolio diversification, valuing investments and choosing portfolio strategy among others (Don U.A. Galagedera 2007). The model has a long history of theoretical and empirical investigations of market beta. For example, amongst many others, some studies of beta estimations concentrated on the stability of beta over time (Harvey 1989), the borrowing constraints (Black 1972), the impact of structural change and regime switches (Garcia and Ghysels 1998), the effect of world markets and volatility (Bekaert and Harvey 1995, 1997, Harvey 1991), non-synchronous data issues (Scholes and Williams 1977), the time horizon of investors (Levhari and Levy 1977) and the impact of return interval (Brailsford and Faff 1997, Brailsford and Josev 1997, Cohen et al 1986, Frankfurter et al 1994, Hawawini 1983, Handa et al 1989, 1993). In particular, the studies on the impact of return interval on beta estimates point out the importance of the timescale issue. An early study by Levhari and Levy (1977) shows that if the analyst uses a time horizon shorter than the true one, the beta estimates are biased. Fama (1980, 1981) provides evidence that the power of macroeconomic variables in explaining the stock prices increases with increasing time length. Hawawini (1983) reports that the beta of a security may vary substantially depending upon whether it is estimated on the basis of daily, weekly or monthly returns. Cohen et al (1986) and references therein provide ample evidence that the beta estimates are sensitive to return intervals. Handa et al (1989) report that different beta estimates are possible for the same stock if different return intervals are considered. Similarly, Handa et al (1993) reject the CAPM when monthly returns are used but fail to reject the CAPM if the yearly return interval is employed. By using Australian equity market data, Brailsford and Faff (1997) report that the CAPM model (with a GARCH-M specification) is supported for weekly and monthly interval returns while the greatest support is found in the weekly return intervals. In recent years the interest for wavelet methods has increased in economics and finance. Ramsey and Zhang (1997) analyzed foreign exchange data using waveform dictionaries, Kim and In (2005) studied the relationship between stock markets and inflation using maximum overlap discrete wavelet transform estimator of the wavelet correlation. In and Kim (2006) examined the relationship between Australian stock and futures markets over various time horizons. Sharkasi et al. (2006) used wavelet transform to analyze the reaction of stock markets to crashes and events in emerging and mature markets, Kim and In (2007) studied the relationship between changes in stock prices and bond yields in the G7 countries. Durai and Bhaduri (2009) studied the relationship between stock prices, inflation and output using maximum overlap discrete wavelet transform. In the area of finance, wavelet analysis appears useful, as different traders view the market with different time resolutions, for example hourly, daily, weekly or monthly. Wavelet analysis is used to analyze the multi-scale dynamics of time series and the risk management at different time-horizons. Norsworthy et al. (2000) analyzed stocks from the US market and find that beta coefficients generally decrease as we move into higher scales. Some studies have applied wavelet-based risk analysis for estimating Value-at-Risk of time series. Gençay et al. (2005) findings in US, a UK and Germany market provides a stronger relationship between portfolio return and risk as the scale increases. Fernandez (2006) used wavelet analysis to test multi-scale CAPM using portfolio from emerging markets and find that beta coefficient changes with different time scales. In brief, wavelet methodology has got the potential to unveil the hidden information in a given time series. Unlike the conventional time series decomposition, the methodology can come up with different betas for different types of risk investors without losing the data points as was seen in the case of HUL
. Next we turned out to quantile beta estimations for similar datasets.  Unlike the OLS which restricts our ability to predict the effect of explanatory variable X on the mean of the dependent variable Y, the quantile regression provides a complete understanding of the relationship between predictors and the response variable.   
In the Indian context, no such attempts have been previously made except for one of our pilot studies to investigate wavelet based beta estimations for BSE Sensex stocks
.  The present study therefore is the extended version of the available literature in general and of our previous works in particular to draw out broader conclusions. 
4. Wavelet analysis 
Wavelet analysis is a recent development in applied physics. The term wavelets literally mean small waves, as they have finite length (compactly supported) and oscillatory behaviour. They are particular types of basic functions that are used to decompose a function f (t), i.e. a signal, a surface, a series, etc., in more elementary functions which include information about f (t). Generally speaking, wavelet analysis is a refinement of Fourier analysis. The Fourier Transform (FT) processes the raw signal (a time series) by using a mathematical transformation, which transforms the signal from time domain into frequency spectrum. The processed signal tells us how many frequencies and how much (energy) of each frequency exists in the raw signal but it does not give us the time information (where a particular frequency appears in the time domain). If the signal is stationary, we don’t need the “location” information, but in the real world most of our data sets are non-stationary. Later on, the Windowed Fourier Transform (WFT) emerged to overcome the time frequency concern but (WFT) could not solve the resolution problem. However off late, wavelet filters emerged as an easy vehicle to study the multi-resolution properties of a process both in terms of time and frequency.
  There are two kinds of wavelets: mother wavelets 
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The former are effectively represents the detail and high-frequency parts of time series, while the latter are good in representing the smooth and low-frequency components.    Unfortunately, except some special case, there is no analytical formula for computing a wavelet function.  Wavelets are usually derived using special two-scale dilation equation.  For a father wavelet 
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A mother wavelet 
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The coefficients 
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They are essentially the low-pass and high-pass filter coefficients.  As it often happens in practical problems, we deal with time series (sequence of values) rather than continuous function defined over real axis.  In this case we employ short sequences of values called wavelet filters and denoted by 
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The filter coefficients 
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Coefficients 
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 from (1.4) are related through the following expression 
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 The problem associated with the application of the DWT for time series analysis is that it suffers from a lack of translation invariance. This means that circularly shifting a time series will not necessarily shift   its DWT coefficients in a similar manner. This problem can be tackled by means of a highly redundant non-orthogonal transform called the maximal overlap discrete wavelet transform (MODWT). For a redundant transform like the MODWT, an N samples input time series will have an N samples resolution scale for each resolution level. Therefore, the features of wavelet coefficients in a multiresolution analysis (MRA) will be lined up with the original time series in a meaningful way. 

