Multiple Positive solutions of Sturm-Liouville problems for second order singular and impulsive differential equations

Ying He*
School of Mathematical Science and Technology, Northeast Petroleum University, Daqing163318, P.R.China.

Abstract

In this paper, we study the existence of multiple positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equations. The proof is based on the theory of fixed point index in cones.

Key words. Multiple positive solutions; Singular two-point boundary value problem; Secondorder impulsive differential equations; Fixed point index in cones.

MR(2000) Subject Classifications: 34B15.

1. Introduction

Impulsive differential equations play a very important role in modern applied mathematics due to their deep physical background and broad application. In this paper, we consider the existence of multiple positive solutions of two-point boundary value problems for nonlinear second-order singular and impulsive differential equations:

$$
\left\{\begin{array}{l}
-L u=h(x) g(x, u), \quad x \in I^{\prime}, \tag{1.1}\\
-\left.\Delta\left(p u^{\prime}\right)\right|_{x=x_{k}}=I_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \cdots, m \\
\left.\Delta(p u)\right|_{x=x_{k}}=\bar{I}_{k}\left(u\left(x_{k}\right)\right), \quad k=1,2, \cdots, m \\
R_{1}(u)=\alpha u(0)-\beta u^{\prime}(0)=0 \\
R_{2}(u)=\gamma u(1)+\delta u^{\prime}(1)=0
\end{array}\right.
$$

here $L u=\left(p(x) u^{\prime}\right)^{\prime}+q(x) u$ is sturm-liouville operator, $I=[0,1], I^{\prime}=I \backslash\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ and $0<x_{1}<x_{2}<\cdots<x_{m}<1$ are given, $R^{+}=[0,+\infty), g \in C\left(I \times R^{+}, R^{+}\right), I_{k}, \bar{I}_{k} \in$ $C\left(R^{+}, R^{+}\right),\left.\Delta\left(p u^{\prime}\right)\right|_{x=x_{k}}=p\left(x_{k}\right) u^{\prime}\left(x_{k}^{+}\right)-p\left(x_{k}\right) u^{\prime}\left(x_{k}^{-}\right),\left.\Delta(p u)\right|_{x=x_{k}}=p\left(x_{k}\right) u\left(x_{k}^{+}\right)-p\left(x_{k}\right) u\left(x_{k}^{-}\right)$ $u^{\prime}\left(x_{k}^{+}\right), u\left(x_{k}^{+}\right)\left(u^{\prime}\left(x_{k}^{-}\right), u\left(x_{k}^{-}\right)\right)$denote the right limit (left limit) of $u^{\prime}(x)$ and $u(x)$ at $x=x_{k}$ respectively, $h(x) \in C\left(I, R^{+}\right)$and may be singular at $x=0$ or $x=1$.

Throughout this paper, we always suppose that
$\left(S_{1}\right) \quad p(x) \in C^{1}([0,1], R), p(x)>0, q(x) \in C([0,1], R), q(x) \leq 0, \alpha, \beta, \gamma, \delta \geq 0$, $\rho=\beta \gamma+\alpha \gamma+\alpha \delta>0$.

[^0]It is well known that there are abundant results about the existence of positive solutions of boundary value problems for second order impulsive differential equations. Some works can be found in $[1,3,6-9]$ and references therein. They,mainly investigated the case $p(x)=1$ and $q(x)=0$. In this paper , we will consider the case $p(x) \neq 1$, and $q(x) \neq 0$. Here we also mention that second order dynamic inclusions on time scales with impulses has been studied in [2] .We obtain the existence results of positive solutions, by means of the fixed point index theorem in cones under some conditions on $g(x, u)$ concerning the first eigenvalue corresponding to the relevant linear operator.

To conclude the introduction, we introduce the following notation:

$$
\begin{gathered}
g_{0}=\liminf _{u \rightarrow 0^{+}} \min _{x \in[a, b]} \frac{g(x, u)}{u}, I_{0}(k)=\liminf _{u \rightarrow 0^{+}} \frac{I_{k}(u)}{u}, \bar{I}_{0}(k)=\liminf _{u \rightarrow 0^{+}} \frac{\bar{I}_{k}(u)}{u} \\
g_{\infty}=\liminf _{u \rightarrow+\infty} \min _{x \in[a, b]} \frac{g(x, u)}{u}, I_{\infty}(k)=\liminf _{u \rightarrow+\infty} \frac{I_{k}(u)}{u}, \bar{I}_{\infty}(k)=\liminf _{u \rightarrow+\infty} \frac{\bar{I}_{k}(u)}{u}
\end{gathered}
$$

