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Abstract.  
 
The aim of this paper is to study the Zariski topology of a commutative KU-algebra. 

Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal 

and prime ideal and investigate some basic properties of these concepts. Secondly, the 

notion of the topology spectrum of a commutative KU-algebra is studied and several 

properties of this topology are provided. Also, we study the continuous map of this 

topological space.   
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1. Introduction 
 
The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the 

main tools in Algebraic Geometry. Atiyah and Macdonald [1] introduced the spectrum 

)(RSpc  of a ring R  as the following: for each ideal I of R , }:)({)( PIRSpecPIV  , 

then the set )(IV  satisfy the axioms for the closed sets of a topology on )(RSpc , called 

the Zariski topology. Also, the notion of a spectrum of modules has been introduced by 

many authors see [2, 5, 6 and 7]. Prabpayak and Leerawat [11] introduced a new 

algebraic structure which is called KU-algebras. They introduced the concept of 

homomorphisms of KU-algebras and investigated some related properties. In [3, 4, 12 

and 13], the authors introduced topologies on the set of all prime ideals by different way. 

In this paper, we study the relationship between a KU-algebra and topological space by 

the notion of the Zariski topology. We give the new concept of KU-lattice, involutory 

ideal and prime ideal of a KU-algebra X  and discuss some properties which related to 

these concepts. Consequently, we show that )(XSpc  of a KU-algebra X  is a compact 

and disconnected space. Also, we study some of separation axioms and continuous map 

of this topological space.  
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2. Preliminaries 
Now we recall some known concepts related to KU-algebra from the literature which will 

be helpful in further study of this article. 
 
Definition 2.1 [11]. Let X  be a nonempty set with a binary operation and a constant 0 . 

The triple )0,,( X is called a KU-algebra, if the following axioms are satisfied. For all 

Xzyx ,, . 

( 1ku )  0)]())[()(  zxzyyx . 
( 2ku  )  00 x . 
( 3ku )  xx 0 . 
( 4ku ) 0 yx  and 0 xy  implies yx  . 
( 5ku ) 0 xx . 
On a KU-algebra X, we can define a binary relation   on X  by putting 

0 xyyx . Then ),( X is a partially ordered set and 0 is its smallest element. 

Thus )0,,( X satisfies the following conditions. For all Xzyx ,, , we that 

 ( \1
ku ) )()()( yxzxzy     

 ( \2
ku ) x0    

 ( \3
ku ) xyyx  ,  implies yx  , 

( \4ku )   xxy  . 
 
Theorem 2.2 [8]. In a KU-algebra X . The following axioms are satisfied. 

For all Xzyx ,, , 

 (1)  yx  imply zxzy  , 

 (2) )()( zxyzyx  , 

 (3) yxxy  ))(( . 

Definition 2.3 [11]. A non-empty subset I  of a KU-algebra X  is called an ideal of X  if 

for any Xyx , , then  

(i) I0  and 
(ii) Ixyx  ,  imply Iy . 
  
Definition 2.4 [9].  A KU-algebra X is said to be KU-commutative if it satisfies 

yyxxxy  )()( , for all yx,  in X . 

Lemma 2.5 [9]. If X  is KU-commutative algebra, then for any distinct elements 

Xzyx ,, , )()()( zxyxzyx   . 
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Definition 2.6. If there is an element   of a KU-algebra X  satisfying x  for all 

Xx , then the element   is called unit of X . A KU-algebra with unit is called  

bounded. In a bounded KU-algebra X , we denote x  by xN . It is easy to see that 

ENNE  0,0 . 

 

 Example 2.7. Let  dcbaX ,,,,0  be a set with a binary operation   defined by the 

following table. 

 

 

 

 
 
 
Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and by 

routine calculations, we can see that X  is a bounded KU-algebra with unit "d". 
 

Theorem 2.8. For a bounded KU-commutative algebra X , we denote )( yx NNNyx    

and for all ,, Xyx   we have                

(a) xN
xN  , 

(b) ,)( yxyx NNN   ,)( yxyx NNN    

(c) yx  implies xy NN  . 

(d) xxE  , 

(e) EEx  . 

