VALUATION ON A FILTERED MODULE

M.H. Anjom SHoa, M.H. Hosseini

Abstract

In this paper we show if R is a filtered ring and M a filtered R-module then we can define a valuation on a module for M. Then we show that we can find an skeleton of valuation on M, and we prove some properties such that derived form it for a filtered module.

Key Words: Filtered module, Filtered ring, Valuation on module, skeleton of valuation.

1 Introduction

In algebra valuation module and filtered R-module are two most important structures. We know that filtered R-module is the most important structure since filtered module is a base for graded module especially associated graded module and completion and some similar results([1],[2],[3],[7],[8]). So, as these important structures, the relation between these structure is useful for finding some new structures, and if M is a valuation module then M has many properties that have many usage for example, Rees valuations and asymptotic primes of rational powers in Noetherian rings and lattices([4],[10]).

In this article we investigate the relation between filtered R_module and valuation module. We prove that if we have filtered R_module then we can find a valuation R_module on it. For this we define $\nu: M \to \mathbb{Z}$ such that for every $t \in M$, and by lemma(3.1), lemma(3.2), lemma(3.3), lemma(3.4) and theorem(3.1) we show ν has all properties of valuation on R-module M. Also we show if M is a filtered R_module then it has a skeleton of valuation, continuously we prove some properties for M that derived from skeleton of valuation([6],[9]).

^{*}Mohammad Hassan Anjom SHoa, University of Biirjand, anjomshoamh@birjand.ac.ir, anjomshoamh@yahoo.com

[†]Mohammad Hossein Hosseini, University of Birjand, mhhosseini@birjand.ac.ir

2 Preliminaries

Definition 2.1. A filtered ring R is a ring together with a family $\{R_n\}_{n\geq 0}$ of additive subgroups of R satisfying in the following conditions:

- *i*) $R_0 = R$;
- ii) $R_{n+1} \subseteq R_n$ for all $n \ge 0$;
- iii) $R_n R_m \subseteq R_{n+m}$ for all $n, m \ge 0$.

Definition 2.2. Let R be a ring together with a family $\{R_n\}_{n\geq 0}$ of additive subgroups of R satisfying the following conditions:

- *i*) $R_0 = R$;
- ii) $R_{n+1} \subseteq R_n$ for all $n \ge 0$;
- iii) $R_n R_m = R_{n+m}$ for all $n, m \ge 0$, Then we say R has a strong filtration.

Definition 2.3. Let R be a filtered ring with filtration $\{R_n\}_{n\geq 0}$ and M be a R-module with family $\{M_n\}_{n\geq 0}$ of subgroups of M satisfying the following conditions:

- *i*) $M_0 = M$;
- ii) $M_{n+1} \subseteq M_n$ for all $n \ge 0$;
- iii) $R_n M_m \subseteq M_{n+m}$ for all $n, m \ge 0$,

Then M is called filtered R-module.

Definition 2.4. Let R be a filtered ring with filtration $\{R_n\}_{n\geq 0}$ and M be a R-module together with a family $\{M_n\}_{n\geq 0}$ of subgroups of M satisfying the following conditions:

- i) $M_0 = R$;
- ii) $M_{n+1} \subseteq M_n$ for all $n \ge 0$;
- iii) $R_n M_m = M_{n+m}$ for all $n, m \ge 0$,

Then we say M has a strong filtration.

Definition 2.5. Let M be an R-module where R is a ring, and Δ an ordered set with maximum element ∞ and $\Delta \neq {\infty}$. A mapping v of M onto Δ is called a valuation on M, if the following conditions are satisfied:

i) For any
$$x, y \in M$$
, $v(x + y) \ge min\{v(x), v(y)\}$;

- ii) If $v(x) \leq v(y)$, $x, y \in M$, then $v(ax) \leq v(ay)$ for all $a \in R$;
- iii) Put $v^{-1} := \{x \in M | v(x) = \infty\}$. If $v(az) \le v(bz)$, where $a, b \in R$, and $z \in M \setminus v^{-1}(\infty)$, then $v(ax) \le v(ay)$ for all $x \in M$
- iv) For every $a \in R \setminus (v^{-1}(\infty) : M)$, there is an $a' \in R$ such that v((a'a)x) = v(x) for all $x \in M$

Definition 2.6. Let M be an R-module where R is a ring, and let ν be a valuation on M. A representation system of the equivalence relation \sim_{ν} is called a skeleton of ν .