Moreover,for the simplicity in the following discussion, we introduce the following hypotheses.
$\left(H_{1}\right):$

$$
g_{0}+\frac{\sigma \sum_{k=1}^{m}\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)}{\int_{a}^{b} \phi_{1}(x) h(x) d x}>\lambda_{1}, \quad g_{\infty}+\frac{\sigma \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)}{\int_{a}^{b} \phi_{1}(x) h(x) d x}>\lambda_{1}
$$

here $\sigma=\min \left\{\frac{m(a)}{m(1)}, \frac{n(b)}{n(0)}\right\}$ (see section 2), and $\phi_{1}(x)$ is the eigenfunction related to the smallest eigenvalue λ_{1} of the eigenvalue problem $-L \phi=\lambda \phi h, R_{1}(\phi)=R_{2}(\phi)=0$.
$\left(H_{2}\right): \quad$ There is a $p>0$ such that $0 \leq u \leq p$ and $0 \leq x \leq 1$ implies

$$
g(x, u) \leq \eta p, I_{k}(u) \leq \eta_{k} p, \bar{I}_{k}(u) \leq \bar{\eta}_{k} p
$$

here $\eta, \eta_{k}, \bar{\eta}_{k} \geq 0, \eta+\sum_{k=1}^{m}\left(\eta_{k}+\bar{\eta}_{k}\right)>0, \eta \int_{0}^{1} G(y, y) h(y) d y+\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(\eta_{k}+\bar{\eta}_{k}\right)<1$ and $G(x, y)$ is the Green's function of boundary value problem $-L u=0, R_{1}(u)=R_{2}(u)=0$ (see section 2$)$.

$$
\left(H_{3}\right): \quad 0<\int_{1}^{0} G(y, y) h(y) d y<+\infty
$$

2. Preliminary

In this paper, we shall consider the following space
$P C(I, R)=\left\{u \in C(I, R) ;\left.u\right|_{\left(x_{k}, x_{k+1}\right)} \in C\left(x_{k}, x_{k+1}\right), u\left(x_{k}^{-}\right)=u\left(x_{k}\right), \exists u\left(x_{k}^{+}\right), k=1,2, \cdots, m\right\}$
$P C^{\prime}(I, R)=\left\{u \in C(I, R) ;\left.u^{\prime}\right|_{\left(x_{k}, x_{k+1}\right)} \in C\left(x_{k}, x_{k+1}\right), u^{\prime}\left(x_{k}^{-}\right)=u^{\prime}\left(x_{k}\right), \exists u^{\prime}\left(x_{k}^{+}\right), k=1,2, \cdots, m\right\}$
with the norm $\|u\|_{P C}=\sup _{x \in[0,1]}|u(x)|,\|u\|_{P C^{\prime}}=\max \left\{\|u\|_{P C},\left\|u^{\prime}\right\|_{P C}\right\}$, Then $P C(I, R), P C^{\prime}(I, R)$ are Banach spaces.

Definition 2.1: A function $u \in P C^{\prime}(I, R) \cap C^{2}\left(I^{\prime}, R\right)$ is a solution of (1.1), if it satisfies the differential equation

$$
L u+h(x) g(x, u)=0, \quad x \in I^{\prime}
$$

and the function u satisfies conditions $\left.\Delta\left(p u^{\prime}\right)\right|_{x=x_{k}}=-I_{k}\left(u\left(x_{k}\right)\right),\left.\Delta(p u)\right|_{x=x_{k}}=\bar{I}_{k}\left(u\left(x_{k}\right)\right)$ and $R_{1}(u)=R_{2}(u)=0$.

Let $Q=I \times I$ and $Q_{1}=\{(x, y) \in Q \mid 0 \leq x \leq y \leq 1\}, Q_{2}=\{(x, y) \in Q \mid 0 \leq y \leq x \leq 1\}$. Let $G(x, y)$ is the Green's function of the boundary value problem

$$
-L u=0, R_{1}(u)=R_{2}(u)=0 .
$$

Following from [4], $G(x, y)$ can be written by

$$
G(x, y):= \begin{cases}\frac{m(x) n(y)}{\omega}, & (x, y) \in Q_{1}, \tag{2.1}\\ \frac{\left.m(y)_{n}\right)(x)}{\omega}, & (x, y) \in Q_{2} .\end{cases}
$$