Proof. The proof is straightforward. � 
 
Definition 2.9. A partially ordered set ),( L  is said to be a lower semilattice if every pair 

of elements in L  has a greatest lower bound and it is called to be an upper semilattice if 

every pair of elements in L  has a least upper bound. If L is a lattice, then we define 

},glb{ yxyx  and },lub{ yxyx  . A lattice L  is said to be distributive if it satisfies 

the following conditions. For all Lzyx ,,  

(1) )()()( zxyxzyx  , 

(2) )()()( zxyxzyx  . 

Theorem 2.10. Every KU-commutative algebra X  is a KU-lower semilattice with respect 

to ),( X . 

* 0 a b c d 
0 0 a b c d 
a 0 0 b c d 
b 0 a 0 c c 
c 0 0 b 0 b 
d 0 0 0 0 0 
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 Proof. Suppose X is a KU-commutative algebra. We know that xyx  and   yyx   

. Let z be any element of X such that xz  and yz  , then 0 zyzx  (by 

Definition of  ), so we have that
   itycommutativ

xxzzzxzz  )()(0 . 

By the same reason we have yyzz  )( , and hence 

yxxxyxxyyzxxzz  )()))((()( , thus yx   is the greatest KU- 

lower bound and so ),( X is a KU-lower semilattice.� 

 The converse of this theorem may not be true. For example, in Example 2.7 we have that 

X is a lower semilattice, but aacaacccca  )(00)( . 
 

Theorem 2.11. Any bounded KU-commutative algebra X with respect to ),( X  is a KU- 

lattice. 

Proof. Since xyx NNN  and yyx NNN   , from Theorem 2.8 we have that 

yxNNx
yxx NNN    )(  and yxNNy

yxy NNN    )( . 

This shows that yx  is a common upper bound of x  and y . Now, by Theorem 2.8 if 

zx  and zy  , then xz NN  and yz NN   . It follows that yxz NNN   , therefore 

zyx NNN NN  )(  and zyx  . Hence  yx  is a least upper bound of x  and y , i.e. 

),( X is a KU-upper semilattice. By using Theorem 2.10 and this Theorem, we obtain 

),( X is a KU-lattice. � 

 

Definition 2.12. Let X  be a KU-algebra and A  a nonempty subset of X . The ideal of 

X generated by A is denoted by AaaXxA n  ,...,:{ 1  such that }0)((...( 1  xaa n , 

if A . We have that }0{ . 
 
Definition 2.13. Let X be KU-commutative algebra and A  a subset of X . Then we define 

0:{  xaXxA  for all }Aa and call it the KU-annihilator of A . 

We write 
A in place of  )(A . Note that A is a nonempty since  A0 . Obviously we 

have }0{X and X}0{ . If A is an ideal it is easy to see that }0{AA . We 

observe that if   Ax then 0 xa  for all Aa . It follows that 0)(  aax  then 

axa   and 0)(  axa , hence aax   which implies that axa  . Thus  Ax if 
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and only if axa   for all Aa . Moreover if X  is commutative, then  Ax if and 

only if axa   for all Aa .  

 If }{aA  , then we write )(a instead of })({a . 

 
Example 2.14. Let },,,,,0{ edcbaX   be a set with a binary operation   defined by the 

following table. 

 
 
 
 
 
 
 

 

 

 

It is easy to show that X is a bounded KU-commutative algebra. If },{ cbA  , then               

 },0{ aA  . 
 
Definition 2.15. An ideal A  of a KU-commutative algebra X is said to be involutory if 

 AA . Moreover a KU-commutative algebra X is said to be involutory if every ideal of 

X is involutory. 

Clearly }0{ and X are involutory ideals. 

 
Remark 2.16. In involutory KU-commutative algebra X , for any two ideals BA,  of X , 

we have that   BABA  )( . 

Lemma 2.17. Let X  be involutory KU-commutative algebra. Then  AAX  for any 

ideal A of X . 

Proof. Note that }0{AA . By Remark 2.16 and note X  is involutory, we have 

XAAAAAA   

)0()(  .  
 
