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Abstract.

The aim of this paper is to study the Zariski topology of a commutative KU-algebra.
Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal
and prime ideal and investigate some basic properties of these concepts. Secondly, the
notion of the topology spectrum of a commutative KU-algebra is studied and several
properties of this topology are provided. Also, we study the continuous map of this
topological space.
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1. Introduction

The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the
main tools in Algebraic Geometry. Atiyah and Macdonald [1] introduced the spectrum
Spc(R) of aring R as the following: for each ideal 1 of R,V (1) ={P € Spec(R): | < P},
then the set V (I) satisfy the axioms for the closed sets of a topology on Spc(R), called

the Zariski topology. Also, the notion of a spectrum of modules has been introduced by
many authors see [2, 5, 6 and 7]. Prabpayak and Leerawat [11] introduced a new
algebraic structure which is called KU-algebras. They introduced the concept of
homomorphisms of KU-algebras and investigated some related properties. In [3, 4, 12
and 13], the authors introduced topologies on the set of all prime ideals by different way.
In this paper, we study the relationship between a KU-algebra and topological space by
the notion of the Zariski topology. We give the new concept of KU-lattice, involutory
ideal and prime ideal of a KU-algebra X and discuss some properties which related to

these concepts. Consequently, we show that Spc(X) of a KU-algebra X is a compact

and disconnected space. Also, we study some of separation axioms and continuous map

of this topological space.



2. Preliminaries

Now we recall some known concepts related to KU-algebra from the literature which will

be helpful in further study of this article.

Definition 2.1 [11]. Let X be a nonempty set with a binary operation*and a constantO .

The triple (X ,*,0)is called a KU-algebra, if the following axioms are satisfied. For all

X, y,2e X .

(ku;) (xxy)=[(y*2))*(x*2)]=0.

(ku ) x*0=0.

(kuy) O#x=x.

(ku,) x*xy =0 and y*x=0 impliesx=y.

(kug) x*x=0.

On a KU-algebra X, we can define a binary relation < on X by putting

X<y< y*xx=0.Then (X,<)is a partially ordered set and 0 is its smallest element.

Thus (X ,*,0) satisfies the following conditions. For all x,y,z € X , we that
(kuy) (y*2z)*(x*2) <(x*Y)

(ku,) 0<x
(kuy,) x<y,y<x implies x=y,
(ku,) y*x<x.

Theorem 2.2 [8]. In a KU-algebra X . The following axioms are satisfied.

Forall x,y,ze X,

(1) x<yimplyy*z<x=z,

(2) x*(y*z)=y=*(x*2),

@B) ((y*x)*x)<y.

Definition 2.3 [11]. A non-empty subset | of a KU-algebra X is called an ideal of X if
forany x,y e X, then

() 0el and

(i) x*xy,xel imply yel.

Definition 2.4 [9]. A KU-algebra X is said to be KU-commutative if it satisfies
(y=x)=x=(x*xy)*xy, forall x,y inX.
Lemma 2.5 [9]. If X is KU-commutative algebra, then for any distinct elements

X, Y, 2€ X , XA(y*2)=(XAY)*(XAZ).



Definition 2.6. If there is an element E of a KU-algebra X satisfying x<E for all
xe X, then the element E is called unit of X. A KU-algebra with unit is called

bounded. In a bounded KU-algebra X, we denote x*E byN,. It is easy to see that

Ny =0,N,=E.

Example 2.7. Let X = {O,a,b,c , d} be a set with a binary operation * defined by the

following table.

oO|T|O|T|T|T
O|T |0 [l

OO0 |0|O0|O

o0 | Tl |Of *
OO0 | (Ol |
OO0 (0|0 |0

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and by

routine calculations, we can see that X is a bounded KU-algebra with unit "d".

Theorem 2.8. For a bounded KU-commutative algebra X , we denote xv y =N ,y )

and for all x,y e X, we have
@ Ny =X,
(b) N,AN, =N, N, VN =N,
(c) x<yimplies N, <N, .

(d) EAXx=X,

(e) xXAE=E.

Proof. The proof is straightforward. [

Definition 2.9. A partially ordered set (L,<) is said to be a lower semilattice if every pair

of elements in L has a greatest lower bound and it is called to be an upper semilattice if
every pair of elements in L has a least upper bound. If Lis a lattice, then we define

xAy=glb{x,y}and xvy=Iub{x,y}. A lattice L is said to be distributive if it satisfies
the following conditions. For all x,y,ze L

Q) xA(yvz)=(xAy)v(Xaz),

(2) xv(yaz)=(xvy)a(xvz).