Lemma 2.1[4]: Suppose that $\left(S_{1}\right)$ holds, then the Green's function $G(x, y)$, defined by (2.1), possesses the following properties:
(i): $\quad m(x) \in C^{2}(I, R)$ is increasing and $m(x)>0, x \in(0,1]$.
(ii): $n(x) \in C^{2}(I, R)$ is decreasing and $n(x)>0, x \in[0,1)$.
(iii): $(L m)(x) \equiv 0, m(0)=\beta, m^{\prime}(0)=\alpha$.
(iv): $(L n)(x) \equiv 0, n(1)=\delta, n^{\prime}(1)=-\gamma$.
(v): ω is a positive constant. Moreover, $p(x)\left(m^{\prime}(x) n(x)-m(x) n^{\prime}(x)\right) \equiv \omega$.
(vi): $G(x, y)$ is continuous and symmetrical over Q.
(vii): $G(x, y)$ has continuously partial derivative over Q_{1}, Q_{2}.
(viii): For each fixed $y \in I, G(x, y)$ satisfies $L G(x, y)=0$ for $x \neq y, x \in I$. Moreover, $R_{1}(G)=R_{2}(G)=0$ for $y \in(0,1)$.
(viiii): G_{x}^{\prime} has discontinuous point of the first kind at $x=y$ and

$$
G_{x}^{\prime}(y+0, y)-G_{x}^{\prime}(y-0, y)=-\frac{1}{p(y)}, y \in(0,1) .
$$

Following from Lemma2.1, it is easy to see that:
$G(x, y) \leq G(y, y)=\frac{m(y) n(y)}{\omega}, x, y \in[0,1]$
$G(x, y) \geq \sigma G(y, y), x \in[a, b], y \in[0,1]$, where $a \in\left(0, t_{1}\right], b \in\left[t_{m}, 1\right), 0<\sigma=\min \left\{\frac{m(a)}{m(1)}, \frac{n(b)}{n(0)}\right\}<1$
Consider the linear Sturm-Liouvile problem

$$
-(L u)(x)=\lambda u(x) h(x), \quad R_{1}(u)=R_{2}(u)=0 .
$$

By the Sturm-Liouvile theory of ordinary differential equations, we know that there exists an eigenfunction $\phi_{1}(x)$ with respect to the first eigenvalue $\lambda_{1}>0$ such that $\phi_{1}(x)>0$ for $x \in(0,1)$.

Let E be a Banach space and $K \subset E$ be a closed convex cone in E. For $r>0$, let $K_{r}=\{u \in K:\|u\|<r\}$ and $\partial K_{r}=\{u \in K:\|u\|=r\}$. The following two Lemmas are needed in our argument.

Lemma 2.2: Let $\Phi: K \rightarrow K$ be a continuous and completely continuous mapping and $\Phi u \neq u$ for $u \in \partial K_{r}$. Thus the following conclusions hold:
(i) If $\|u\| \leq\|\Phi u\|$ for $u \in \partial K_{r}$, then $i\left(\Phi, K_{r}, K\right)=0$;
(ii) If $\|u\| \geq\|\Phi u\|$ for $u \in \partial K_{r}$, then $i\left(\Phi, K_{r}, K\right)=1$.

Lemma 2.3: Let $\Phi: K \rightarrow K$ be a continuous and completely continuous mapping. Suppose that the following two conditions are satisfied:
(i) $\inf _{u \in \partial K_{r}}\|\Phi u\|>0 ;$
(ii) $\mu \Phi u \neq u$ for every $u \in \partial K_{r}$ and $\mu \geq 1$.

Then, $i\left(\Phi, K_{r}, K\right)=0$.
In applications below, we take $E=C(I, R)$ and define

$$
K=\{u \in C(I, R): u(x) \geq \sigma\|u\|, x \in[a, b]\}
$$

One may readily verify that K is a cone in E.
Define an operator $\Phi: K \rightarrow K$ by

$$
(\Phi u)(x)=\int_{0}^{1} G(x, y) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<x} G\left(x, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right), x \in I
$$

It follows form $\left(H_{3}\right)$ that ϕ is well defined.
Lemma 2.4: If $\left(H_{3}\right)$ is satisfied, then $\Phi: K \rightarrow K$ is continuous and completely continuous, Moreover, $\Phi(K) \subset K$.
Proof By the property of continuous of $g(x, u), I_{k}(x), \bar{I}_{k}(x)$, it is easy to see that $\Phi: K \rightarrow K$ is continuous and completely continuous. Thus we only need to show $\Phi(K) \subset K$. In fact, for $u \in K$, by using inequalities (2.2) and $\left(H_{3}\right)$, we have that

$$
\|\Phi u\| \leq \int_{0}^{1} G(y, y) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<x} G\left(x_{k}, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right)<+\infty
$$

On the other hand ,for any $x \in[a, b]$, by (2.2) we obtain

$$
\begin{aligned}
(\Phi u)(x) & =\int_{0}^{1} G(x, y) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<x} G\left(x, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right) \\
& \geq \int_{b}^{a} G(x, y) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<x} G\left(x, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right) \\
& \geq \sigma\left(\int_{1}^{0} G(y, y) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<x} G\left(x_{k}, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right)\right) \\
& \geq \sigma\|\Phi u\|
\end{aligned}
$$

Thus, $\Phi(K) \subset K$.
Lemma 2.5:If u is a fixed point of the operator Φ, then u is a solution of problem (1.1).