Definition 2.18. A KU-algebra X is said to be KU-positive implicative if it satisfies that 

)()()( yxzyzxz  , for all zyx ,,  in X . 

  
Definition 2.19. A nonempty subset I of a KU-algebra X is said to be a KU-positive 

implicative ideal if for all zyx ,,  in X , then 

  0 a b c d e 

0 0 a b c d e 

a 0 0 b c b c 

b 0 a 0 b a d 

c 0 a 0 0 a a 

d 0 0 0 b 0 b 

e 0 0 0 0 0 0 
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(1) I0  and 

(2) Iyxz  )( and Ixz  imply Iyz  . 
 
Theorem 2.20. If we are given an ideal I of a KU-algebra X , then I is a KU-positive 

implicative if and only if, for any Xa  the set }:{ IxaXxAa  is an ideal of X . 

Proof. )(  Suppose that I is positive implicative ideal and aAyx  )( and aAx . 

Then Iyxa  )( and Ixa  . By Definition 2.19 we obtain Iya  )(  i.e. aAy . 

This says aA is an ideal. 

)(  Suppose that aA is an ideal of X , for any Xa  . If Iyxz  )( and Ixz  , then 

zAyx  )( and zAx . Since zA is an ideal of X  then zAy and Iyz  . This means 

that I is positive implicative ideal. � 
 

Corollary 2.21. If I is a KU-positive implicative ideal of X , then }:{ IxaXxAa   

is the least ideal containing I and a , for any Xa . 
 
Definition 2.22. A nonempty subset I of a KU-algebra X is said to be a KU-implicative 

ideal if for all zyx ,,  in X , then 

(1) I0  and 

(2) Ixyxz  ))(( and Iz imply Ix . 
 
Definition 2.23.  A proper ideal I of a KU-algebra X is called a maximal ideal if and 

only if XAI  implies that AI  or XA  , for any ideal A of X . 
 
Theorem 2.24. If  I  is an ideal of a KU-algebra X . Then the following statements are 

equivalent. 

(a) I is maximal and KU-implicative ideals, 

(b) I is maximal and KU-positive implicative ideals, 

(c) Iyx , implies Iyx  and Ixy  for all yx,  in X . 

Proof. (a) (b). Suppose that I is KU-implicative ideal and Iyxz  )( , Ixz  . 

Since Iyxzyzxyzzxz  )()())(()(  then Iyzzxz  ))(()( and 

Ixz  . I is an ideal, we have that Iyzz  ))(( . It follows that 

Iyzzyzyyz  )()())((  and .))()))(((0 Iyzyyz   Combining 

I0  we obtain Iyz  . Hence I is KU-positive implicative ideal.  
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(b)  (c). Let Iyx , . Since I is KU-positive implicative. By Corollary 2.21 

}:{ IyuXuAy  is the least ideal containing I and y . Using maximality of I we 

have that XAy  . Hence yAx , that is Iyx  . Likewise for Ixy  . 

(c)  (a) At first we prove that I is KU-implicative. Suppose I does not KU 

implicative, then there are yx,  in X such that Ixyx  )( but Ix . If Iyx  , 

combining Ixyx  )( we get Ix . This contradicts to Ix . If Iyx  , by (c) we 

have Iy as Ix . By \4ku , we have yyx  , we get Iyx  . This contradicts to 

Iyx  . Hence I  is KU-implicative. Next we prove that I is maximal. Note that I is 

also KU-positive implicative. Hence it is sufficient to prove that for any Ia we have 

XIaxXxAa  }:{ . By Corollary 2.21, aA is the least ideal containing I and a .  

For all x  in X , when Ix  then aAx and when Ix , by Ia and (c) we have that  

Iax   i.e. aAx . This means that XAa  . Therefore I is maximal ideal of X . � 

 
Definition 2.25. Let X  be a KU-lower semilattice and P a proper ideal of X . Then P is 

said to be a prime ideal if Pba   implies  Pa  or Pb , for any ba,  in X . 
 
Theorem 2.26. In a KU-lower semilattice X , a proper ideal P of X is said to be a prime 

if PBA   implies  PA  or PB  , for any ideals BA,  in X . 