Theorem 2.10. Every KU-commutative algebra X is a KU-lower semilattice with respect
to(X,<).



Proof. Suppose X is a KU-commutative algebra. We know that x Ay < xand XAy<y

. Let z be any element of X suchthat z<xandz<y,thenx*z=y*z=0 (by

commutativity

Definition of <), so we havethatz =0%z = (x*2)*z = (z*X) *X.

By the same reason we have z = (z*y) *y, and hence
Z2=(z*x)*x=(((z*y)*y)*x)*x <(y*X)*X=XAY, thus X A y is the greatest KU-
lower bound and so (X,<)is a KU-lower semilattice.[’

The converse of this theorem may not be true. For example, in Example 2.7 we have that

X is a lower semilattice, but(a*c)*c=c*c=0-2a=0*xa=(c*a)*a.

Theorem 2.11. Any bounded KU-commutative algebra X with respect to (X,<) is a KU-
lattice.

Proof. Since N, AN, <N, and N, AN, <N, from Theorem 2.8 we have that

X=Ny SNy iny=Xvyandy=Ny <Ny y),=XVY.

This shows that x v y is a common upper bound of x and y. Now, by Theorem 2.8 if
x<zandy<z,thenN,<N,andN, <N, . It followsthat N, <N, AN, therefore
Ny, an,y < Ny, andxv y<z.Hence xwvy isa least upper bound ofx and vy, i.e.

(X,<)is a KU-upper semilattice. By using Theorem 2.10 and this Theorem, we obtain

(X,<)is a KU-lattice. [

Definition 2.12. Let X be a KU-algebra and A a nonempty subset of X . The ideal of
X generated by Ais denoted by(A) ={x e X :3a,,...,a, € A such that (a *(...x(a, *x) =0},

if A=¢.We have that (¢) ={0}.

Definition 2.13. Let X be KU-commutative algebra and A a subset of X . Then we define
A" ={xe X :aAx=0for allae A}and call it the KU-annihilator of A.

We write A" in place of (A*)". Note that A”is a nonempty since 0 e A*. Obviously we
have X*={0}and {0}" = X . If Aisan ideal it is easy to see that A() A" ={0}. We
observe that if x e A"then aAx=0forall ae A. It follows that (x*a)*a =0 then

a<x+a anda=*(x*a)=0, hence x*a < a which implies that a = x*a. Thus x e A" if



and only if a=x=*a forall ae A. Moreover if X is commutative, then x e A*if and

onlyif a=x=a forall ae A.

If A={a}, then we write (a)"instead of ({a})".

Example 2.14. Let X ={0,a,b,c,d,e} be a set with a binary operation * defined by the

following table.

* (0]a|bfc|d]|e
0 |0fa|bj|c|d]e
a |0/0|b|c|b c
b |0O|la|0|b|a|d
c |[0|la |00 |a

d |[0[{0|0|b|O|Db
e |[0|0]|0|0O|O0]|O

It is easy to show that X is a bounded KU-commutative algebra. If A={b,c}, then

A" ={0,a}.

Definition 2.15. An ideal A of a KU-commutative algebra X is said to be involutory if

A= A"". Moreover a KU-commutative algebra X is said to be involutory if every ideal of
X is involutory.

Clearly {O}and X are involutory ideals.

Remark 2.16. In involutory KU-commutative algebra X , for any two ideals A, B of X ,
we have that (AN B)" =(A"UB").

Lemma 2.17. Let X be involutory KU-commutative algebra. Then X =(AU A") for any
ideal AofX .

Proof. Note that A( A* ={0}. By Remark 2.16 and note X is involutory, we have
(AUAY =(A"UA") = (A" NA) =(0) = X.

Definition 2.18. A KU-algebra X is said to be KU-positive implicative if it satisfies that
(z=x)*(z*y)=1z*(x*y), forall x,y,z inX.

Definition 2.19. A nonempty subset | of a KU-algebra X is said to be a KU-positive

implicative ideal if for all x,y,z in X, then



(1) 0el and
(2) z#(xxy)eland zxxelimplyz*yel.

