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Abstract: 

Con-s-normal matrices play the same role in the theory of s-unitary congruences as 

conventional s-normal matrices do with respect to s-unitary similarities. Naturally, the 

properties of both matrix classes are fairly similar up to the distinction between the 

congruence and similarity. However, in certain respects, con-s-normal matrices differ 

substantially from s-normal ones. Our goal in this paper is to indicate one of such 

distinctions. It is shown that none of the familiar characterizations of s-normal matrices 

having the irreducible tridiagonal form has a natural counterpart in the case of  

con-s-normal matrices. 
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1. INTRODUCTION 

Let Cnxn be the space of nxn complex matrices of order n. For ,×∈
n n

A C  let TA , A , 

A*, SA , 
 

= 
 

s

A A
θ  and -1  A denote the transpose, conjugate, conjugate transpose, secondary 

transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate 

secondary transpose of A satisfies the following properties such as

( ) ( ) ( ), ,= + = + =A A A B A B AB B A
θ θ θθ θ θ θ θ . etc 

Definition 1 

 A matrix 
×∈ n nA C  is said to be normal if * * .=AA A A  

Definition 2 

 A Matrix ×∈ n nA C  is said to be conjugate normal (con-normal) if  * * .=AA A A   

Definition 3  

 A matrix  ×∈ n nA C   is said to be secondary normal (s-normal) if .=AA A Aθ θ    
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Definition 4 

 A matrix  
×∈ n nA C  is said to be unitary if  * * .= =AA A A I  

Definition 5 

 A matrix 
×∈ n nA C  is said to be s-unitary if .= =AA A A Iθ θ   

Definition 6 [5] 

A matrix 
×∈ n nA C  is said to be a conjugate secondary normal matrix (con-s-normal) if 

=AA A A
θ θ  where =

S

A A
θ .               . . . (1) 

This matrix class plays the same role in the theory of s-unitary congruences as 

conventional normal matrices do with respect to s-unitary similarities. Accordingly, the 

properties of both matrix classes are fairly similar up to the distinction between congruence 

and similarity. 

However, in certain respects, con-s-normal matrices substantially differ from  

s-normal ones. Our goal in this paper is to indicate one of such distinctions that concerns 

matrices having a tridiagonal form. 

A tridiagonal matrix 

1 2

2 2 3

3 3

1n n

n n

...
A

... ... ... ... ... ...

α β

γ α β

γ α

α β

γ α
−

 
 
 
 

=  
 
 
  
 

           . . . (2) 

is said to be irreducible if 

2 3 0n...β β β ≠               . . . (3) 

and 

2 3 0n... .γ γ γ ≠               . . . (4) 

For a s-normal A, inequalities (3) and (4) are implications of each other; therefore, 

irreducibility can be characterized by any one of these inequalities. 

There exist several descriptions of s-normal matrices having the irreducible 

tridiagonal form. One of these descriptions is based on a well-known characteristic property 

of s-normal matrices; namely, a matrix ( )∈
n

A M C  is s-normal if and only if its s-Hermitian 

adjoint Aθ
 is a polynomial in A. Moreover, in the representation Aθ

= f (A),        . . . (5) 

one can choose f to be a polynomial with a degree less than n. 
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Proposition 1 

Irreducible matrix (2) is s-normal if and only if Aθ  is a linear polynomial in A. 

The following description is an easy corollary of Proposition 1. 

Proposition 2 

Irreducible matrix (2) is s-normal if and only if 

i

nA e H I ,
φ α= +              . . . (6) 

Where ∈ ∈ℝ ℂ, ,φ α and H is a s-Hermitian matrix. In particular, if A is real, then A is either 

s-symmetric or has the for         

  
nA K I ,α= +                . . . (7) 

Where α ∈ℝand K is a s-skew symmetric matrix. 

One more description can be derived from representation (6). 

Proposition 3 

Irreducible matrix (2) is s-normal if and only if its secondary spectrum belongs to a 

line. 