Proof. Suppose that PBA  , PA  and PB   for some two ideals BA,  in X . 

Thus there exist a and b such that PAa  and PBb  . From aba   and 

bba   it follows that BAba , and PBAba   . This contradicts to primness 

of P . Hence PA  or PB  . � 
 
Theorem 2.27. If X  is a KU-implicative algebra, then each prime ideal of X is maximal. 

Proof. Suppose that P is prime ideal and Pba , . Since X is KU-implicative, then   

Paaaababaa  0))(()( . Noticing Pa , we have Pba  . By the 

same way we get Pab  . Hence P is maximal ideal by Theorem 2.24. � 
 

Lemma 2.28. Let X  be a KU-lower semilattice. If nxa  and mxa  for natural numbers 

n  and m , then there exists a natural number p such that pyxa )(   , for 

any Xayx ,, . 



                                                                                                                                                             8 

Proof. Since for nm  , mxa  implies nxa  , it suffices to verify that when 

0 ayax nn , there exist a natural number p such that 0)(  ayx p . We proceed 

by induction on n . When 1n , we have 0 ayax , xa   and ya  .  Hence 

yxa   , i.e., 0)(  ayx  . 

Now suppose the assertion holds for natural number n , that is, 0 ayax nn  implies 

that there exists a natural number p such that 0)(  ayx p . 

If 011   ayax nn , then )((0 1 axyxax nnn  
. 

By the same argument we have )((0 axyy nn  . In view of the first step of induction 

we get 

0)(()(  axyyx nn , 0))((((  ayxxy nn  , 0))(((( 1   ayxyxx nn  . 

From 01  ayn . It easily follows that 0))(((( 1   ayxyxy nn  . Hence 

0))((( 21  ayxyx nn   . Repeating the above procedure n times we obtain 

)1.(..........0))(( 1   ayxy nn  . By an entirely similar way we have that  

)2.(..........0))(( 1   ayxx nn  . By the induction hypothesis and (1), (2), we know that 

there is a natural number p such that 0))(()( 1   ayxyx np  , 0)( 1   ayx pn . � 

 
Corollary 2.29. Let X  be a KU-lower semilattice and P an ideal in X . Then for any  

Xyx ,  if Pyx  , then PyPxP  }{}{  . 
 
Definition 2.30. Let X  be a KU-lower semilattice. A nonempty subset S  of X is said to 

be  -closed if Syx   whenever Syx , . 
 
Theorem 2.31. Let X be a KU-lower semilattice and S a nonempty -closed subset 

of X such that S0 , )(XI  denotes the set of all ideals of X  then }:)({  SIXII   

have a maximal ideal P such that SP . Moreover P is a prime ideal. 

Proof. The existence of an ideal P easily follows from Zorn's lemma. We will prove that 

P is a prime ideal. Let us suppose it is not the case, i.e., there exist Xyx , such that 

Pyx  , Px  and Py . Then P is properly contained in both 

1}{ PxP   and 2}{ PyP   . Because of maximality of P , SP 1 and SP 2 . 

Let 2,1,  iSPs ii  . We known 2,1,21  isss i implies PPPss  2121  (by 
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Corollary 2.29). On the other hand Sss  21  . This is a contradiction. Hence P is a 

prime ideal. � 
 
Theorem 2.32. In a KU-lower semilattice X . Any maximal ideal must be prime.  

Proof. by using Theorem 2.31 and Corollary 2.29, we obtain the result. 
 
Definition 2.33. Let I be an ideal of a KU-algebra X . We will call an ideal J  of X a 

minimal prime ideal associated with the ideal I if J is a minimal element in the set of all 

prime ideals containing I . 
 
Lemma 2.34. Let I be a proper ideal of a KU-lower semilattice X .Then  

(a) I is contained in a prime ideal, 

(b) Any prime ideal containing I contains a minimal prime ideal associated with the 

ideal I . 

Proof. If I is a prime ideal, then the Lemma is true. Let us suppose that I is not a prime 

ideal and IXa  . Obviously, }:{ xaXxS  is a nonempty,  -closed and S0 . 

By Theorem 2.31, there exists a prime ideal P such that SP . (a) holds. 