3. Main Results

Lemma 3.1:If $\left(H_{2}\right)$ is satisfied, then $i\left(\Phi, K_{p}, K\right)=1$.
Proof Let $u \in K$ with $\|u\|=p$. It follows from $\left(H_{2}\right)$ that

$$
\begin{aligned}
\|\Phi u\| & \leq \int_{0}^{1} G(y, y) h(y) g(y, u(y)) d y+\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right) \\
& \leq p\left[\eta \int_{0}^{1} G(y, y) h(y) d y+\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(\eta_{k}+\bar{\eta}_{k}\right)\right]<p=\|u\|
\end{aligned}
$$

Thus

$$
\|\Phi u\|<\|u\|, \quad \forall u \in \partial K_{p}
$$

It is obvious that $\Phi u \neq u$ for $u \in \partial K_{p}$. Therefore, $i\left(\Phi, K_{p}, K\right)=1$, here we use Lemma2.2.
Theorem 3.1:Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied. Then problem (1.1) has at least two positive solutions u_{1} and u_{2} with

$$
0<\left\|u_{1}\right\|<p<\left\|u_{2}\right\|
$$

Proof According to Lemma 3.1, we have that

$$
\begin{equation*}
i\left(\Phi, K_{p}, K\right)=1 \tag{3.1}
\end{equation*}
$$

Since $\left(H_{1}\right)$ holds, then there exists $0<\varepsilon<1$ such that

$$
\begin{gather*}
(1-\varepsilon)\left[g_{0}+\frac{\sigma \sum_{k=1}^{m}\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)}{\int_{a}^{b} \phi_{1}(x) h(x) d x}\right]>\lambda_{1} \\
(1-\varepsilon)\left[g_{\infty}+\frac{\sigma \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)}{\int_{a}^{b} \phi_{1}(x) h(x) d x}\right]>\lambda_{1} . \tag{3.2}
\end{gather*}
$$

By the definitions of g_{0}, I_{0}, one can find $0<r_{0}<p$ such that

$$
g(x, u) \geq g_{0}(1-\varepsilon) u, I_{k}(u) \geq I_{0}(k)(1-\varepsilon) u, \bar{I}_{k}(u) \geq \bar{I}_{0}(k)(1-\varepsilon) u \forall x \in[a, b], 0<u<r_{0}
$$

Let $r \in\left(0, r_{0}\right)$, then for $u \in \partial K_{r}$, we have

$$
u(x) \geq \sigma\|u\|=\sigma r>0 . \quad x \in[a, b]
$$

Thus

$$
\begin{aligned}
(\Phi u)\left(\frac{1}{2}\right) & =\int_{0}^{1} G\left(\frac{1}{2}, y\right) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<\frac{1}{2}} G\left(\frac{1}{2}, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right) \\
& \geq \int_{a}^{b} G\left(\frac{1}{2}, y\right) h(y) g(y, u(y)) d y+\sum_{0<x_{k}<\frac{1}{2}} G\left(\frac{1}{2}, x_{k}\right)\left(I_{k}\left(u\left(x_{k}\right)\right)+\bar{I}_{k}\left(u\left(x_{k}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \quad g_{0}(1-\varepsilon) \int_{a}^{b} G\left(\frac{1}{2}, y\right) h(y) u(y) d y+(1-\varepsilon) \sum_{0<x_{k}<\frac{1}{2}} G\left(\frac{1}{2}, x_{k}\right) I_{0}(k) u\left(x_{k}\right) \\
& +\quad(1-\varepsilon) \sum_{0<x_{k}<\frac{1}{2}} G\left(\frac{1}{2}, x_{k}\right) \bar{I}_{0}(k) u\left(x_{k}\right) \\
& \geq \quad(1-\varepsilon) \sigma r\left(g_{0} \int_{a}^{b} G\left(\frac{1}{2}, y\right) h(x) d y+\sum_{0<x_{k}<\frac{1}{2}} G\left(\frac{1}{2}, x_{k}\right)\left(I_{0}(k)+\bar{I}_{0}(k)\right)\right)>0
\end{aligned}
$$

from which we see that $\inf _{u \in \partial K_{r}}\|\Phi u\|>0$, namely, hypothesis (i) of Lemma 2.3 holds. Next we show that $\mu \Phi u \neq u$ for any $u \in \partial K_{r}$ and $\mu \geq 1$.