Definition 2.7. A subset S of M is said to be ν -independent if $S \cap \nu^{-1}(\infty) = \phi$, and $\nu(x) \notin \nu(Ry)$ for any pair of distinct elements $x, y \in S$. Here, we adopt the convention that the empty subset ϕ is ν -independent.

Proposition 2.1. Let M be an R-module where R is a ring, and let $v: M \to \Delta$ be a valuation on M. Then the following statements are true:

- i) If $\nu(x) = \nu(y)$ for $x, y \in M$, then $\nu(ax) = \nu(ay)$ for all $a \in R$;
- ii) $\nu(-x) = \nu(x)$ for all $x \in M$;
- iii) If $\nu(x) \neq \nu(y)$, then $\nu(x+y) = \min\{\nu(x), \nu(y)\}$;
- iv) If $\nu(az) = \nu(bz)$ for some $a, b \in R$ and $z \in M \setminus \nu^{-1}(\infty)$, then $\nu(ax) = \nu(bx)$ for all $x \in M$;
- v) If $\nu(az) < \nu(bz)$ for some $a, b \in R$ and $z \in M$, then $\nu(ax) < \nu(bx)$ for all $x \in M \setminus \nu^{-1}(\infty)$;
- vi) The core ν^{-1} of ν is prime submodule of M;
- vii) The following subsets constitute a valuation pair of R with core $(M: \nu^{-1}(\infty))$:

$$A_{\nu} = \{ a \in A | \nu(ax) \ge \nu(x) \text{ for all } x \in M \},$$

$$P_{\nu} = \{ a \in A | \nu(ax) \ge \nu(x) \text{ for all } x \in M \setminus \nu^{-1}(\infty) \}$$

Proof. see proposition 1.1 [6]

Definition 2.8. The pair (A_{ν}, P_{ν}) as in Proposition (2.1) is called the valuation pair of R induced by ν or the induced valuation pair of ν .

3 Valuation derived from filtered module

In this section we use the four following lemmas for showing the existence of valuation on filtered module. Let R be a ring with unit and R a filtered ring with filtration $\{R_n\}_{n>0}$ and M be filtered R-module with filtration $\{M_n\}_{n>0}$.

Lemma 3.1. Let M be filtered R-module with filtration $\{M_n\}_{n>0}$. Now we define $\nu: M \to \mathbb{Z}$ such that for every $t \in M$ and $\nu(t) = \min\{i \mid t \in M_i \setminus M_{h+1}\}$. Then for all $x, y \in M$ we have $\nu(x+y) \ge \min\{\nu(x), \nu(u)\}$.

Proof. For any $x, y \in M$ such that $\nu(x) = i$ also $\nu(y) = j$, and $\nu(x+y) = h$, so we have $x + y \in M_k \backslash M_{k+1}$. Without losing the generality, let i < j so $M_j \subset M_i$ hence $y \in R_i$. Now if k < i, then $k+1 \le i$ and $M_i \subset M_{k+1}$ so $x + y \in M_i \subset M_{k+1}$ it is contradiction. Hence $k \ge i$ and so we have $\nu(x+y) \ge \min \{\nu(x), \nu(y)\}$.

Lemma 3.2. Let M be filtered R-module with filtration $\{M_n\}_{n>0}$. Now we define ν as lemma(3.1). If $\nu(y) \leq \nu(x)$, $x, y \in M$, then $\nu(ax) \leq \nu(ay)$ for all $a \in R$;

Proof. Let $\nu(x) = i$ and $\nu(y) = j$, since $\nu(x) \ge \nu(y)$ then $M_j \supseteq M_i$. Since R is filtered ring, there exists $k \in \mathbb{Z}$ such that $a \in R_k$ so

$$ax \in R_k M_i \subseteq M_{k+i}$$

$$ay \in R_k M_i \subseteq M_{k+i}$$

we have $i + k \ge j + k$ by $i \ge j$, then $\nu(ax) \ge \nu(ay)$ for all $a \in R$.