To show (b) it is sufficient to show that the intersection of any chain of prime ideals is a 

prime ideal. Let }:{ iPi be a chain of prime ideals of X and }:{  iPP i . 

Suppose that P is not a prime ideal, that is, there are Xyx , such that 

PyPxPyx  ,, . Thus, there are ji,  such that ji PyPx  , . Without loss of 

generality we can assume that ji PP  , ii PyPx  ,  and iPPyx   . This 

contradicts to iP being a prime.  

 
3-Topology Spectrum of KU-commutative algebra X  
In this section, we define the notion of a spectrum of KU-commutative algebra X  and 

study some of its properties.  

Definition 3.1. Let X be KU-commutative algebra and )(XSpec  the set of all prime 

ideals of X . Then for any ideal A of X , we define }|)({)( PAXSpecPAW   . 

 
Proposition 3.2. Let X  be KU-commutative semilattice algebra. Then  

(i) BA  implies that )()( BWAW  , for any ideals BA, of X , 

(ii) )()(  AWAW .  

Proof. (i) Let )( AWL  LA . Since BA   )(BWL .  Hence )()( BWAW  . 



                                                                                                                                                             10 

(ii) Since  AA  from (i) we get that )()(  AWAW . Let )(  AWP  PA   

and since  AA then PA , )( AWP  it follows that 

)()( AWAW  . Hence )()(  AWAW . � 

 
Theorem 3.3. Let X be KU-commutative algebra. Then the family 

)()}({)( XIAAWXT  forms a topology on )(XSpec  . 

Proof.  })0(:)({)0( PXSpecPW  and 

)(}:)({)( XSpecPXXSpecPXW  . For any family IiiAW )}({  

PAXSpecPAW i
Ii

i 


:)({)( for some }:)({} PAXSpecPA
Ii

ii 

  

)(}:)({ 



Ii
i

Ii
i AWPAXSpecP  implies that )()( XTAW

Ii
i 


 . 

Finally, }:)({}:)({)()( PBXSpecPPAXSpecPBWAW    

                                      PAXSpecP  :)({ and }PB  . 

Since P is a prime ideal, therefore can be written as  

)(}:)({)()( BAWPBAXSpecPBWAW   , i.e., )()()( XTBWAW  . 

Hence )(XT is a topology on )(XSpec , this topology will be called the spectrum 

topology. 
 
Example 3.4. In Example 2.14. By using the algorithms in Appendix A, we can found 

that }},,0{},,0{},0{,{ cbaX  is the set of all ideals. Note that }},,0{,},0{{ cba  is the set 

of all prime ideals of X and }},,0{},,0{{)( cbaXSpec  . Therefore )}(,{)( XSpecXT   

this is the indiscrete topology. 
 
Definition 3.5. For any )(XIA  we denote the complement of )(AW by )(AV . Hence 

}|)({)( PAXspecPAV  , it follows that the set )()}({ XIAAV  is the family of the 

closed sets of a topological space )(XSpec . 
 
Remark 3.6. For any Ax  we denote })({xV  by )(xV and })({xW  by )(xW , i.e.  

}|)({)( PxXspecPxV   and }|)({)( PxXspecPxW  . 

Now, we give some properties of the topological space )(XSpec .  
 

Theorem 3.7.  Let X  be a KU-commutative semilattice.  The family AxxW )}({ is a basis 

for the topology of )(XSpec . 
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Proof. Let XA  and )(AW an open subset of )(XSpec , then 


AxAx

xWxWAW


 )()}{()( . Hence, any open set of )(XSpec is union of subsets from 

the family AxxW )}({ .� 

 
Theorem 3.8. Let X  be a KU-lower semilattice and A a proper ideal of X . Then A is 

equal to the intersection of all minimal prime ideals associated with it. 

Proof.  Denote PXIPAJ :)({)(   is a prime ideal and associated with }A . 

It is clearly )(AJA . We will show that AAJ )( . Let us suppose that it is not the case, 

then there is )(AJa and Aa . As in the proof of Lemma 2.34, we can show that if 

}:{ xaXxS  , then there exists a prime ideal P such that PA and SP . The 

existence of such a prime ideal P contradicts to the assumptions. Hence AAJ )( . �  

 
Lemma 3.9. The mapping )()(: XTXIf   given by )()( AWAf   is a lattice 

isomorphism. 