Theorem 2.20. If we are given an ideal | of a KU-algebra X , then I is a KU-positive
implicative if and only if, for anya e X the set A, ={xe X :a*xe l}isan ideal of X .
Proof. (=) Suppose that 1 is positive implicative ideal and (x*y) e A,and xe A, .
Then a*(x*y)elandax*x e | . By Definition 2.19 we obtain (a*y)el ie. ye A, .
This says A, is an ideal.

(<) Suppose that A, is an ideal of X , forany ae X . If z*(x*y)elandz*xel, then
(x*y)e Ajand x e A, . Since A, is an ideal of X then ye A,and z*y el . This means

that | is positive implicative ideal. [

Corollary 2.21. If 1 is a KU-positive implicative ideal of X , then A, ={xe X :a*xel}

is the least ideal containing | anda, foranyae X .

Definition 2.22. A nonempty subset | of a KU-algebra X is said to be a KU-implicative
ideal if for all x,y,z in X, then

(1) 0el and
(2) zx((x*y)*xx)eland zel implyxel.

Definition 2.23. A proper ideal | of a KU-algebra X is called a maximal ideal if and

only if ¢ Ac X implies that | = Aor A= X, for any ideal AofX .

Theorem 2.24. 1f | is an ideal of a KU-algebra X . Then the following statements are
equivalent.

(@) I is maximal and KU-implicative ideals,

(b) I is maximal and KU-positive implicative ideals,

(c) x,ye Il impliesx*xyeland y*xxelforall x,y inX.

Proof. (a)= (b). Suppose that | is KU-implicative ideal and z*(x*y)el,z*xel.
Since (zxx)*(z*(z*xy))<x*(zxy)=z*(x*y)el then (zxx)*(z*(z*y)) el and
z#xel. lisan ideal, we have that (z*(z*y))e | . It follows that
((zxy)xy)*(zxy)=z*(z*y) el and 0 (((z*y)*y))*(z*y)) € l. Combining

Oel weobtain zxyel.Hence | is KU-positive implicative ideal.



(b) = (c). Letx,y e | . Since | is KU-positive implicative. By Corollary 2.21

A, ={u e X :uxy e I}isthe least ideal containing I and y . Using maximality of I we
have that A, = X . Hencexe A, thatisx*ye I . Likewise for y*xel.

(c) = (a) At first we prove that | is KU-implicative. Suppose | does not KU
implicative, then there are x,y in X such that (x*y)*xe lbutxgl.Ifx*xyel,
combining (x*y)*Xxe |l wegetxel . Thiscontradictsto x| . If x*xye |, by (c)we
have yelasxgl .Byku,, wehavex*y <y, wegetx*yel.This contradicts to
x*ye|.Hence | is KU-implicative. Next we prove that | is maximal. Note that 1 is
also KU-positive implicative. Hence it is sufficient to prove that for any a ¢ | we have
A ={xe X :x*ael}=X.ByCorollary 2.21, A is the least ideal containing | and a.
Forall x in X, when xel then xe A and when x¢ 1, byae | and (c) we have that

x*ael i.e. xe A,. This means that A, = X . Therefore | is maximal ideal of X . [

Definition 2.25. Let X be a KU-lower semilattice and P a proper ideal of X . Then P is

said to be a prime ideal if aAbe P implies ae P or be P, forany a,b inX.

Theorem 2.26. In a KU-lower semilattice X , a proper ideal P of X is said to be a prime
if ANB< P implies AcP orBgc P, foranyideals A,B inX.

Proof. Suppose that ANB< P, Az Pand B¢ P for some two ideals A,B in X .
Thus there exist aand b such that ae A—Pand be B—-P.From aAb<a and

aAb<b itfollowsthat aAbe A,BandaAbe A(1B < P. This contradicts to primness

of P.Hence AcP orBcP.[

Theorem 2.27. If X is a KU-implicative algebra, then each prime ideal of X is maximal.

Proof. Suppose that P is prime ideal and a,b ¢ P. Since X is KU-implicative, then
aA(axb)=((axb)*xa)xa=a*a=0eP.Noticingag P, we havea*b e P. By the

same way we get b+*a e P. Hence P is maximal ideal by Theorem 2.24. [

Lemma 2.28. Let X be a KU-lower semilattice. If a < x"and a < x™ for natural numbers
n and m, then there exists a natural number psuch thata<(x A y)", for

anyx,y,ae X.