For a time series X with arbitrary sample size N , the  
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According to Equation (1.5), at a scale, we obtain a set of coefficients {
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Where,
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 are called a crystal.  More detail descriptions of crystals can be found in Ramsey (2000).  The equation (1.8) present decomposition of time series into different scales.   After Decomposition of excess returns 
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Where, 
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 in equation (1.10) measures the risks from detailed level one to smooth level seven. In order to have a basic understanding of the phenomenon , it is imperative to return back to our early example of HUL with wavelet decomposition ranging from high frequency to low frequency.   
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Figure 2. Hindustan Unilever Limited stock return (vertical axis) versus Sensex return, measured at different time scales based on wavelet decomposition. The wavelet scales are such that scale one (D1-Decomposition one) corresponds to the period of 2-4 days, scale two (D2)- 4 to 8 days, Scale three (D3) 8 to 16 and S3 which is mathematically equivalent to original series – defined decomposition Scales. Notice that when the return interval is increased in a given sample period, the number of sample points remains the same and hence no loss of information.
4.1 Quantile Regression 

While the great majority of regression models are concerned with analyzing the conditional mean of a dependent variable, there is increasing interest in methods of modelling other aspects of the conditional distribution. Quantile regression that was originally proposed by Koenker and Bassett (1978) attempts to provide estimates of the linear relationship between regressors and a specified quantile of the dependent variable. One important special case of quantile regression is the least absolute deviations (LADs) estimator, which corresponds to fitting the conditional median of the response variable. Over the years several papers used this method to analyze different subjects (Deaton (1997), Buchinsky (2001), Bassett and Chen (2001) and Chun Tsai (2012)). The advantage of this approach is that it allows for a more precise description of the tails of the distribution of y. Moreover, it is robust to heteroscedasticity, skewness and leptokurtosis which are common features of financial data. According to Koenker and Bassett (1978), a linear model can be represented as: 
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 quantile of the error term is equal to zero. Therefore, the QR method can measure the marginal effects at different points in the conditional distribution by using several various values of 
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When 
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 =0.5, the QR becomes the well-known median regression. Koenker and d’Orey (1987) proposed that the minimization problems could be solved by linear programming methods.
5. Data and Empirical Results
Our data set consists of all stocks comprising S&P BSE-500 index between January 01 2005 and June 30, 2013.
 Given the market capitalisation structure of respective stocks, efforts have been made to segregate the index and to construct a separate catalogue of Large Cap, Mid Cap and Small Cap stocks. Consequently 313 stocks 79 (Large Cap), 127 (Mid Cap) and 107 (Small Cap) are taken for final computation based on their industry profile. The sample size is 2112 market days or roughly eight and half years. The daily return of each stock is calculated as the log price difference 
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 is the price of asset i at day t. The proxy 
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 is taken as the log difference of the S&P BSE 500 for Large Cap, S&P BSE MID Cap Index for Mid Cap, S&P BSE Small Cap Index for Small Cap Index i,e., 
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 where St is the index value at day t . The risk-free rate of return 
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 is assumed to be the daily Mumbai Interbank offered rate (MIBOR)
 for the sample period.  With the availability of this set of data, the paper empirically tests a wavelet methodology of beta estimation as proposed by Gency et al., (2002). Using equation (1.9), attempt has been made to estimate conventional betas first followed by wavelet betas at each scale. Equation (1.10) is used to estimate the wavelet sensitivity of the stock premium to the the wavelet sensitivity of market premium at different scales. This is done by allowing wavelet detail and smooth decomposition to 
