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1 Introduction18

Hokamp et al. (2018) make use of �ve criteras to compare the two stan-19

dard neoclassical expected utility models for tax evasion and non-compliance,20

i.e. Allingham and Sandmo (1972) and Srinivasan (1973) � who applied21

the economics-of-crime approach by Becker (1968, 1993): "(i) mathematical22

modeling, (ii) taxpayer's optimal choice, (iii) comparative statics, (iv) frame-23

work extensions, and (v) model critique" (p. 5 ibid.), e.g. the famous critique24

by Yitzhaki (1974) on ambiguous income and substitution e�ects. Hokamp25

and Cuervo Diaz (2018) show by means of computational agent-based mod-26

elling that in an Allingham-Sandmo setting the tax rate has positive whereas27

the �ne rate has negative e�ects on the overall extent of tax evasion. Alm28

et. al (2020) enlight the ambitious e�ects of the audit rate.29

Tax experiments, theoretical approaches to tax evasion and non-compliance30

as well as computerised numerical agent-based tax compliance modelling31

(sometimes in combination with public goods provision) make use of pay-32

ment and/or utility functions often with origins in the Allingham-Sandmo33

approach (see Zelmer, 2003; Hokamp, 2013; Hokamp et al., 2018; Robbins34

and Kiser, 2018, and Alm and Malezieux, 2020, for meta-analyses and lit-35

erature reviews). Note that Rizzi (2017) presents indices and pro�les for36

tax evasion, but the author does not discuss utility functions. Hence, the37

leading open questions for this work are: (i) which properties should utility38

functions have to be in line with the Allingham-Sandmo approach for tax39

evasion and non-compliance and (ii) how to build such Allingham-Sandmo-40

Functions (ASFs). Note that such novel utility functions can then be used for41

experiments, theoretical investigations and / or numerical simulations of any42

kind of illicit activities in line with the economics-of-crime theory by Becker43

(1968, 1993).44

Recognise that the set of Alligham-Sandmo-Functions is extended by two45

adjoint neutral elements to form the set of ASFs applicable for Risk Averse46

and Neutral Taxpayers (ASFRANT), which has properties similar to the47

set of natural numbers. In fact, two binary operations, namely addition and48

composition, are de�ned, which are related to addition and multiplication op-49

erating on the set of natural numbers, respectively. Hence, this work provides50

a cookbook how to build novel utility functions via such binary operations51

and which are feasible for the Allingham-Sandmo approach and, therefore,52

for Becker's economics-of-crime theory. Moreover, individual behaviour un-53

der extreme conditions and large economic losses is modelled via such utility54

functions, in particular via intertemporal utility functions (e.g. see Hokamp55

and Pickhardt, 2010).56

The work is organised as follows. The next section introduces the for-57
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malism of the tax evasion framework of Allingham and Sandmo (1972) based58

on the economics-of-crime theory by Becker (1968, 1993) together with a59

de�nition of Allingham-Sandmo-Functions (ASFs). Section 3 presents novel60

insights on the algebraic structure as well as the binary operations which are61

feasible within the set of ASFs applicable for Risk Neutral and Averse Tax-62

payers (ASFRANT) to build novel utility functions, e.g for numerical com-63

putations. Section 4 provides some examples how to build feasible utility64

funcions for Becker's economics-of-crime-approach. The �nal section sum-65

marises, discusses the results and broadens the applicability of this work66

beyond tax evasion and non-compliance.67

2 Allingham-Sandmo-Functions68

Following the description given in Hokamp et al. (2018, pp. 5 � 6), Allingham69

and Sandmo (1972) examine � within the neoclassical economics-of-crime70

approach by Becker (1968, 1993) � individuals, i.e. taxpayers, who are faced71

by a decision-making problem on how much income re�ected by the decision72

variable X of their true income T to be stated by �ling tax returns for73

authorities given an audit probability p, a �ne rate f and a tax rate t. In74

addition, taxpayers are assumed to show risk aversion behaviour, so that their75

marginal utility U ′ is strictly decreasing, i.e. their respective utility function76