Proof. Since for m<n,a < x"impliesa < x", it suffices to verify that when
x"*a=y"*a=0, there exist a natural number p such that (x A y)” *a =0. We proceed
by induction onn. Whenn=1, we havex*a=y=*a=0, a<x and a<y. Hence
asxAy,ie,(xAy)xa=0.

Now suppose the assertion holds for natural numbern, that is, x"*a=y"*a =0 implies
that there exists a natural number psuch that(x A y)? *a =0.

If x""s«a=y"™ *a=0,then 0=x""*a=x*(y"*(x"*a)

By the same argument we have 0 =y *(y" * (X" *a@)  |n view of the first step of induction
we get

(xAY)s(y"* (x"%a) =0 (y"=(x"*((x Ay)*a) =0 x*(x""*(y"*((xAy)*a)=0.
Fromy"*+a=0. It easily follows that y = (x"* = (y" * (x A y) *a) =0 Hence
X"x(y"*((xAy)**a) =0 Repeating the above procedure n times we obtain
y"#((xAy)" ) =0, (1) . By an entirely similar way we have that

X" ((XAY)™ *8) = 0. (2) . By the induction hypothesis and (1), (2), we know that

there is a natural number p such that (XA ¥)? #((xA )™ *@) =0 (xAy)"***a=0 I

Corollary 2.29. Let X be a KU-lower semilattice and P an ideal in X . Then for any
x,ye X if xAyeP,then(PU{xp)N(PU{y})=P.

Definition 2.30. Let X be a KU-lower semilattice. A nonempty subset S of X is said to

be A -closed if xAyeS wheneverx,yeS.

Theorem 2.31. Let X be a KU-lower semilattice and S a nonempty A -closed subset
of X suchthat 0¢ S, I(X) denotes the set of all ideals of X then {l e I(X):1 NS =4¢}

have a maximal ideal P suchthatP(S =¢. Moreover P is a prime ideal.

Proof. The existence of an ideal P easily follows from Zorn's lemma. We will prove that

P is a prime ideal. Let us suppose it is not the case, i.e., there exist x, y € X such that
XAyeP, xgP andyegP.Then P is properly contained in both

(PU{x}) = Pand(P U{y}) = P,. Because of maximality of P, P,NS=gandP,NS=4¢.
Lets,e RNS,i=12. We known s, As,<s;,i=12implies s, As, e PP, =P (by



Corollary 2.29). On the other hand s, A's, € S . This is a contradiction. Hence P is a

prime ideal. [

Theorem 2.32. In a KU-lower semilattice X . Any maximal ideal must be prime.

Proof. by using Theorem 2.31 and Corollary 2.29, we obtain the result.

Definition 2.33. Let | be an ideal of a KU-algebra X . We will call an ideal J of X a
minimal prime ideal associated with the ideal 1 if J is a minimal element in the set of all

prime ideals containing | .

Lemma 2.34. Let | be a proper ideal of a KU-lower semilattice X .Then

(@) I is contained in a prime ideal,

(b) Any prime ideal containing | contains a minimal prime ideal associated with the
ideal I .

Proof. If | isa prime ideal, then the Lemma is true. Let us suppose that | is not a prime

ideal anda e X — | . Obviously, S={xe X :a < x}isa nonempty, A-closedand O¢S .
By Theorem 2.31, there exists a prime ideal P such that P(1S =¢. (a) holds.

To show (b) it is sufficient to show that the intersection of any chain of prime ideals is a
prime ideal. Let {P, :i € @}be a chain of prime ideals of X and P={P :i e w}.
Suppose that P is not a prime ideal, that is, there are x,y e X such that

XAyeP,xgP,ygP. Thus, thereare i, je w suchthatxe P,y ¢ Pj.WithoutIossof
generality we can assume that P, c P,, x¢ B,y¢ P, and xAyePc R . This

contradicts to P, being a prime.

3-Topology Spectrum of KU-commutative algebra X
In this section, we define the notion of a spectrum of KU-commutative algebra X and
study some of its properties.

Definition 3.1. Let X be KU-commutative algebra and Spec(X) the set of all prime
ideals of X . Then for any ideal Aof X , we define W(A)={P e Spec(X)|Az P} .

Proposition 3.2. Let X be KU-commutative semilattice algebra. Then

(i) Ac B implies that W(A) =W (B), for any ideals A,Bof X,

(i) W(A) =W(A)).