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. We choose the Maximal Overlap Discrete Wavelet Transform (MODWT) over the more conventional orthogonal DWT because, by giving up orthogonality, the MODWT gains attributes that are far more desirable in economic applications.  For example, the MODWT can handle input data of any length, not just powers of two. It is translation invariant – that is, a shift in the time series results in an equivalent shift in the transform. The choice of a particular wavelet filter is not so crucial if MODWT is used and, finally, the MODWT is rarely affected by the arrival of new information. The coefficient Beta (B) is the key variable here we are interested in. If beta is essentially similar across scales J then there is little reason to believe that wavelet beta’s are useful. However if the wavelet betas fluctuate significantly then the return interval chosen arbitrarily would be inappropriate. Given the utility, wavelets scales are such that scale 1 is associated 4 with 16~32 day dynamics, scale 5 with 32~64 day dynamics, and scale 6 with 64~128 day dynamics. Scale 7 corresponds with 128~256 day dynamics, that is, approximately 1 year. The last decomposition represents the smooth scale with no pre-determined frequency interval. The results are noteworthy (Annexure-I). The traditional beta estimate is essentially an ‘average’ of the wavelet-based beta estimates for most of the cases. The evidence is supported by results from all Large, Mid as well as Small Cap stocks. Second for Large Cap stocks, beta increases with the increase in wavelet scales. However the beta increase is usually apparent for first half of the decomposition & for few stock portfolios like Capital Goods, Bank, FMCG, Oil and Transport. The corresponding explanatory variable (R-square) of underlying stocks increases monotonically but falls mostly when investment horizon is extended for one month period. However, the R-square start increasing again when the investment horizon in extended beyond one month but not more than four months. This implies that market is less able to explain the stock variations over one month and beyond four month investment horizon period. In other words, these findings indicate that investors of Large Cap stocks with shorter and medium investment horizons have to respond to every fluctuation in realised returns. Further it is observed that stock of Bank; Metal and Power remain more volatile than market throughout the specified scales. The stocks of Information Technology (IT) illustrate a different pattern. The beta component for this particular Industry decreases with the increase in scale but no such pattern is observed in the corresponding R-square.  In order to believe whether beta’s estimated on different wavelet scales differ significantly from each other, Wald test has been carried out and it is found that out of ten Large Cap industries, the beta component differs significantly for four industries. The results highlight that while conventional beta estimates are still useful in most cases, wavelet-based beta estimates provide the extra information for understanding the sensitivity of the stock returns to the returns on the market index. Unlike Large Cap stock, the evidence of increase in beta in case of Mid. Cap stock is usually apparent for first five scales of the decomposition & for most of the stock portfolios like Agriculture, Capital Goods, Consumer durables, Diversified, Bank, Oil and Transport stocks. The corresponding explanatory variable (R-square) of underlying stocks increases monotonically but falls again mostly when investment horizon is extended over one month period. However the R-square start increasing again when the investment horizon is extended beyond one month but not more than four months.  This implies that market is less able to explain the stock variations over one month and beyond four month investment horizon period. Further out of thirteen Mid Cap. industries, the beta component across different scales differs significantly for seven industries. Nevertheless, for Small Cap stocks, the results are different. For example, the initial evidence of increase in beta is usually apparent for two industries like Bank and Power which falls in the later scales.  For rest of the stock portfolios, the beta component has a multi-scale character. Unlike Large and Mid. cap stocks, where corresponding explanatory variable R-square falls mostly when investment horizon is extended for one month period & beyond four months investment horizon.  The R-square for Small Cap stocks normally start falling when the investment horizon is extended beyond four months.  This implies that market is less able to explain the stock variations beyond four month investment horizon period. Further it has been observed that on average, beta of small cap industries remain more volatile then market throughout the specified scales. In particular the premise is evident from Capital Goods, Bank, Metal, Housing, and Diversified group of stocks. 