U is concave. To solve the decision-making problem, taxpayers conduct an77

expected maximisation procedure with respect to their individual utility78

EU [X] = (1− p)U [T − tX] + pU [(1− f)T + (f − t)X] (1)

which reveals the necessary condition for a maximum79

(1− p)(−t)U ′[T − tX] + p(f − t)U ′[(1− f)T + (f − t)X] = 0 (2)

Then, taxpayers are equipped with an incentive towards tax evasion if their80

marginal expected utility is positive for full tax evasion, i.e. X = 0, and81

negative for total compliance, i.e. X = T . Thus, the �rst derivative of their82

expected utility with respect to �ling a tax return with declared income X83

is forced to show a sign change, and, in addition, the second derivative needs84

to be negative. The latter condition is satis�ed since the concavity of utility85

functions has been assumed and the former condition leads to86

∂EU [X]

∂X
|X=0 = (1− p)(−t)U ′[T ] + p(f − t)U ′[(1− f)T ] > 0 (3)

and87

∂EU [X]

∂X
|X=T = (1− p)(−t)U ′[(1− t)T ] + p(f − t)U ′[(1− t)]T < 0 (4)
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Realigning Eqs. (3) and (4) results in the condition to guarantee an interior88

solution for the income decision-making problem89

t > pf > t(p+ (1− p)
U ′[T ]

U ′[(1− f)T ]
) (5)

When the tax rate t is changed, then a �xed �ne rate f on undeclared income90

T −X could lead to a con�ict by two e�ects on the optimal income declared91

X∗, that is, income versus substitution e�ect. Yitzhaki (1974) �gured out92

that modelling a �ne on the evaded tax (instead of a �ne on undeclared93

income) via a sanction rate s = f/t > 1 terminates such a con�ict.94

In the following De�nitions 2.1 and 2.2 sum up the properties of utility95

functions feasible for the Allingham-Sandmo approach, but request slightly96

more than the theoretical model described in Eqs. (1) to (5) by Allingham97

and Sandmo (1972).98

De�nition 2.1 (Allingham-Sandmo-Functions, ASFs). Utility functions are99

said to be Allingham-Sandmo-Functions (ASFs) on a set S ⊆ R when they100

allow to be employed for the economics-of-crime approach by Becker (1968,101

1993) to model tax evasion and non-compliance according to the approach102

by Allingham and Sandmo (1972). Further, ASFs depend on net income103

N ∈ S and, in addition, possibly on a vector of other variables summarised104

by N̄ . Hence, ASFs are said to have the following properties, whereby all105

other variables N̄ than net income N are hold �xed:106

(i) Utility functions are di�erentiable at each net income a ∈ S, i.e.107

∀a ∈ S : U is differentiable ⇔ ∀a ∈ S : U ′[a, N̄ ] = limh→0
U [a+ h, N̄ ]− U [a, N̄ ]

h
(6)

(ii) Taxpayers are risk averse, that is108

a) strictly increasing utility, i.e.109

∂U [N, N̄ ]

∂N
> 0 (7)

and b) strictly decreasing marginal utility, i.e.110

∂2 U [N, N̄ ]

∂N2
< 0 (8)

111

In particular, De�nition 2.2 re�ects the notion that nothing, i.e. zero net112

income, should lead to an utility of zero.113
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De�nition 2.2 (Allingham-Sandmo-Function with Fixpoint at Zero, ASFF=0).114

Utility functions are said to be Allingham-Sandmo-Functions with �xpoint115

at zero (ASFF=0) on a set S ⊆ R when they ful�ll De�nition 2.1 for ASFs116

and have a �xpoint at zero net income, N = 0, that is,117

U [0, N̄ ] = 0 (9)

Table 1 provides a summary of the mathematical syntax used for the118

Allingham-Sandmo approach to tax evasion and non-compliance.119

Mathematical Syntax Meaning

f Fine Rate
p Audit Probability
s Sanction Rate
t Tax Rate
N Net Income
N̄ All Variables, except Net Income
T True Income
X Income Declaration
X∗ Optimal Income Declaration
U Utility
U ′ Marginal Utility
EU Expected Utility

Table 1: Mathematical Syntax for the Allingham-Sandmo Approach to Tax
Evasion and Non-Compliance adjusted and adopted from Hokamp et al.
(2018)

The next section sheds light on how to build novel utility functions for120

the Allingham-Sandmo approach to tax evasion and non-compliance.121

3 Algebra: How to Build Utility Functions not122

only for Tax Evasion and Non-Compliance123

Binary operations are the key to build novel utility functions not only for the124