If this is not true, then there exist $u_{0} \in \partial K_{r}$ and $\mu_{0} \geq 1$ such that $\mu_{0} \Phi u_{0}=u_{0}$. Note that $u_{0}(x)$ satisfies

$$
\left\{\begin{array}{l}
L u_{0}+\mu_{0} h(x) g\left(x, u_{0}(x)\right)=0, \quad x \in I^{\prime}, \tag{3.3}\\
-\left.\Delta\left(p u_{0}^{\prime}\right)\right|_{x=x_{k}}=\mu_{0} I_{k}\left(u_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, m, \\
\left.\Delta\left(p u_{0}\right)\right|_{x=x_{k}}=\mu_{0} \bar{I}_{k}\left(u_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, m, \\
\alpha u_{0}(0)-\beta u_{0}^{\prime}(0)=0, \\
\gamma u_{0}(1)+\delta u_{0}^{\prime}(1)=0 .
\end{array}\right.
$$

Multiply equation (3.3) by $\phi_{1}(x)$ and integrate from a to b , note that

$$
\begin{aligned}
& \int_{a}^{b} \phi_{1}(x)\left[\left(p(x) u_{0}^{\prime}(x)\right)^{\prime}+q(x) u_{0}(x)\right] d x=\int_{a}^{x_{1}} \phi_{1}(x)\left[\left(p(x) u_{0}^{\prime}(x)\right)^{\prime}+q(x) u_{0}(x)\right] d x \\
+ & \sum_{k=1}^{m-1} \int_{x_{k}}^{x_{k+1}} \phi_{1}(x)\left[\left(p(x) u_{0}^{\prime}(x)\right)^{\prime}+q(x) u_{0}(x)\right] d x+\int_{x_{m}}^{b} \phi_{1}(x)\left[\left(p(x) u_{0}^{\prime}(x)\right)^{\prime}+q(x) u_{0}(x)\right] d x \\
= & \phi_{1}\left(x_{1}\right) p\left(x_{1}\right) u_{0}^{\prime}\left(x_{1}-0\right)-\int_{a}^{x_{1}} p(x) u_{0}^{\prime}(x) \phi_{1}^{\prime}(x) d x+\int_{a}^{x_{1}} q(x) u_{0}(x) \phi_{1}(x) d x \\
+ & \sum_{k=1}^{m-1}\left[\phi_{1}\left(x_{k+1}\right) p\left(x_{k+1}\right) u_{0}^{\prime}\left(x_{k+1}-0\right)-\phi_{1}\left(x_{k}\right) p\left(x_{k}\right) u_{0}^{\prime}\left(x_{k}+0\right)-\int_{x_{k}}^{x_{k+1}} p(x) u_{0}^{\prime}(x) \phi_{1}^{\prime}(x) d x\right. \\
+ & \left.\int_{x_{k}}^{x_{k+1}} q(x) u_{0}(x) \phi_{1}(x) d x\right]-\phi_{1}\left(x_{m}\right) p\left(x_{m}\right) u_{0}^{\prime}\left(x_{m}+0\right)-\int_{x_{m}}^{b} p(x) u_{0}^{\prime}(x) \phi_{1}^{\prime}(x) d x \\
+ & \int_{x_{m}}^{b} q(x) u_{0}(x) \phi_{1}(x) d x \\
= & -\sum_{k=1}^{m} \Delta\left(p\left(x_{k}\right) u_{0}^{\prime}\left(x_{k}\right)\right) \phi_{1}\left(x_{k}\right)-\int_{a}^{b} p(x) \phi_{1}^{\prime}(x) u_{0}^{\prime}(x) d x+\int_{a}^{b} q(x) \phi_{1}(x) u_{0}(x) d x
\end{aligned}
$$

Also note that

$$
\begin{aligned}
& \int_{a}^{b} p(x) \phi_{1}^{\prime}(x) u_{0}^{\prime}(x) d x=\int_{a}^{x_{1}} p(x) \phi_{1}^{\prime}(x) d u_{0}(x)+\sum_{k=1}^{m-1} \int_{x_{k}}^{x_{k+1}} p(x) \phi_{1}^{\prime}(x) d u_{0}(x) \\
+ & \int_{x_{m}}^{b} p(x) \phi_{1}^{\prime}(x) d u_{0}(x)
\end{aligned}
$$

$$
\begin{aligned}
= & -\sum_{k=1}^{m} \Delta\left(p\left(x_{k}\right) u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)-\int_{a}^{b} u_{0}(x)\left(p(x) \phi_{1}^{\prime}(x)\right)^{\prime} d x \\
=\quad & -\sum_{k=1}^{m} \Delta\left(p\left(\left(x_{k}\right) u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)+\int_{a}^{b} u_{0}(x) q(x) \phi_{1}(x) d x+\lambda_{1} \int_{a}^{b} h(x) \phi_{1}(x) u_{0}(x) d x\right. \\
& \int_{a}^{b} \phi_{1}(x)\left[\left(p(x) u_{0}^{\prime}(x)\right)^{\prime}+q(x) u_{0}(x)\right] d x=-\sum_{k=1}^{m} \Delta\left(p\left(x_{k}\right) u_{0}^{\prime}\left(x_{k}\right)\right) \phi_{1}\left(x_{k}\right) \\
& +\sum_{k=1}^{m} \Delta\left(p\left(x_{k}\right) u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)-\lambda_{1} \int_{a}^{b} h(x) \phi_{1}(x) u_{0}(x) d x \\
= & \sum_{k=1}^{m} \mu_{0}\left(I_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}\left(x_{k}\right)+\bar{I}_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)\right)-\lambda_{1} \int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x
\end{aligned}
$$