The findings from quantile regression
 reveal that the coefficient derived by a mean regression can obscure important results, since the tails and the central location of the conditional distributions vary significantly with the covariates and hence would be unreasonable particularly for risk averse investors to rely on the average estimates of OLS. In particular, our initial results confirm that beta’s estimated from lower to higher qunatiles for the entire data set were statically significant. However, the results from slope equality test confirm that by and large the wavelet quantile coefficients at d7 and s7 are found significantly different from median coefficient for all Large Cap stocks except for Capital Goods and Housing stock.  Similarly for Mid Cap stocks excluding (Transport and Power), coefficients at d2, d7 s7 are found significantly different from median coefficient. However for Small Cap Stocks, coefficients at d1, d3 d7 s7 are found significantly different from median coefficient. It can be noticed that the significant differences at d7 and s7 scales hold true for all Large Cap, Mid Cap and Small Cap stocks. The results have strong implications for long term investors in particular who cannot afford to gamble on average beta estimates.
6. Conclusion.
The paper contributes to the literature by focusing on the time and frequency intervals to provide additional insights in beta estimation that may influence risk taking decisions. In particular the study tried to establish the Wavelet method, as a new analytic technique to examine the effects of heterogeneous investment horizons on the functional performance of Capital Asset Pricing Model using the data set of Large Cap, Mid Cap and Small Cap stocks.  We observed that the regression coefficients generally increase as the time scale increases.  In other words, the predictions of the CAPM model are more relevant for investors with short to medium run horizon as compared to those with long time horizons.  The results revealed the significant coefficient differences for most of the portfolio returns.  This in turn highlights the importance of the time and frequency-varying feature of beta, which needs to be considered in a realistic risk assessment effort. Next, we turned to quantile regression estimation to alleviate some of the statistical problems due to fat tails or outliers (Barnes and Hughes, 2002).  The findings demonstrate that the coefficient derived by a mean regression can obscure important results, since the tails and the central location of the conditional distributions vary significantly with the covariates and hence would be unreasonable particularly for risk averse investors to rely on the average estimates of OLS. In particular, it has been observed that the quantile regression coefficients at d7 & s7 vary significantly from median quantile coefficients. We therefore emphasize that wavelet and quantile regression analysis can be a valuable tool for obtaining additional insights in beta estimation that may influence risk-taking decisions.
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ANNEXURE -1

 Table 1.0   Wavelet Beta’s for Large Cap Stocks

	Industry
	 OLS           
	        D1
	     D2
	    D3
	    D4
	               D5
	        D6
	        D7
	              S7
	       Average
	     F.Stat

	CG
	0.943
	0.909
	0.939
	0.998
	0.955
	1.022
	0.904
	1.249
	1.109
	1.107
	0.762

	IT
	0.830
	0.906
	0.825
	0.741
	0.692
	0.671
	0.705
	0.557
	0.965
	0.765
	1.850***

	Bank
	1.132
	1.037
	1.161
	1.287
	1.282
	0.992
	1.326
	1.288
	0.989
	1.163
	4.579*

	Metal 
	1.224
	1.158
	1.291
	1.173
	1.334
	1.440
	1.227
	1.321
	1.577
	1.318
	1.530

	O&G
	0.714
	0.691
	0.730
	0.749
	0.621
	0.911
	0.799
	0.603
	0.587
	0.713
	1.182

	Parma
	0.605
	0.599
	0.558
	0.652
	0.603
	0.694
	0.706
	0.816
	0.613
	0.650
	2.527*

	Housing
	0.923
	0.892
	0.933
	0.833
	1.118
	1.097
	1.056
	1.010
	1.154
	1.022
	1.566