Lemma 3.3. Let M be filtered R-module with filtration $\{M_n\}_{n>0}$. Now we define ν as lemma(3.1). Put $\nu^{-1} := \{x \in M | \nu(x) = \infty\}$. If $\nu(az) \leq \nu(bz)$, where $a, b \in R$, and $z \in M \setminus \nu^{-1}(\infty)$, then $\nu(ax) \leq \nu(ay)$ for all $x \in M$.

Proof. Since $a,b\in R$ and $z\in M$ then there exist $i,j,k\in\mathbb{Z}$ such that $a\in R_i$, $b\in R_j$ and $z\in M_k$ hence

$$az \in R_i M_k \subseteq M_{i+k}$$

$$bz \in R_i M_k \subseteq M_{i+k}$$

Now if $\nu(az) \leq \nu(bz)$ then

$$k+i \le k+j \Longrightarrow i \le j \Longrightarrow R_i \subseteq R_i$$

So we have $\nu(ax) \leq \nu(bx)$ for all $x \in M$

Lemma 3.4. Let M be filtered R-module with filtration $\{M_n\}_{n>0}$. Now we define ν as lemma(3.1). For every $a \in R \setminus (v^{-1}(\infty) : M)$, there is an $a' \in R$ such that v((a'a)x) = v(x) for all $x \in M$.

Proof. Let $x \in \nu^{-1}(\infty)$ then for all $a', a \in R$ $v((a'a)x) = v(x) = \infty$. Now let $x \notin \nu^{-1}(\infty)$ and for all $a' \in R$ we have $v((a'a)x) \neq v(x)$. So if $a' \in R \setminus (\nu^{-1}(\infty) : M)$, then $a'a \in R \setminus (\nu^{-1}(\infty) : M)$ and hence $v((a'a)x) \neq \infty$. Let $a \in R_k$, $a' \in R_{k'}$ and $x \in M_i$, then $a'a \in R_{k+k'}$ so $(a'a)x \in M_{i+k+k'}$. We may have one of following conditions:

- 1) $\nu((a'a)x) < \nu(x)$.
- 2) $\nu(x) < \nu((a'a)x)$

Now if we have (1) then i+k+k' < i, it is contradiction . Consequently $a' \in R_{k'}$ and $a \in R_k$ for $k \in \mathbb{Z}$ then

$$a^{'}a \in R_{k^{'}+k} \Longrightarrow (a^{'}a)x \in R_{k+k^{'}}M_{i} \subseteq M_{i+k^{'}+k}.$$

Since $M_{k'+k+i} \subseteq M_i$ hence $(a'a)x \in M_i$. So we have $\nu((a'a)x) < i$ therefore $\nu(x) > \nu((a'a)x)$, it is contradiction with (2). By now we have $\nu(x) = \nu((a'a)x)$.

Theorem 3.1. Let R be a filtered ring with filtration $\{R_n\}_{n>0}$, and M be a filtered R-module with filtration $\{M_n\}_{n>0}$. Now we define $\nu: M \to \mathbb{Z}$ such that for every $t \in M$ and $\nu(t) = \min\{i \mid t \in M_i \setminus M_{h+1}\}$. Then ν is a valuation on M.

Proof. i) By lemma (3.1) we have For any $x, y \in M$, $v(x+y) \ge min\{v(x), v(y)\}$;

- ii) We have If $v(x) \leq v(y)$, $x, y \in M$, then $v(ax) \leq v(ay)$ for all $a \in R$ by lemma(3.2);
- iii) Put $v^{-1} := \{x \in M | v(x) = \infty\}$. If $v(az) \leq v(bz)$, where $a, b \in R$, and $z \in M \setminus v^{-1}(\infty)$, then then by lemma (3.3) $v(ax) \leq v(ay)$ for all $x \in M$;
- iv) For every $a \in R \setminus (v^{-1}(\infty) : M)$, then by lemma(3.4) there is an $a' \in R$ such that v((a'a)x) = v(x) for all $x \in M$.