So we obtain

$$
\begin{aligned}
\lambda_{1} \int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x & =\sum_{k=1}^{m} \mu_{0}\left(I_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}\left(x_{k}\right)+\bar{I}_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)\right) \\
& +\mu_{0} \int_{a}^{b} \phi_{1}(x) h(x) g\left(x, u_{0}(x)\right) d x \\
& \geq(1-\varepsilon) \sum_{k=1}^{m} u_{0}\left(x_{k}\right)\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right) \\
& +(1-\varepsilon) g_{0} \int_{a}^{b} \phi_{1}(x) u_{0}(x) h(x) d x
\end{aligned}
$$

Since $u_{0}(x) \geq \sigma\left\|u_{0}\right\|=\sigma r$, we have $\int_{a}^{b} \phi_{1}(x) u_{0}(x) h(x) d x>0$ and $\sum_{k=1}^{m} u_{0}\left(x_{k}\right)\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\right.$ $\left.\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)>0$. So from the above inequality we see that $\lambda_{1}>(1-\varepsilon) g_{0}$. Thus

$$
\begin{aligned}
{\left[\lambda_{1}-(1-\varepsilon) g_{0}\right] \int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x } & \geq(1-\varepsilon) \sum_{k=1}^{m}\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right) u_{0}\left(x_{k}\right) \\
& \geq(1-\varepsilon) \sigma r \sum_{k=1}^{m}\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)
\end{aligned}
$$

Since $\int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x \leq r \int_{a}^{b} \phi_{1}(x) h(x) d x$, we have

$$
\left[\lambda_{1}-(1-\varepsilon) g_{0}\right] \int_{a}^{b} h(x) \phi_{1}(x) d x \geq(1-\varepsilon) \sigma \sum_{k=1}^{m}\left(I_{0}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)
$$

which contradicts (3.2) again. Hence Φ satisfies the hypotheses of Lemma 2.3 in K_{r}. Thus

$$
\begin{equation*}
i\left(\Phi, K_{r}, K\right)=0 \tag{3.4}
\end{equation*}
$$

On the other hand, from $\left(H_{1}\right)$, there exists $H>p$ such that

$$
\begin{equation*}
g(x, u) \geq g_{\infty}(1-\varepsilon) u, I_{k}(u) \geq I_{\infty}(k)(1-\varepsilon) u, \bar{I}_{k}(u) \geq \bar{I}_{\infty}(k)(1-\varepsilon) u, \quad \forall x \in[a, b], u \geq H \tag{3.5}
\end{equation*}
$$

Let
$C=\max _{0 \leq u \leq H} \max _{a \leq x \leq b}\left|g(x, u)-g_{\infty}(1-\varepsilon) u\right|+\sum_{k=1}^{m} \max _{0 \leq u \leq H}\left|I_{k}(u)-I_{\infty}(k)(1-\varepsilon) u\right|+\sum_{k=1}^{m} \max _{0 \leq u \leq H} \mid \bar{I}_{k}(u)-$ $\bar{I}_{\infty}(k)(1-\varepsilon) u \mid$. It is clear that
$g(x, u) \geq g_{\infty}(1-\varepsilon) u-C, I_{k}(u) \geq I_{\infty}(k)(1-\varepsilon) u-C, \bar{I}_{k}(u) \geq \bar{I}_{\infty}(k)(1-\varepsilon) u-C, \forall x \in[a, b], u \geq 0$.
Choose $R>R_{0}:=\max \left\{\frac{H}{\sigma}, p\right\}$ and let $u \in \partial K_{R}$. Since $u(x) \geq \sigma\|u\|=\sigma R>H$ for $x \in[a, b]$, from (3.5) we see that

$$
\begin{gathered}
g(x, u(x)) \geq g_{\infty}(1-\varepsilon) u(x) \geq \sigma g_{\infty}(1-\varepsilon) R, \forall x \in[a, b] . \\
I_{k}\left(u\left(x_{k}\right) \geq \sigma I_{\infty}(k)(1-\varepsilon) R, \quad \bar{I}_{k}\left(u\left(x_{k}\right) \geq \sigma \bar{I}_{\infty}(k)(1-\varepsilon) R .\right.\right.
\end{gathered}
$$

Essentially the same reasoning as above yields $\inf _{u \in \partial K_{R}}\|\Phi u\|>0$. Next we show that if R is large enough, then $\mu \Phi u \neq u$ for any $u \in \partial K_{R}$ and $\mu \geq 1$. In fact, if there exist $u_{0} \in \partial K_{R}$ and $\mu_{0} \geq 1$ such that $\mu_{0} \Phi u_{0}=u_{0}$, then $u_{0}(x)$ satisfies equation (3.3).