	Power
	1.097
	1.080
	1.153
	1.007
	1.239
	1.009
	1.219
	1.004
	1.006
	1.088
	0.506

	Transport
	0.684
	0.617
	0.662
	0.784
	0.862
	0.749
	0.763
	0.831
	0.927
	0.780
	3.332*

	FMCG
	0.550
	0.513
	0.590
	0.537
	0.617
	0.661
	0.553
	0.561
	0.594
	0.579
	0.663

	Overall
	0.854
	0.814
	0.864
	0.888
	0.927
	0.898
	0.931
	0.942
	0.912
	0.895
	2.527*


Table 1.1   Corresponding Wavelet R-Squares

	Industry
	OLS
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	S7

	CG
	0.642
	0.599
	0.628
	   0.712
	0.669
	0.699
	0.791
	0.906
	0.814

	IT
	0.499
	0.534
	0.470
	0.529
	0.416
	0.392
	0.633
	0.503
	0.586

	Bank
	0.760
	0.639
	0.781
	0.860
	0.819
	0.792
	0.870
	0.777
	0.861

	Metal 
	0.686
	0.628
	0.697
	0.710
	0.717
	0.852
	0.844
	0.728
	0.869

	O&G
	0.557
	0.496
	0.585
	0.648
	0.552
	0.665
	0.791
	0.538
	0.766

	Parma
	0.528
	0.511
	0.495
	0.569
	0.481
	0.647
	0.820
	0.671
	0.603

	Housing
	0.570
	0.526
	0.576
	0.617
	0.629
	0.701
	0.746
	0.585
	0.772

	Power
	0.639
	0.596
	0.637
	0.687
	0.706
	0.762
	0.857
	0.796
	0.656

	Transport
	0.603
	0.511
	0.597
	0.747
	0.752
	0.741
	0.836
	0.767
	0.798

	FMCG
	0.462
	0.399
	0.493
	0.537
	0.448
	0.578
	0.621
	0.515
	0.616

	Overall
	0.881
	0.819
	0.900
	0.949
	0.952
	0.969
	0.980
	0.967
	0.970

	Industry
	
	OLS
	    D1
	     D2
	    D3
	    D4
	       D5
	     D6
	     D7
	S7
	Average
	F.Stat    

	CG
	
	0.951
	0.890
	0.946
	0.972
	1.112
	1.123
	0.849
	1.194
	1.124
	1.026
	3.307*

	IT
	
	1.008
	1.042
	0.920
	1.027
	1.042
	1.062
	0.983
	0.876
	1.137
	1.011
	0.606

	Banking
	
	0.943
	0.856
	1.006
	0.998
	1.056
	0.917
	1.011
	0.812
	0.950
	0.951
	3.890*

	Metal 
	
	1.096
	1.038
	1.276
	1.057
	0.894
	1.194
	0.680
	1.454
	1.442
	1.129
	1.710***

	O&G
	
	0.877
	0.832
	0.887
	0.924
	0.932
	0.927
	0.963
	0.887
	0.736
	0.886
	1.460

	Pharma
	
	0.645
	0.613
	0.702
	0.607
	0.682
	0.674
	0.721
	0.575
	0.595
	0.646
	1.228

	Housing
	
	1.191
	1.220
	1.147
	1.106
	1.197
	1.324
	1.327
	1.125
	1.382
	1.229
	1.933**

	Power
	
	0.911
	0.440
	1.064
	1.138
	1.250
	1.106
	0.981
	0.711
	0.904
	0.949
	24.54*

	Transport
	
	0.890
	0.841
	0.899
	0.919
	0.900
	0.927
	0.953
	1.048
	1.098
	0.948
	1.407

	FMCG
	
	0.662
	0.633
	0.734
	0.551
	0.770
	0.700
	0.747
	0.590
	0.671
	0.675
	2.102*

	Agriculture
	
	1.046
	1.022
	1.070
	1.104
	1.118
	1.220
	0.920
	1.076
	0.772
	1.038
	1.104

	C.Durables
	
	0.993
	0.943
	1.000
	0.960
	1.189
	1.083
	1.117
	0.705
	1.153
	1.019
	1.613

	Diversified
	
	0.740
	0.545
	0.755
	0.902
	0.905
	1.079
	0.805
	1.287
	0.997
	0.909
	8.440*

	Overall
	
	0.91
	0.839
	0.910
	0.949
	0.922
	0.969
	0.970
	0.967
	0.970
	0.891
	2.144*


Table 2.0    Wavelet Beta’s for Mid Cap Stock
Table 2.1   Corresponding Wavelet R-Squares  