Proof. By Theorem 3.3 of )(AW  , it follows that f  define a lattice homomorphism. We 

only show that f is one to one and onto. For any ideals )(, XIBA  . Suppose that 

)()( BfAf   then )()( BWAW   and )()()()( BWXSpecAWXSpec  . 

Consequently, )()( BJAJ  , hence BA  , it follows that f  is one to one and onto. 

Hence )( XI  and )(XT  are isomorphic. �  

 
Proposition 3.10. If X is a bounded KU-commutative algebra, then )(XSpec is a 

compact space. 

Proof. Let IiiAW )}({ be an open cover of )(XSpec . Then 

)()()( 



Ii
i

Ii
i AWAWXSpec . By injectiveness of W (Lemma3.9) implies that 

XA
Ii

i 

 . Since X is a bounded  




Ii
iA  and hence 0))((...(( 21  naaa . 

We may assume that ik Aa  for nk ,...,2,1 , then 
n

k
ik k

Aa
1

 for all nk ,...,2,1 . This 

implies that 



n

k
ik

A
1

 and hence XA
n

k
ik





1
(because no proper ideal contains ). 
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This shows that )()()()()(
111

XSpecXWAWAWAW
n

k
i

n

k
i

n

k
i kkk



 . Thus we 

obtain a finite Sub cover and consequently, )(XSpec is compact. �           

 

Proposition 3.11. Let X be KU-commutative algebra. Then )(XSpec is 0T  topological 

space. 

Proof. Let P  and Q  be any two distinct prime ideals in )(XSpec . Then either QP  or 

PQ  . If QP  , there exists Px  such that )(xWQthatimplieswhichQx  and 

)(xWP . Therefore exists an open set )(xW containing Q but not P . Similarly, if PQ  . 

There exists Qx such that )(, xWQthatimplieswhichPx  and )(xWP . Therefore 

exists an open set )(xW containing P but notQ . Hence )(XSpec is a 0T -space. 

  
Proposition 3.12. If  X  is a KU-implicative algebra. Then )(XSpec is 1T  topological 

space. 

Proof. If )(,)( XspecthenXSpec   is trivial space and it is a 1T space.  

 If )(XSpec , then there exist a prime ideal P of )(XSpec . It follows by Theorem 2.27 

that P is a maximal ideal.  Hence }{)( PPV   and }{p is closed set in )(XSpec , i.e. 

)(XSpec is a 1T space. � 

 

Proposition 3.13. If A is an involutory ideal of X and )(XSpecP , then )(  AWP if 

and only if )(AWP . 

Proof. If )(  AWP , then PA  . Since A  is an involutory ideal of X , therefore by 

Lemma 2.17  AAX   and hence PA  . This implies that )( AWP . 

Conversely, assume that )( AWP  then PA . Since PAA  }0{  and P is a prime 

ideal. Therefore by Theorem 2.26 PA or PA  , but PA . It follows that 

PA  and consequently we have )(  AWP .� 

 
Proposition 3.14. Let X  be an involutory KU-algebra with at least one involutory ideal 

(proper). Then )(XSpec is a disconnected topological space. 

Proof. Let A be an involutory (proper) ideal of X . We claim that )( AW and )( AW form 

disconnection of )( XSpec . That )(AW and )( AW mutually exclusive, follows from 



                                                                                                                                                             13 

Proposition 3.13. We show that )()()(  AWAWXSpec  . Indeed A is an involutory 

ideal, then  AAX  . This implies that     

             )()()()()(   AWAWAAWAAWXW  .  

This means that )()()(  AWAWXSpec  and consequently )( XSpec is a disconnected 

space. � 
 
Proposition 3.15. If X is an involutory KU-algebra, then )(XSpec is Hausdorff space. 

Proof. Let P and Q  be any two distinct prime ideals in )(XSpec . Then there exists an 

element x  in X such that Px and Qx . This implies that Px   and Qx  . In 

other word )(  xWP  and )(  xWQ . By Proposition 3.13, we have )(  xWP . 