2. TRIDIAGONAL CON-s-NORMAL MATRICES 

Here after, matrix (2) is assumed to be irreducible. Moreover, without loss of 

generality, we can assume β2,…, βn to be real positive scalars. Indeed, performing for matrix 

(2) the congruence transformation 

A A DAD→ =ɶ  

with the diagonal s-unitary matrix 

{ }21 2 3ji

n j
D diag ,d ,...,d , d e , j , ,...,n,

δ
= = =  

we have 

12 2 2 1 1 1 2 3 1j , j j j ja d , a d d , j , ,...,n .β β+ + += = = −ɶ ɶ  

Setting 

2 2 1 1 2 3 1j j jarg , arg , j , ,...,n ,δ β δ β δ+ += − = − − = −  

we obtain a matrix Aɶ with positive entries in positions (1, 2), (2, 3), …, (n– 1,n). 

Denote by An–1 the leading principal submatrix that is obtained by deleting the last 

row and the last column in A. 
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Lemma 1 

An–1 is a con-s-normal matrix. 

Proof 

Equating the last diagonal entries of the two matrices in relation (1), we see that  

n n
.γ β=               . . . (8) 

Equating the leading principal submatrices of order n– 1 in (1), we have 

22

1 1 1 1 1 1 1 1− − − − − − − −+ = +s s

n n n n n n n n n n
A A e e A A e e

θ θβ γ           . . . (9) 

Here, en–1 is the last coordinate column vector in the space C
n–1

. Equalities (8) and (9) prove 

the lemma. 

Corollary 1 

All the leading principal submatrices of a con-s-normal matrix A of form (2) are also 

con-s-normal. 

Remark 

A similar assertion is valid for trailing submatrices, that is, for submatrices counted 

off the right lower corner of A. Moreover, any principal submatrix lying at the intersection of 

successive rows and columns of matrix (2) is con-s-normal. 

Now, we equate in (1) the entries in the positions (n – 2, n) and (n – 1, n), which gives 

1 1n n n n
,β γ β γ− −=            . . . (10) 

1 1n n n n n n n n
α γ α β α β α γ− −+ = +  

Or  ( ) ( )1n n n n n n
.α γ β α γ β− − = −            . . . (11) 

Using Lemma 1 and its corollary recursively, we obtain the relations 

1 1 3 4j j j j , j , ,...,n,β γ β γ− −= =          . . . (12) 

( ) ( )1 2 3
j j j j j j

, j , ,...,n.α γ β α γ β− − = − =         . . . (13) 

According to (12), a choice of β2,…,βn and γn uniquely determines γ2,…,γn – 1. Note 

that γn must obey condition (8). 

If γn = βn, then (12) implies the equalities 

2 3 1j j , j , ,...,n .γ β= = −  



5 

 

In this case, A is a s-symmetric matrix and relations (13) impose no limitations on its 

diagonal entries α1,…,αn. 

If γn = –βn, then the equalities 

2 3 1j j , j , ,...,n ,γ β= − = −          . . . (14) 

are derived from (12) and the equalities 

1 2 3j j , j , ,...,n,α α− = =           . . . (15) 

are derived from (13). 

Thus, the choice of αn determines the entire diagonal of A. 

Finally, assume that 

( ) 0i

n n
e , , , .φγ β φ π π φ= ∈ − ≠          . . . (16) 

Relations (12) yield 

1 21 2 33

i i

n nn n nn

i
e , e , e ...

φ φ φβγβγ γβ − −

− − −− − −= = =        . . . (17) 

Similarly to the preceding case, all the diagonal entries have the same modulus. 

Define ψ by the formula 

( )1i
arg e .

φψ = −            . . . (18) 

Choosing αn, we find from (13) that 

1 2 3

2 2 4 6

1

i i i i

n n n nn nne , e e , e ,...
ψ ψ ψ ψα α α α αα α− − −

− −

−= = = =        . . . (19) 

For instance, if n = 3 and φ = π/2, we have 

( )
3

1
4

arg iψ π= − =  

And  2 2 2 3 1 3i, i , .γ β α α α α= − = − = −  

In the case described by relations (16)–(19), conjugate-s-normal matrices of form (2) 

cannot be reduced to s-symmetric or s-skew symmetric matrices. 