Proof. (i) Let LeW(A) = Az L.SinceAcB = LeW(B). Hence W(A)cW(B).



(i) Since Ac (A) from (i) we get that W(A) cW ((A)) . Let PeW(A)) = (A)z P
and since Ac (Aythen Az P,P eW(A) it follows that
W((A)) cW(A). Hence W(A)=W ((A)). [

Theorem 3.3. Let X be KU-commutative algebra. Then the family
T(X)={W(A)}rai(x,forms a topology on Spec(X) .

Proof. W(0) ={P e Spec(X):(0)z P}=¢ and

W (X)={P e Spec(X): X & P}=Spec(X). For any family {W (A )}

iel

W (A)={P e Spec(X): A & Pfor some A}={P e Spec(X):| JA = P}

iel iel

={P e Spec(X) :(( JA) 2 P}=W({(JA)) implies that [ JW (A) e T(X).

iel iel iel
Finally, W(A)NW (B) ={P e Spec(X): Az P} {P e Spec(X): Bz P}

={P e Spec(X): Az Pand B P}.
Since P is a prime ideal, therefore can be written as
W(A)NW(B)={P e Spec(X): ANB & P}=W(ANB), i.e., W(A)NW(B)eT(X).
Hence T(X)is a topology on Spec(X), this topology will be called the spectrum
topology.
Example 3.4. In Example 2.14. By using the algorithms in Appendix A, we can found
that {X,{0},{0,a},{0,b,c}} is the set of all ideals. Note that {{0,a} , {0,b,c}} is the set
of all prime ideals of X and Spec(X)={{0,a},{0,b,c}}. Therefore T(X)={¢,Spec(X)}

this is the indiscrete topology.
Definition 3.5. For any Ae I (X) we denote the complement of W(A) by V (A). Hence

V(A)={P e spec(X)| Ac P}, it follows that the set {V (A)}.i(x,is the family of the

closed sets of a topological space Spec(X) .

Remark 3.6. For any x e A we denote V ({x}) by V(x)and W ({x}) byW(x), i.e.
V (x) ={P e spec(X)|x e P} and W(x) ={P e spec(X)|x ¢ P}.

Now, we give some properties of the topological space Spec(X) .

Theorem 3.7. Let X be a KU-commutative semilattice. The family {W(x)},_, is a basis

xeA

for the topology of Spec(X) .

10



Proof. Let Ac X and W (A)an open subset of Spec(X), then

W (A) :W(U{x}) = UW(X). Hence, any open set of Spec(X) is union of subsets from

xeA xeA

the family {W (x)},.» [

Theorem 3.8. Let X be a KU-lower semilattice and A a proper ideal of X . Then Ais
equal to the intersection of all minimal prime ideals associated with it.
Proof. Denote J(A)=(¥P e I(X):Pisaprime ideal and associated with A}.

Itis clearly Ac J(A). We will show that J(A) < A. Let us suppose that it is not the case,
then there is ae J(A)anda ¢ A. As in the proof of Lemma 2.34, we can show that if
S ={x e X :a< x}, then there exists a prime ideal P such that Ac Pand P(1S=¢. The

existence of such a prime ideal P contradicts to the assumptions. Hence J(A)=A. []

Lemma 3.9. The mapping f : I1(X)—> T(X) givenby f(A)=W(A) is a lattice
isomorphism.

Proof. By Theorem 3.3 of W(A) , it follows that f define a lattice homomorphism. We
only show that f is one to one and onto. For any ideals A,B € 1(X) . Suppose that
f(A)= f(B) then W(A)=W(B) and Spec(X)—W (A)= Spec(X)-W(B).
Consequently, J(A)=J(B), hence A=B, it follows that f is one to one and onto.

Hence 1(X) and T(X) are isomorphic. [

Proposition 3.10. If X is a bounded KU-commutative algebra, then Spec(X)is a
compact space.

Proof. Let {W (A )}, be an open cover of Spec(X). Then

Spec(X)=[JW(A)=W((JA)). By injectiveness of W (Lemma3.9) implies that

(UA,): X . Since X is a bounded = Ee(UA) and hence (a, *(a, *(...*(a, *E)) =0.