So by definition (2.5) ν is a valuation on M if has those conditions. \square

Corollary 3.1. If M be a filtered R-module, then $\nu : M \to \mathbb{Z}$ has all of properties that explained in Proposition(2.1).

Proposition 3.1. IR is a strongly filtered ring and M is a strongly filtered R-module and there exist valuation $\nu: M \to \mathbb{Z}$ on M, then R should be a trivial filtered R-module.

Proof. By definition(2.5)(iv) and theorem(3.1) we have for every $a \in R \setminus (v^{-1}(\infty) : M)$, there is an $a' \in R$ such that v((a'a)x) = v(x). Now if v(a) = i, v(a') = j and v(x) = k then i + j + k = k so i + j = 0, consequently $R_i = R$ for every i > 0.

Proposition 3.2. Let M be an R-module, where R is a ring. Then there is a valuation on M, if and only if there exists a prime ideal P of R such that $PM_P \neq M_P$, where M_P is the localization of M at P.

Proof. see (Proposition 1.3 [6]) \Box

Corollary 3.2. Let M be an filtered R-module, where R is a filtered ring. Then there exists a prime ideal P of R such that $PM_P \neq M_P$, where M_P is the localization of M at P.

Proof. By theorem(3.1) there is an valuation on M, then by proposition(3.2) there exists a prime ideal P of R such that $PM_P \neq M_P$, where M_P is the localization of M at P.

Corollary 3.3. Let M be an filtered R-module, where R is a filtered ring. Then there is a skeleton on M.

Proof. By theorem(3.1) there is a valuation on M, then by definition(2.6) we have there is a skeleton on M.

Proposition 3.3. Let M be an filtered R-module where R is a filtered ring, and ν a valuation on M. If Λ is a skeleton of ν , then the following conditions are satisfied:

- i) Λ is a ν -independent subset of M;
- ii) For every $x \in M\nu_{-1}(\infty)$, there exists a unique $\lambda \in \Lambda$ such that $\nu(x) = \nu(R\lambda)$.

Proof. By corollary(3.3) Λ is a skeleton of ν and by proposition(1.4, [6]) we have the above conditions.

Proposition 3.4. Let M be an filtered R-module where R is a filtered ring, and ν a valuation on M. If Λ is a skeleton of ν . If $a_1\lambda_1 + \cdots + a_n\lambda_n = 0$ where $a_1, \dots a_n \in R$ and $\lambda_1 \dots \lambda_n \in \Lambda$ are mutually distinct, then $a_i \in (\nu_{-1}(\infty) : M), i = 1, \dots, n$.

Proof. By corollary(3.3) Λ is a skeleton of ν and by proposition(1.5, [6]) we have If $a_1\lambda_1 + \cdots + a_n\lambda_n = 0$ where $a_1, \cdots a_n \in R$ and $\lambda_1 \cdots \lambda_n \in \Lambda$ are mutually distinct, then $a_i \in (\nu_{-1}(\infty) : M), i = 1, \cdots, n$.

References

- [1] J. Alajbegovic, Approximation theorems for Manis valuations with the inverse, (1984). property. Comm. Algebra 12:13991417.
- [2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra. Massachusetts:(1969). Addison-Wesley.N.
- [3] O. Endler, Valuation Theory. New York: Springer-Verlag.Algebras, Rings and Modules by Michiel Hazewinkel CWI, Amsterdam, The Netherlands Nadiya Gubareni Technical University of Czstochowa, Poland and V.V. Kirichenko Kiev Taras Shevchenko University, Kiev, Ukraine KLUWER. (1972).
- [4] Fuchs, L. Partially Ordered Algebraic Systems. New York: Pergammon Press.S.(1963).
- [5] Gopalakrishnan, Commutative algebra, oxonian press, 1983.
- [6] Z. Guangxing, Valuations on a Module, Communications in Algebra, 2341-2356, 2007.
- [7] Huckaba, J. A. Commutative Rings with Zero Divisors. New York: Marcel Dekker, Inc. (1988).
- [8] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991.
- [9] C. P. Lu, Spectra of modules. Comm. Algebra 175:37413752. (1995).
- [10] O. F. G. Schilling, The Theory of Valuations. New York: Amer. Math. Soc. (1952).