Multiply equation (3.3) by $\phi_{1}(x)$ and integrate from a to b , using integration by parts in the left side to obtain

$$
\begin{aligned}
& \lambda_{1} \int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x=\sum_{k=1}^{m} \mu_{0}\left(I_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}\left(x_{k}\right)+\bar{I}_{k}\left(u_{0}\left(x_{k}\right)\right) \phi_{1}^{\prime}\left(x_{k}\right)\right) \\
+ & \mu_{0} \int_{a}^{b} \phi_{1}(x) h(x) g\left(x, u_{0}(x)\right) d x \\
\geq & (1-\varepsilon) \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right) u_{0}\left(x_{k}\right)+(1-\varepsilon) g_{\infty} \int_{a}^{b} u_{0}(x) \phi_{1}(x) h(x) d x \\
- & C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right) .
\end{aligned}
$$

If $g_{\infty} \leq \lambda_{1}$, then we have

$$
\begin{aligned}
& {\left[\lambda_{1}-(1-\varepsilon) g_{\infty}\right] \int_{a}^{b} u_{0}(x) h(x) \phi_{1}(x) d x+C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right) } \\
\geq & (1-\varepsilon) \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right) u_{0}\left(x_{k}\right) .
\end{aligned}
$$

thus

$$
\begin{aligned}
& \left\|u_{0}\right\|\left[\lambda_{1}-(1-\varepsilon) g_{\infty}\right] \int_{a}^{b} h(x) \phi_{1}(x) d x+C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right) \\
\geq & (1-\varepsilon) \sigma\left\|u_{0}\right\| \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right) .
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|u_{0}\right\| \leq \frac{C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right)}{(1-\varepsilon) \sigma \sum_{k=1}^{m}\left(I_{\infty}(k) \phi_{1}\left(x_{k}\right)+\bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)\right)-\left[\lambda_{1}-(1-\varepsilon) g_{\infty}\right] \int_{a}^{b} \phi_{1}(x) h(x) d x}=: \bar{R} . \tag{a}
\end{equation*}
$$

If $g_{\infty}>\lambda_{1}$, we can choose $\varepsilon>0$ such that $(1-\varepsilon) g_{\infty}>\lambda_{1}$, then we have

$$
\begin{aligned}
C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right) & \geq\left[(1-\varepsilon) g_{\infty}-\lambda_{1}\right] \int_{a}^{b} \phi_{1}(x) u_{0}(x) h(x) d x \\
& \geq\left[(1-\varepsilon) g_{\infty}-\lambda_{1}\right] \sigma\left\|u_{0}\right\| \int_{a}^{b} \phi_{1}(x) h(x) d x
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|u_{0}\right\| \leq \frac{C\left(\sum_{k=1}^{m}\left(\phi_{1}\left(x_{k}\right)+\phi_{1}^{\prime}\left(x_{k}\right)\right)+\int_{a}^{b} \phi_{1}(x) h(x) d x\right)}{\left[(1-\varepsilon) g_{\infty}-\lambda_{1}\right] \sigma \int_{a}^{b} \phi_{1}(x) h(x) d x}=: \bar{R} . \tag{b}
\end{equation*}
$$

Let $R>\max \{p, \bar{R}\}$, then for any $u \in \partial K_{R}$ and $\mu \geq 1$, we have $\mu \Phi u \neq u$. Hence hypothesis (ii) of Lemma 2.3 is satisfied and

$$
\begin{equation*}
i\left(\Phi, K_{R}, K\right)=0 \tag{3.8}
\end{equation*}
$$

In view of (3.1), (3.4) and (3.8), we obtain

$$
i\left(\Phi, K_{R} \backslash \bar{K}_{p}, K\right)=-1, i\left(\Phi, K_{p} \backslash \bar{K}_{r}, K\right)=1
$$

Then Φ has fixed points u_{1} and u_{2} in $K_{p} \backslash \bar{K}_{r}$ and $K_{R} \backslash \bar{K}_{p}$, respectively, which means $u_{1}(x)$ and $u_{2}(x)$ are positive solution of the problem (1.1) and $0<\left\|u_{1}\right\|<p<\left\|u_{2}\right\|$.