We may assume that a, e Afork=1,2,...,n, then a, € UAk forallk =1,2,...,n. This
k=1

implies that E € (U A, ) and hence (U A, ) = X (because no proper ideal contains E ).
k=1 k=1

11



This shows that [ JW (A )=W({JA )=W(JA,)) =W (X)=Spec(X). Thus we
k=1 k=1 k=1
obtain a finite Sub cover and consequently, Spec(X) is compact. []

Proposition 3.11. Let X be KU-commutative algebra. Then Spec(X) is T, topological

space.

Proof. Let P and Q be any two distinct prime ideals in Spec(X) . Then either P z Qor
Qe P.If PzQ, there exists x e P suchthat x ¢ Qwhich implies that Q e W (x) and

P ¢W (x) . Therefore exists an open set W (x) containing Q but not P . Similarly, if Q z P.
There exists x e Q such that x ¢ P, which implies that Q W (x) and P e W (X) . Therefore

exists an open set W (x) containing P but notQ. Hence Spec(X) is a T,-space.

Proposition 3.12. If X is a KU-implicative algebra. Then Spec(X)is T, topological
space.

Proof. If Spec(X)=¢, then spec(X) is trivial space and it is a T, space.

If Spec(X) = ¢, then there exist a prime ideal P of Spec(X). It follows by Theorem 2.27
that P is a maximal ideal. Hence V (P) ={P} and {p}is closed set in Spec(X), i.e.

Spec(X)is a T, space. [

Proposition 3.13. If Ais an involutory ideal of X and P e Spec(X), then P gW (A") if
and only if PeW(A).

Proof. If PgW (A™), then A" < P . Since A is an involutory ideal of X , therefore by
Lemma 2.17 X =(AUA") and hence A P. This implies thatP e W (A).

Conversely, assume that P e W (A) then Az P. Since AN A*={0}c P and Pisaprime
ideal. Therefore by Theorem 2.26 Ac Por A" < P,but A P. It follows that

A" c P and consequently we have P ¢ W (A").[]

Proposition 3.14. Let X be an involutory KU-algebra with at least one involutory ideal

(proper). Then Spec(X) is a disconnected topological space.
Proof. Let Abe an involutory (proper) ideal of X . We claim that W (A)and W (A") form

disconnection of Spec(X). That W (A)and W (A") mutually exclusive, follows from

12



Proposition 3.13. We show that Spec(X)=W (A) UW (A"). Indeed Ais an involutory
ideal, then X =(AU A") . This implies that

W(X)=W{(AUA"))=W((AUA") =W ((A)UW (A").
This means that Spec(X)=W (A)UW (A")and consequently Spec(X) is a disconnected

space. [

Proposition 3.15. If X is an involutory KU-algebra, then Spec(X) is Hausdorff space.
Proof. Let Pand Q be any two distinct prime ideals in Spec(X) . Then there exists an
element x in X suchthat xe Pand x & Q. This implies that (x) c P and(x) z Q. In
other word P ¢ W ({x)) and Q e W({x)). By Proposition 3.13, we have P e W ({x)*).
Thus we obtain two open sets W ({x))and W ({(x)")such that P e W ({x)")and

Q eW((x)). It follows that W ({x)) W ({(x)") =W ({x) N{x)*) =W (0) = ¢ . Hence
Spec(X) is Hausdorff space. [

Corollary 3.16. If X is a bounded involutory KU-algebra, then Spec(X) is normal space.

Definition 3.17 [4]. Let (G,*,0) and (H,e,0) be KU-algebras. A homomorphism is a map
h:G — H satisfying h(x*y) = h(x)eh(y)for all x,y e G. An injective homomorphism

is called monomorphism and a surjective homomorphism is called epimorphism.

Proposition 3.18. Let (G,*,0)and (H,e,0) be KU-algebrasand h:G—>H a
homomorphism map of KU-algebras, then for any prime ideal P of H . The ideal
h™(P)={xe G : h(x) e P} is also a prime ideal of G .

Proof. Let x Ay eh™(P) forany x,yeG, then

(y *x) *x e h™(P) = h((y * X) * X) € P(by homomorphism) = h(y * x) e h(x) e P =
(h(y) e h(x))eh(x) e P = h(x) Ah(y) € P.