Allingham-Sandmo approach to tax evasion and non-compliance but also in125

general for the economics-of-crime approach by Becker (1968, 1993). To put126

it di�erently, to de�ne a set based on Allingham-Sandmo-Functions (ASFs)127

there is the need to �nd feasible binary operations and related neutral ele-128

ments. First, which binary operations are able to combine two ASFs to get129
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another ASF on a set S ⊆ R? Candidates for binary operations are addition130

(+), subtraction (−), multiplication (·), division (:) and composition (◦).131

Theorem 3.1 (Feasible Binary Operations). Addition (+) and composition132

(◦) are feasible binary operations on Allingham-Sandmo-Functions (ASFs)133

on a set S ⊆ R according to De�nition 2.1.134

Proof. Let A and B be ASFs. Then, it has to be shown that C := A+B and135

D := A ◦ B are ASFs. Therefore, De�nition 2.1 has to be checked for C and136

D:137

(i) Utility functions are di�erentiable at each a ∈ S, i.e.138

∀a ∈ S : A and B are di�erentiable139

⇔ ∀a ∈ S : A′[a, N̄ ] = limh→0
A[a+h,N̄ ]−A[a,N̄ ]

h
∧B′[a, N̄ ] = limh→0

B[a+h,N̄ ]−B[a,N̄ ]
h

140

⇔ ∀a ∈ S : (A+ B)′[a, N̄ ] = A′[a, N̄ ]+B′[a, N̄ ] = limh→0
(A+B)[a+h,N̄ ]−(A+B)[a,N̄ ]

h
141

⇔ ∀a ∈ S : A+ B = C is di�erentiable142

∀a ∈ S : A and B are di�erentiable143

⇔ ∀a ∈ S : A′[a] = limh→0
A[a+h]−A[a]

h
∧ B′[a, N̄ ] = limh→0

B[a+h,N̄ ]−B[a,N̄ ]
h

144

⇔ ∀a ∈ S : (A ◦ B)′[a, N̄ ] = A′[B[a, N̄ ]] · B′[a, N̄ ] =145

limh→0
A[B[a,N̄ ]+h]−A[B[a,N̄ ]]

h
· limh→0

B[a+h,N̄ ]−B[a,N̄ ]
h

146

⇔ ∀a ∈ S : A ◦ B = D is di�erentiable147

(ii) Taxpayers are risk averse, that is148

a) strictly increasing utility, i.e.149

∂A[N,N̄ ]
∂N

> 0 ∧ ∂B[N,N̄ ]
∂N

> 0 ⇒ ∂C[N,N̄ ]
∂N

= ∂(A+B)[N,N̄ ]
∂N

= ∂A[N,N̄ ]
∂N

+ ∂B[N,N̄ ]
∂N

> 0150

∂A[N ]
∂N

> 0 ∧ ∂B[N,N̄ ]
∂N

> 0 ⇒ ∂D[N,N̄ ]
∂N

= ∂(A◦B)[N,N̄ ]
∂N

= ∂A[B[N,N̄ ]]
∂N

· ∂B[N,N̄ ]
∂N

> 0151

and b) strictly decreasing marginal utility, i.e.152

∂2 A[N,N̄ ]
∂N2 < 0 ∧ ∂2 B[N,N̄ ]

∂N2 < 0 ⇒ ∂2 C[N,N̄ ]
∂N2 = ∂2 (A+B)[N,N̄ ]

∂N2 = ∂2 A[N,N̄ ]
∂N2 +153

∂2 B[N,N̄ ]
∂N2 < 0154

∂2 A[N ]
∂N2 < 0∧ ∂2 B[N,N̄ ]

∂N2 < 0 ⇒ ∂2 D[N,N̄ ]
∂N2 = ∂2 (A◦B)[N,N̄ ]

∂N2 = ∂2 A[B[N,N̄ ]]
∂N2 · ∂B[N,N̄ ]

∂N
+155

∂A[B[N,N̄ ]]
∂N

· ∂2 B[N,N̄ ]
∂N2 < 0156

Theorem 3.2 (Non-Feasible Operations). Subtraction (−), multiplication157

(·) and division (:) are non-feasible operations on Allingham-Sandmo-Functions158