Corollary 3.1:The conclusion of Theorem 3.1 is valid if $\left(H_{1}\right)$ is replaced by
$\left(H_{1}^{*}\right)$

$$
g_{0}=\infty \quad \text { or } \quad \sum_{k=1}^{m} I_{0}(k) \phi_{1}\left(x_{k}\right)=\infty \quad \text { or } \quad \sum_{k=1}^{m} \bar{I}_{0}(k) \phi_{1}^{\prime}\left(x_{k}\right)=\infty ;
$$

and

$$
g_{\infty}=\infty \quad \text { or } \quad \sum_{k=1}^{m} I_{\infty}(k) \phi_{1}\left(x_{k}\right)=\infty \quad \text { or } \quad \sum_{k=1}^{m} \bar{I}_{\infty}(k) \phi_{1}^{\prime}\left(x_{k}\right)=\infty .
$$

Example:

$$
\left\{\begin{array}{l}
L u+\frac{1}{2}\left(u^{\frac{1}{3}}+u^{3}\right)=0, \quad x \in I^{\prime}, \tag{3.9}\\
-\left.\Delta\left(p u u^{\prime}\right)\right|_{x=x_{k}}=c_{k} u\left(x_{k}\right), \quad c_{k} \geq 0, \\
\left.\Delta(p u)\right|_{x=x_{k}}=d_{k} u\left(x_{k}\right), d_{k} \geq 0 \\
R_{1}(u)=\alpha u(0)-\beta u^{\prime}(0)=0 \\
R_{2}(u)=\gamma u(1)+\delta u^{\prime}(1)=0
\end{array}\right.
$$

here $L u=\left(p(x) u^{\prime}\right)^{\prime}+q(x) u$. Assume that $\left(S_{1}\right)$ is satisfied. Then problem (3.9) has at least two positive solutions u_{1} and u_{2} with

$$
0<\left\|u_{1}\right\|<1<\left\|u_{2}\right\|
$$

provided

$$
\begin{equation*}
1<\frac{1}{d}\left(1-\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(c_{k}+d_{k}\right)\right), \quad d=\int_{0}^{1} G(y, y) d y \tag{3.10}
\end{equation*}
$$

Proof To see this we will apply Theorem 3.1 (or Corollary 3.1)
By (3.10), $\eta>0$ is chosen such that

$$
1<\eta<\frac{1}{d}\left(1-\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(c_{k}+d_{k}\right)\right)
$$

Set

$$
g(x, u)=\frac{1}{2}\left(u^{\frac{1}{3}}+u^{3}\right)
$$

Note

$$
g_{0}=\infty, \quad g_{\infty}=\infty
$$

so $\left(H_{1}\right)\left(\right.$ or $\left.\left(H_{1}^{*}\right)\right)$ holds.
Let $\eta_{k}=c_{k}, \bar{\eta}_{k}=d_{k}$, then $\eta, \eta_{k}, \bar{\eta}_{k}$ satisfy

$$
\eta \int_{0}^{1} G(y, y) d y+\sum_{k=1}^{m} G\left(x_{k}, x_{k}\right)\left(\eta_{k}+\bar{\eta}_{k}\right)<1
$$

Let $p=1$, then for $0 \leq u \leq p$, we have

$$
g(x, u)=\frac{1}{2}\left(u^{\frac{1}{3}}+u^{3}\right) \leq \frac{1}{2}+\frac{1}{2}<\eta p=\eta
$$

and

$$
I_{k}(u)=c_{k} u=\eta_{k} u \leq \eta_{k} p, \quad \bar{I}_{k}(u)=d_{k} u=\bar{\eta}_{k} u \leq \bar{\eta}_{k} p
$$

thus $\left(H_{2}\right)$ holds. The result now follows from Theorem 3.1(or Corollary3.1)

References

[1] R. P. Agarwal, D. O'Regan, Multiple nonnegative solutions for second order impulsive differential equations, Appl. Math. Comput. 114 (2000), 51-59.
[2] W. Ding, M. Han, Periodic boundary value problem for the second order impulsive functional differential equations, Appl. Math. Comput. 155 (2004), 709-726.
[3] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, MA, 1988.
[4] D. Guo, J. Sun, Z. Liu, Functional Methods in Nonlinear Ordinary Differential Equations, Shandong Science and Technology Press, Jinan, 1995 (in Chinese).
[5] S. G. Hristova, D. D. Bainov, Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations, J. Math. Anal. Appl. 197 (1996), 1-13.
[6] V. Lakshmikntham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, (1989).
[7] E. Lee, Y. Lee, Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation, Appl. Math. Comput. 158 (2004), 745-759.
[8] X. Lin, D. Jiang, Multiple positive solutions of Dirchlet boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl. In press.
[9] X. Liu, D. Guo, Periodic Boundary value problems for a class of second-Order impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 284-302.
[10] I. Rachunkova, J. Tomecek, Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions, J. Math. Anal. Appl. 292 (2004), 525-539.

[^0]: *Corresponding author. E-mail adress:heying65338406@ 163.com;