	Industry
	   OLS
	    D1
	      D2
	    D3
	     D4
	    D5
	    D6
	    D7
	S7

	CG
	0.798
	0.730
	0.799
	0.852
	0.821
	0.857
	0.888
	0.920
	0.906

	IT
	0.678
	0.654
	0.616
	0.725
	0.721
	0.747
	0.825
	0.834
	0.788

	Bank
	0.812
	0.750
	0.816
	0.853
	0.846
	0.841
	0.893
	0.771
	0.891

	Metal 
	0.445
	0.374
	0.484
	0.470
	0.392
	0.473
	0.533
	0.658
	0.755

	O&G
	0.656
	0.583
	0.618
	0.732
	0.776
	0.743
	0.812
	0.776
	0.768

	Pharma
	0.690
	0.647
	0.691
	0.710
	0.720
	0.730
	0.853
	0.730
	0.616

	Housing
	0.782
	0.762
	0.755
	0.792
	0.792
	0.837
	0.918
	0.798
	0.817

	Power
	0.468
	0.178
	0.440
	 0.493
	 0.446
	 0.537
	 0.547
	 0.60
	 0.63

	Transport
	0.733
	0.661
	0.712
	0.790
	0.776
	0.781
	0.892
	0.918
	0.877

	FMCG
	0.646
	0.570
	0.653
	0.680
	0.738
	0.715
	0.848
	0.736
	0.720

	Agriculture
	0.677
	0.592
	0.696
	0.732
	0.710
	0.771
	0.856
	0.843
	0.741

	C.Durbales
	0.583
	0.506
	0.557
	0.632
	0.664
	0.742
	0.809
	0.705
	0.773

	Diversified
	0.499
	0.297
	0.452
	0.631
	0.657
	0.724
	0.772
	0.950
	0.945

	Overall
	0.871
	0.809
	0.910
	0.939
	0.952
	0.969
	0.980
	0.967
	0.930


Table 3.0    Wavelet Beta’s for Small Cap Stock

	Industry
	OLS
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	S7
	Average
	F-Stat.

	CG
	1.026
	1.059
	1.025
	1.003
	1.033
	0.916
	1.002
	1.174
	0.945
	1.030
	1.20

	IT
	1.105
	1.060
	1.027
	1.023
	0.959
	0.871
	0.947
	0.812
	1.022
	0.957
	1.280

	Bank
	1.106
	1.084
	1.124
	1.077
	1.234
	0.942
	1.148
	1.263
	1.178
	1.125
	0.767

	Metal 
	1.083
	1.116
	1.037
	1.070
	1.072
	1.058
	1.077
	1.125
	1.221
	1.079
	0.689

	O&G
	1.191
	1.168
	1.219
	1.265
	1.102
	1.267
	1.192
	0.822
	1.097
	1.148
	1.206

	Parma
	0.842
	0.829
	0.893
	0.852
	0.779
	0.896
	0.806
	0.697
	0.761
	0.822
	1.310

	Housing
	1.191
	1.223
	1.223
	1.121
	1.084
	1.212
	1.169
	1.400
	1.208
	1.205
	3.338*

	Power
	1.047
	0.976
	0.962
	1.097
	1.148
	0.991
	1.548
	1.200
	1.205
	1.132
	0.649

	Transport
	0.908
	0.897
	0.939
	0.883
	0.951
	0.950
	0.818
	0.891
	0.847
	0.904
	0.462

	FMCG
	0.550
	0.822
	0.886
	0.934
	0.993
	0.798
	0.949
	0.695
	0.882
	0.868
	1.221

	Agriculture
	0.919
	0.984
	0.91
	0.871
	0.777
	0.948
	0.848
	0.923
	0.771
	0.899
	1.838**

	
	
	
	
	
	
	
	
	
	
	
	

	C. Durable
	0.851
	0.835
	0.757
	0.895
	0.965
	0.851
	0.949
	0.662
	1.150
	0.845
	2.012**

	Diversified
	1.211
	1.196
	1.227
	1.211
	1.179
	1.194
	1.394
	1.146
	    1.135
	1.221
	0.763