(ASFs) according to De�nition 2.1.159

Proof. It has to be shown by contradiction that Allingham-Sandmo-Functions160

linked by subtraction (−), multiplication (·) and/or division (:) do not gen-161

erate necessarily another ASF:162

(Subtraction) Assume A and B are ASFs with ∂B[N,N̄ ]
∂N

> ∂A[N,N̄ ]
∂N

> 0. Then163

C := A−B is no ASF, since in De�nition 2.1 the condition (ii) a) of strictly164

increasing utility is violated according to Eq. (7) ∂C[N,N̄ ]
∂N

= ∂(A−B)[N,N̄ ]
∂N

=165

∂A[N,N̄ ]
∂N

− ∂B[N,N̄ ]
∂N

< 0.166
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(Multiplication) AssumeA is an ASF withA[0, N̄ ] = 0. ThenA·A is no ASF,167

because in De�nition 2.1 the condition (ii) a) of strictly increasing utility is168

violated at zero according to Eq. (7) ∂(A·A)[0,N̄ ]
∂N

= 2 · A[0, N̄ ] · ∂A[0,N̄ ]
∂N

= 0.169

(Division) Assume A is an ASF. Then A : A ≡ 1 is no ASF, because in170

De�nition 2.1 the condition (ii) a) of strictly increasing utility is violated171

according to Eq. (7) ∂(A:A)[N,N̄ ]
∂N

≡ ∂1
∂N

= 0.172

Second, how do neutral elements look like for the two feasible binary173

operations addition and composition? Possible candidates are the utility174

functions which re�ect risk neutral taxpayers, i.e. the identity function175

id[N, N̄ ] = (N, N̄) as well as the constant function O[N, N̄ ] ≡ 0.176

Theorem 3.3 (Neutral Elements). For Allingham-Sandmo-Functions (ASFs)177

in line with De�nition 2.1 the identity function id[N, N̄ ] = (N, N̄) with178

(N, 0) = N is the neutral element with respect to the binary operation com-179

position (◦) and the constant function O[N, N̄ ] ≡ 0 is the neutral element180

with respect to the binary operation addition (+).181

Proof. Assume A is an ASF. Then A ◦ id = id ◦ A = A as well as A+O =182

O +A = A are ASFs.183

Theorems 3.1 to 3.3 also work for ASFF=0, ASFs with �xpoint at zero,184

according to De�nition 2.2. Note that these neutral elements for ASFs and185

ASFF=0 take special roles like unity and zero, respectivily, for the set of186

natural numbers. Recognise that it depends on the de�nition whether zero187

is a natural number or not. Transferred to ASFs this means that De�nition188

2.1 could be changed to allow also for utility functions modelling risk neutral189

taxpayers. Nonetheless, the set of ASFs applicable for risk averse and neutral190

taxpayers can be de�ned as follows by adjoining the function constantly set191

to zero and the identity function.192

De�nition 3.1 (Set of Allingham-Sandmo-Functions applicable for Risk193

Averse and Neutral Taxpayers, ASFRANT). The set of Allingham-Sandmo-194

Functions applicable for risk averse and neutral taxpayers is de�ned as195

ASFRANT := {U | U ful�lls De�nition 2.1 for Allingham-Sandmo-Functions}196

∪ {id} ∪ {O}.197

De�nition 3.2 (Set of Allingham-Sandmo-Functions applicable for Risk198

Averse and Neutral Taxpayers with Fixpoint at Zero, ASFRANTF=0). The199

set of Allingham-Sandmo-Functions applicable for risk averse and neutral200

taxpayers with �xpont at zero is de�ned as ASFRANTF=0 := {U | U ful�lls201

De�nition 2.2 for Allingham-Sandmo-Functions} ∪ {id} ∪ {O}.202
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However, which algebraic structure have ASFRANT and ASFRANTF=0203