Thus we obtain two open sets )( xW and )( xW such that )(  xWP and 

)(  xWQ . It follows that   )0()()()( WxxWxWxW  . Hence 

)( XSpec is Hausdorff space. � 

 
Corollary 3.16. If X is a bounded involutory KU-algebra, then )(XSpec is normal space. 
 
Definition 3.17 [4]. Let )0,,( G and )0,,( H be KU-algebras. A homomorphism is a map 

HGh : satisfying )()()( yhxhyxh  for all Gyx , . An injective homomorphism 

is called monomorphism and a surjective homomorphism is called epimorphism. 
 
Proposition 3.18. Let )0,,( G and )0,,( H be KU-algebras and HGh :  a 

homomorphism map of KU-algebras, then for any prime ideal P of H . The ideal 

})(:{)(1 PxhGxPh   is also a prime ideal ofG . 

Proof. Let )(1 Phyx   for any Gyx , , then 

.)()()())()((
)()(sm)homomorphi(by ))(()()( 1

PyhxhPxhxhyh
PxhxyhPxxyhPhxxy


 


 

Since P is prime Pxh  )(  or Pyh )(   

)(1 Phx   or )(1 Phy   . Hence )(1 Ph  is prime ideal of G . �  

 
Theorem 3.19. Let )0,,( G , )0,,( H be KU-algebras and HGh :  a homomorphism map 

of KU-algebras. If SpecGSpecH : , define by )()( 1 PhP   for any SpecHP , then 

  is continuous map. 

Proof. Let )(xW  be a basic open set in )(GSpec , for any Gx . Then  
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  )}()(:{))((1 xWPSpecHPxW    
                    )}()(:{ 1 xWPhSpecHP    
                    )}(:{ 1 PhxSpecHP   
                    })(:{ PxhSpecHP  , which is open in )(HSpec . 
Thus the inverse image of any open set in )(GSpec  is open in )(HSpec  and hence  is a 
continuous map. � 
 

4. Conclusion 

This work is a study of the relationship between the KU-algebras and topological spaces. 

We introduced the topology spectrum of a commutative KU-algebra and we obtained 

some results that were different from the topology spectrum of commutative ring. 

However, there are differences because KU-algebras are not rings. We proved that the 

spectrum of KU-algebra is compact, disconnected and Hausdorff space. Also, we studied 

the continuous map of this topological space. The main purpose of our future work is to 

investigate the fuzzy topology of KU-algebras, which may have a lot of applications in 

different branches of mathematics. 
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Appendix A. Algorithms 

Algorithm for KU-algebras  

Input ( :X set, : binary operation) 

Output (“ X is a KU-algebra or not”) 
Begin 

If X  then go to (1.); 

EndIf 

If X0  then go to (1.); 

EndIf 
Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

If 0 ii xx  then 



                                                                                                                                                             15 

Stop: = true; 
EndIf 

1:j  

While Xj   and not (Stop) do 

If 0))((  iij xxy  then  

Stop: = true; 

EndIf 
EndIf 

1:k  

While Xk   and not (Stop) do 

If 0))()(()(  kikjji zxzyyx  then  

Stop: = true; 

     EndIf 
   EndIf While 

 EndIf While 
EndIf While 

If Stop then  
(1.) Output (“ X is not a KU-algebra”) 

Else  
   Output (“ X is a KU-algebra”) 

     EndIf 
End 

Algorithm for ideals 
Input ( :X KU-algebra, :I subset of X ); 

Output (“ I is an ideal of X  or not”); 

Begin 
If I  then go to (1.); 

EndIf 
 If I0  then go to (1.); 

EndIf 
Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 
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1:j  

While Xj   and not (Stop) do 

If Iyx ji  )( and Ixi   then  

If Iy j   then 

    Stop: = true; 

          EndIf 
       EndIf 

    EndIf While 
 EndIf While 

EndIf While 
If Stop then  

Output (“ I is an ideal of X ”) 
Else  

(1.) Output (“ I is not an ideal of X ”) 
     EndIf 

End 
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