3. ON THE MULTIPLICITY OF CON-s-EIGEN VALUES 

If irreducible matrix (2) is s-normal, then all of its s-eigen values are simple, which 

follows from the relation  ( ) 1
n

rank A zI n z .− ≥ − ∀ ∈ℂ  

This consideration is inapplicable to con-s-normal matrices. For instance, the Jordan 

block Jn(0) with zero on the main diagonal has the rank n–1 and, at the same time, an  

s-eigen value of multiplicity n. 
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In general, con-s-normal matrices are not s-normal. Moreover, the con-s-eigen values 

rather than s-eigen values are invariants of s-unitary congruences. We recall their definition 

as given in [2]. 

With a matrix ( )∈
n

A M C , we associate the matrices 

LA AA=             . . . (20) 

And   
R

A AA.=             . . . (21) 

Although, in general, the products AB and BA need not be similar, AA is always 

similar to AA (see [3, Section 4.6]). Therefore, in the subsequent discussion of the secondary 

spectral properties of these matrices, it will be suffices to consider only one of them, say, AL. 

The secondary spectrum of AL has two remarkable properties: 

(a) It is s-symmetric about the real axis. Moreover, the s-eigen values λ and λ have the 

same multiplicity. 

(b) The negative s-eigen values of AL (if any) are necessarily of even algebraic 

multiplicity. 

Let,    ( ) { }1
=

S L n
A ,...,λ λ λ           . . . (22) 

be the secondary spectrum of  AL. 

Definition 7 

The con-s-eigen values of A are the n scalars µ1,…,µn introduced as follows: 

(a) If λi∈ λs(AL) does not lie on the negative real semiaxis, then the corresponding  

con-s-eigen value µi is defined as the square root of λi with a nonnegative real part: 

1 2 0i i i, Re .µ λ µ= ≥           . . . (23) 

The multiplicity of µi is set equal to that of λi. 

(b) With a real negative s-eigenvalue λi∈λs(AL), we associate two conjugate purely 

imaginary con-s-eigen values 

1 2

i i .µ λ= ±            . . . (24) 

The multiplicity of each con-s-eigen value is set equal to half the multiplicity of λi. 

The set 

( ) { }1
=

S n
C A ,...,λ µ µ            . . . (25) 

is called the conjugate secondary spectrum of A. 
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For a s-symmetric A, we have = =LA A ,A A A;
θ θ  thus, the con-s-eigen values of A are 

identical to its s-singular values. 

If A is s-skew symmetric, then 

L
A A , A A A.θ θ= − = −  

As noted above, every negative s-eigen value λ of AL has an even multiplicity. It gives 

rise to two purely imaginary con-s-eigen values iµ λ= ± of half the multiplicity. 

The most important property of s-normal matrices is that every matrix of this class 

can be transformed into a secondary diagonal matrix by a proper s-unitary similarity 

transformation. The secondary diagonal entries of the transformed matrix are the s-eigen 

values of A. This spectral theorem for normal matrices has the following counterpart in the 

theory of unitary congruences [6, 7]. 

Theorem 1 

Every con-s-normal matrix ( )∈
n

A M C can be brought by a proper s-unitary 

congruence transformation to a block diagonal form with diagonal blocks of orders 1 and 2. 

The 1-by-1 blocks are nonnegative con-s-eigen values of A. Each 2-by-2 block corresponds to 

a pair of complex conjugate con-s-eigen values ji

j j j
e ,

θ
µ ρ µ= and has the form 

2

0

0j

j

i

je
θ

ρ

ρ
−

 
 
  

           . . . (26) 

Or   
0

0

j

j

.
µ

µ

 
 
 

            . . . (27) 

Every matrix ( )∈
n

A M C can be represented in the form 

A = S + K,            . . . (28) 

where   ( ) ( )
1 1

2 2

S S
S A A , K A A .= + = −          . . . (29) 

Matrices (29) are called the real and imaginary parts of A, respectively. 

For a conjugate-s-normal matrix A, decomposition (28), (29) has a number of special 

properties. We need the property stated in the following proposition. 

Theorem 2 
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Let A be a conjugate-s-normal matrix with decomposition (28), (29). Then, the  

con-s-eigen values of S (respectively, K) are the real (respectively, imaginary) parts of the 

con-s-eigen values of A. 