together with addition (+) and composition (◦)? Because of ASFRANTF=0 ⊂204

ASFRANT, Theorems 3.4 to 3.7 elaborate on this question.205

Theorem 3.4 (Structure of the Algebra (ASFRANT, +, O)). The algebra206

(ASFRANT, +, O ) is a commutative monoid.207

Proof. According to Theorem 3.1 ASFRANT is equipped with the binary208

operation +. Assume three arbitrary A,B, C ∈ ASFRANT. Then, the binary209

operation + is associative, because of (A+B)+C = A+B+C = A+(B+C).210

Further, according to Theorem 3.3 there exists a neutral element for each211

A ∈ ASFRANT, that is O[N, N̄ ] ≡ 0. Finally, the binary operation + is212

commutative, that is, A+ B = B +A ∀ A,B ∈ ASFRANT.213

To give another example, the set of natural numbers including zero, de-214

noted as N≥0, together with the binary operation addition forms the algebra215

(N≥0, +, 0), which is also a commutative monoid. Note that there exists no216

inverse element since for n ∈ N>0, then the inverse −n /∈ N>0.217

Theorem 3.5 (Structure of the Algebra (ASFRANT, ◦, id)). The algebra218

(ASFRANT, ◦, id) is a non-commutative monoid.219

Proof. According to Theorem 3.1 ASFRANT is equipped with the binary220

operation ◦. Assume three arbitrary A,B, C ∈ ASFRANT. Then, the binary221

operation ◦ is associative, because of (A ◦ B) ◦ C = A[B[C]] = A ◦ (B ◦ C).222

Further, according to Theorem 3.3 there exist the neutral element id[N, N̄ ] =223

(N, N̄), i.e. the identity function, for each A ∈ ASFRANT. Finally, the224

binary operation ◦ is non-commutative, which is shown by contradiction as225

follows: LetA[N, ρ] := 1−e−ρN ∈ ASFRANT, then B := A+id ∈ ASFRANT226

because of Theorem 3.4. However, A◦B ≠ B ◦A and, therefore, the algebra227

(ASFRANT, ◦, id) is non-commutative.228

Theorem 3.6 (Structure of the Algebra (ASFRANT, ◦, id, +, O)). The229

algebra (ASFRANT, ◦, id, +, O) is a non-commutative semiring with unity230

and left-annihilating zero.231

Proof. (ASFRANT, +, O) is a commutative monoid according to Theorem232

3.4 and (ASFRANT, ◦, id) is a non-commutative monoid according Theorem233

3.5. Assume three arbitrary A,B, C ∈ ASFRANT. Compositon left and right234

distributes over addition, that is A◦ (B+C) = A[B+C] = A◦B+A◦C and235

(A+B)◦C = A[C]+B[C] = A◦C+B◦C. Composition with O left-annihilates236

ASFRANT, that is, O ◦ A = O = 0 ∀ A ∈ ASFRANT.237
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Theorem 3.7 (Structure of the Algebra (ASFRANTF=0, ◦, id, +, O)). The238

algebra (ASFRANTF=0, ◦, id, +, O) is a non-commutative semiring with239

unity and annihilating zero.240

Proof. Since ASFRANTF=0 ⊂ ASFRANT it obviously follows that the alge-241

bra (ASFRANTF=0, ◦, id, +, O) is a non-commutative semiring with unity.242

Composition with O annihilates ASFRANTF=0, that is, O ◦ A = O = 0 =243

A[0] = A ◦ O ∀ A ∈ ASFRANTF=0.244

4 Examples245

To sum up, the rewards can now be raped. For instance, two examples246

for novel utility functions build in ASFRANTF=0 via the binary operations247

addition (+) and composition (◦) are E1(N, ρ) = 1−e−ρN+id(N) = 1−e−ρN+248

N and E2(N, ρ) = (1−e−ρN)◦ (1−e−ρN) = (1−e−ρ(1−e−ρN )), where N stands249

for net income and ρ for individual risk aversion. Because of E1 ◦E2 ̸= E2 ◦E1250

these functions provide an example that the moniod (ASFRANTF=0, ◦, id)251

is not commutative.1252

The next and �nal section summarises and broadens the applicability of253

the results beyond tax evasion and non-compliance.254

5 Discussion and Conclusion255

Utility functions are at the beating heart of many numerical computerised256

simulations, theoretical investigations and / or experiments dealing with tax257

evasion and non-compliance. This work has shed light on Allingham-Sandmo-258

Functions (ASFs) given by De�nition 2.1 and on the set of ASFs applicable for259

Risk Averse and Neutral Taxpayers (ASFRANT) in line with De�nition 3.1.260

Based on these De�nitions ASFs have been introduced with �xpoint at zero261

according to De�nition 2.2 and the related set ASFRANTF=0 with �xpoint at262

zero referring to De�nition 3.2. In particular, it was shown by Theorems 3.1263

to 3.7 how to build novel utility functions feasible to computational numerical264