Since Pisprime = h(x)e P or h(y)e P

= xeh™(P) or yeh™(P) . Hence h™(P) is prime ideal of G . [J

Theorem 3.19. Let(G,*,0), (H,e,0) be KU-algebras and h:G — H a homomorphism map

of KU-algebras. If o : SpecH — SpecG, define by o (P) =h™'(P) for any P € SpecH , then

o is continuous map.

Proof. Let W(x) be a basic open set in Spec(G), forany xe G. Then
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o (W(x))={P e SpecH :(P) e W (x)}
={P e SpecH : h™(P) e W (x)}
={P e SpecH : x ¢ h™(P)}
={P e SpecH : h(x) ¢ P}, which is open in Spec(H).
Thus the inverse image of any open set in Spec(G) is openin Spec(H) and hence o isa
continuous map. [

4. Conclusion

This work is a study of the relationship between the KU-algebras and topological spaces.
We introduced the topology spectrum of a commutative KU-algebra and we obtained
some results that were different from the topology spectrum of commutative ring.
However, there are differences because KU-algebras are not rings. We proved that the
spectrum of KU-algebra is compact, disconnected and Hausdorff space. Also, we studied
the continuous map of this topological space. The main purpose of our future work is to
investigate the fuzzy topology of KU-algebras, which may have a lot of applications in

different branches of mathematics.
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Appendix A. Algorithms

Algorithm for KU-algebras

Input ( X :set, *:binary operation)
Output (“ X is a KU-algebra or not”)
Begin

If X =¢ thengoto (1.);

EndIf

If 0¢ X thengoto (1.);

EndIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do

If X, *x; #0 then

14



Stop: = true;
EndIf
j=1
While j <|X| and not (Stop) do
If ((y; *x)*x) =0 then
Stop: = true;
EndIf
EndIf
k=1
While k <|X| and not (Stop) do
IF (% *y;) * ((y; *2,) % (x *2,)) # O then
Stop: = true;
EndIf
EndIf While
EndIf While
EndIf While
If Stop then
(1.) Output (“ X is not a KU-algebra™)
Else
Output (“ X is a KU-algebra”)
EndIf
End
Algorithm for ideals
Input ( X : KU-algebra, I :subset of X );
Output (“1 is an ideal of X or not”);

Begin

If | =¢ thengoto (1.);

EndIf

If 0¢ | then go to (1.);

EndIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do
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j=1
While j <|X| and not (Stop) do
If (x *y;)eland x el then
If y; 1 then
Stop: = true;
EndIf
EndIf
EndIf While
EndIf While
EndIf While
If Stop then
Output (“1 is an ideal of X )
Else
(1.) Output (“ I is not an ideal of X )
EndIf
End

References.

[1] M.F. Atiyah and 1. Macdonald, Introduction to commutative algebra, Longman
Higher Eduction, New York 1969.

[2] M. Behboodi and M.J. Noori, Zariski-like topology on the classical prime spectrum
of a module, Bull. Iranian Math. Soc., 35(1) (2009), 253-269.

[3] E. Eslami and F.Kh. Haghani, Pure Filters and Stable Topology on BL-algebras,
Kybernetika, 45(3) (2009), 491-506.

[4] L. Leustean, The prime and maximal spectra and the reticulation of BL-algebras,
Cent. Eur. J. Math., 1(2003), 382-397.

[5] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math.
25(3) (1999), 417-425.

[6] R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a
commutative ring, Comm. Algebra, 25(1997), 79-103.

[7] R.L. McCasland, M.E. Moore and P.F. Smith, Zariski-finite modules, Rocky
Mountain J. Math., 30(2) (2000), 689-701.

16



[8] S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras,
Int. Math. Forum, 6(63) (2011) 3139-3149.

[9] S. M. Mostafa, A. E. Radwan, F. A. Ibrahem and F. F. Kareem, The graph of a
commutative KU-algebra, Algebra Letters, 1(2015) 1-18.

[10] J.R. Munkers, Topology a first course, Prentic Hall Inc 1975.

[11] C. Prabpayak and U.Leerawat, On ideals and congruence in KU-algebras, scientia
Magna, international book series 1(5) (2009), 54-57.

[12] T. Roudbari, N. Motahari, A topology on BCK-modules via prime sub-BCK-
modules, Journal of Hyper structures, 1 (2) (2012), 24-30.

[13] K. Venkateswarlu, B.V. Murthy, Spectrum of Boolean like semi ring, Int. J. Math.
Sci. Appl., 1(3) (2011).

17