Corollary 2 

If a conjugate-s-normal matrix A has a pair of complex con-s-eigen values 

iK , ,µ σ µ= + then σ is a multiple con-s-eigenvalue of S = (A + A
S
)/2. The number of real 

con-s-eigen values of A is equal to the multiplicity of zero as a con-s-eigen value of                   

K = (A – AS)/2. 

We return to conjugate-s-normal matrices of form (2) that satisfy relations (16)–(19). 

In this case, it is easy to see that matrices (29) are tridiagonal along with A. 

Lemma 2  

The multiplicity of each con-s-eigen value of S (respectively, K) is at most two. 

Proof  

For definiteness, we consider S. The con-s-eigen values of this matrix are nonnegative 

scalars whose squares are the conventional s-eigen values of the five-diagonal matrix 

LS SS S S.
θ= =  

The irreducibility of S ensures that all the entries of SL lying on the diagonal i – j = 2 

are nonzero. It follows that 

( ) 2
L n

rank S xI n x .− ≥ − ∀ ∈ℝ  

Therefore, the multiplicity of each s-eigen value of the Hermitian matrix SL is at most 

two. 

Corollary 3  

A con-s-normal matrix A described by relations (16)–(19) has at most two real con-s-

eigen values. All the pairs of conjugate con-s-eigen values of A have distinct real parts. The 

corresponding con-s-eigen values of S = (A + AS)/2 are double. By contrast, all the nonzero 

con-s-eigen values of K = (A – AS)/2 are simple. 

These assertions are direct implications of Lemma 2, Theorem 2, and Corollary 2. 

Corollary 3 makes obvious the following ultimate conclusion: the con-s-spectrum of 

a con-s-normal matrix described by relations (16)–(19) cannot be located on a line in the 

complex plane. 

We conclude this section by a small illustration of the facts given above. It is easy to 

verify that the tridiagonal matrix 



9 

 

1 1 0

1 1 1

0 1 1

+ 
 

= − − + 
 − − 

i

A i i

i

 

is conjugate-s-normal.  

Its s-symmetric part 

1 0

1

0 1

 
 

= − 
 − 

i

S i i

i

 

has the simple con-s-eigen value 1 and the double con-s-eigen value is also 1. The nonzero 

con-s-eigen values of the s-skew symmetric part 

0 1 0

1 0 1

0 1 0

 
 

= − 
 − 

K  

are equal to 2i .±  Thus, 

( ) { }1 1 2 1 2= + −SC A , i , i .λ  

4. ON THE REPRESENTATIONS OF THE TRANSPOSED MATRIX 

Returning to representation (5), we recall how Proposition 1 can be proved. Assume 

that the degree k of the polynomial f in (5) is greater than one. Then, it is easy to see that the 

entries of A lying on the diagonals i – j = k and j – i = k must be nonzero. This, however, 

contradicts the fact that f(A) must be the tridiagonal matrix A
θ

. 

The following assertion proved in [4] can be considered an analogue of representation 

(5) for con-s-normal matrices. 

Theorem 3 

A matrix ( )∈
n

A M C  is con-s-normal if and only if 

( ) ( )S

R L
A f A A Af A= =           . . . (30) 

for a polynomial f with real coefficients. This polynomial can be chosen so that its degree is 

less than n. 

Suppose that A ≠ 0 and the polynomial f in (30) has a zero degree; that is, 

S
A A.α=  
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A comparison of the norms of the left- and right-hand sides reveals that |α| = 1. 

Furthermore, it is easy to verify that the equality 

S i
A e A

φ=  

is possible only for φ = πk, k∈Z. Thus, in this case, A is either s-symmetric or s-skew 

symmetric. 

Now, we show that, for a con-s-normal matrix described by relations (16)–(19), the 

degree k of f in representation (30) must be at least [n/2]. Indeed, assuming the contrary, that 

is, 

2
0 1

2 2

n n
k ,

− 
< ≤ − ≤  

 

we observe that A (AL)
k
 is the only monomial in the matrix A f(AL) that has nonzero entries on 

the diagonal i – j = 1 + 2k (which does not exceed n – 1) and on the diagonal    j – i = 1 + 2k. 

The same diagonals must be nonzero in A f(AL). This contradicts the fact that A f(AL) must be 

the tridiagonal matrix A
S
. 
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