simulate and to investigate tax evasion and non-compliance as well as which265

algebraic structure prevails. To put it di�erently, to �nd novel ASFs the key is266

linking two ASFs by the binary operations addition (+) and / or composition267

(◦). The algebraic structure of (ASFRANT, ◦, id, +, O) turns out to be a268

non-commutative semiring with unity and left-annihilating zero. The results269

1The set of all functions F : f(T) → T, on a set T ⊂ R together with the binary
operation composition ◦ provides another example for a non-commutative monoid with
the identity function as neutral element.
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might be transferred to ASFs with �xpoint at zero and (ASFRANTF=0, ◦,270

id, +, O) is a non-commutative semiring with unity and annihilating zero.271

However, results are not restricted to tax evasion and non-compliance be-272

cause of the possibility to broaden it up. In particular, intertemporal utility273

functions allow to incorporate the deterrent e�ect of large economic losses.274

Each problem works which allow for investigation via Becker's economics-275

of-crime approach due to Becker (1968, 1993). For example Westmattel-276

mann et al. (2014) and Westmattelmann et al. (2020) successfully trans-277

ferred Hokamp and Pickhardt (2010) to examine via agent-based modelling278

the pecuniary incentives to dope or not to dope in professional sport com-279

petitions. Thus, the transfer of this work to other topics beyond tax evasion280

and non-compliance delineates a rich research agenda for the future.281

A Appendix282

FOR REVIEW: This Appendix provides a brief mathematical background283

with respect to algebra based on Droste et. al (2009) and Karp�nger and284

Meyberg (2021) introducing the De�nitions A.1 to A.5 with respect to binary285

operations, commutativity (and non-commutativity), monoids, semirings and286

annihilators.287

De�nition A.1 (Binary Operation). A binary operation ∗ on a set A is a288

function that relates two elements a and b from A to another element c of A289

denoted as ∗ : A× A, (a, b) 7→ a ∗ b = c.2290

De�nition A.2 (Commutative and Non-Commutative). A binary operation291

∗ on a set A is said to be commutative if ∀ a, b ∈ A : a ∗ b = b ∗ a. A binary292

operation ∗ on a set A is said to be non-commutative if ∃ a, b ∈ A : a ∗ b ̸=293

b ∗ a.3294

De�nition A.3 (Monoid). An algebra (M, ∗) is said to be a monoid if295

(i) the binary operation ∗ is associative, i.e. ∀ a, b, c,∈ M : (a∗b)∗c = a∗(b∗c),296

and297

(ii) there exists a neutral element ne, i.e. ∃ ne ∈ M : a ∗ ne = ne ∗ a =298

a ∀ a ∈ M. 4
299

2Examples for binary operations are addition (+) and composition (◦), which has been
shown in Theorem 3.1.

3An equivalent synonym for commutative is abelian (and for non-commutative non-
abelian) in honour of the mathematician Nils Hendrik Abel (1802�1829). The properties
commutative and/or non-commutative can be tranferred to groups and rings and, hence,
to monoids and semirings.

4An algebra (M, ∗) is said to be a semigroup if the binary operation ∗ is associative.
Therefore, a monoid is a semigroup with a neutral element.
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De�nition A.4 (Semiring). An algebra (M, ∗, ne∗, ×, ne×) is said to be a300

semiring if301

(i) (M, ∗, ne∗) is a commutative monoid,302

(ii) (M, ×, ne×) is a non-commutative monoid, and303

(iii) the binary operation × distributes over the binary operation ∗, i.e.304

∀ a, b, c ∈ M : a× (b ∗ c) = a× b ∗ a× c.5305

De�nition A.5 (Annihilator). Within an algebra (M, ∗, ne∗, ×, ne×) a306

neutral element ne∗ is said to be an annihilator if ∀ a ∈ M : a × ne∗ =307

ne∗ × a = ne∗.
6

308
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