	Overall
	1.012
	1.017
	1.018
	1.008
	1.006
	0.979
	1.029
	0.985
	1.014
	1.006
	0.233


	Industry
	OLS
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	S7

	CG
	0.825
	0.788
	0.807
	0.856
	0.874
	0.879
	0.919
	0.892
	0.911

	IT
	0.716
	0.673
	0.702
	0.771
	0.764
	0.765
	0.841
	0.754
	0.837

	Bank
	0.638
	0.548
	0.609
	0.713
	0.756
	0.732
	0.846
	0.876
	0.894

	Metal
	0.777
	0.731
	0.764
	0.804
	0.801
	0.863
	0.897
	0.859
	0.931


	O&G
	0.667
	0.574
	0.654
	0.760
	0.755
	0.805
	0.863
	0.738
	0.742

	Pharma.
	0.728
	0.675
	0.718
	0.758
	0.772
	0.851
	0.873
	0.855
	0.815

	Housing
	0.721
	0.681
	0.700
	0.745
	0.772
	0.807
	0.844
	0.818
	0.862

	Power
	0.585
	0.498
	0.521
	0.642
	0.692
	0.730
	0.834
	0.637
	0.816

	Transport
	0.678
	0.587
	0.673
	0.739
	0.767
	0.775
	0.852
	0.791
	0.739

	FMCG
	0.462
	0.466
	0.553
	0.676
	0.671
	0.687
	0.806
	0.574
	0.719

	Agriculture
	0.631
	0.573
	0.603
	0.673
	0.706
	0.761
	0.886
	0.757
	0.794

	C. Durables
	0.547
	0.432
	0.517
	0.636
	0.653
	0.752
	0.858
	0.715
	0.855

	Diversified
	0.776
	1.203
	0.760
	0.821
	0.808
	0.864
	0.958
	0.932
	0.888

	Overall
	0.961
	0.498
	0.533
	0.642
	0.692
	0.730
	0.835
	0.637
	0.816


Table 3.1    Corresponding Wavelet R-Squares  
� Ph.D Student, Department of Commerce, School of Management, Pondicherry Central  University, India. E-mail: � HYPERLINK "mailto:shah_aasifpu@rediffmail.com" �shah_aasifpu@rediffmail.com�,  Tel: +91-8122263418


� Professor, Department of Commerce ,School of Management, Pondicherry Central University, India � HYPERLINK "mailto:Deo_malavika@yahoo.co.in" �Deo_malavika@yahoo.co.in� , Tel: +9-9442140745


� Wayne King, Ph.D. Signal and Array Processing, MathWorks Inc. 3 Apple Hill Dr, Natick, MA, 01760 ,USA E-mail:  � HYPERLINK "mailto:wmkingty@gmail.com" �wmkingty@gmail.com� 


� Frequency is the rate of change with respect to time. Change in the short span of time means high frequency. Change over a long span of time means low frequency.


� Granger (1966) asserted that most economic time series measured in level have spectra that exhibit a smooth declining shape with considerable power at very low frequencies.


� Quantile regression was chosen as the statistical tool of choice for several reasons as discussed by Buchinsky (1998), Koenker and Bassett (1978) and Hao and Naiman (2007)


�  For a better understanding,   the wavelet decomposition example  is also given under wavelet analysis


� Deo Malabika and  Shah Aasif (2012, “Scaling properties of systematic risk: A new evidence from wavelet analysi”, Asia-Pacific Journal of Management Research and Innovation September 2012 vol. 8 no. 3 283-289


�  The S&P BSE-500 Index represents 93% of total market capitalization. The required data was available for only 313 companies. The stocks were classified in three catalogues- Large Cap, Mid Cap & Small Cap stocks. Further each catalogue of stocks were were classified in their respective industries for portfolio construction purpose.


� The data source for individual stocks and the BSE- 500 index were retrieved from CMIE Database Prowess. The MIBOR daily rates were collected from RBI official website under the data base on an Indian economy section.


� We have not provided results of Quantile Regression. However, the estimation results are available on request.


� Note: Acronym CG denoted Capital Goods, IT- Infrmation Technology, O&G-Oil & Gas 
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