Signed Domination Number of Directed Paths P_m×P_n

Ramy Shaheen

Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria. E-mail: shaheenramy2010@hotmail.com

Abstract: Let *D* be a finite simple directed graph with vertex set V(D) and arc set A(D). A function $f:V(D) \rightarrow \{-1, 1\}$ is called a signed dominating function (SDF) if $f(N_D^-[v]) \ge 1$ for each vertex $v \in V$. The weight W(f) of *f* is defined by $\sum_{v \in V} f(v)$. The signed domination number of a digraph D is $\gamma_s(D) = \min \{W(f) \mid f \text{ is an } SDF \text{ of } D\}$. Let $P_m \times P_n$ denote the cartesian product of directed paths of length m and n. In this paper, we determine the exact values of $\gamma_s(P_m \times P_n)$ for

Keywords: Directed graph, Directed path, Cartesian product, Signed dominating function, Signed domination number.

m = 8, 9, 10 and arbitrary n. Also, we give a lower bound of $\gamma_s(P_m \times P_n)$.

1. Introduction

Throughout this paper, a digraph D(V, A) always means a finite directed graph without loops and multiple arcs, where V = V(D) is the vertex set and A = A(D) is the arc set. If uv is an arc of D, then say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex $v \in V(D)$, let $N_D^+(v)$ and $N_D^-(v)$ denote the set of out-neighbors and in-neighbors of v, respectively. We write $d_D^+(v) = |N_D^+(v)|$ and $d_D^-(v) = |N_D^-(v)|$ for the out-degree and indegree of v in D, respectively (shortly $d^+(v)$, $d^-(v)$). A digraph D is r-regular if $d_{D}^{+}(v) = d_{D}^{-}(v) = r$ for any vertex $v \in D$. Let $N_{D}^{+}[v] = N_{D}^{+}(v) \cup \{v\}$ and $N_{D}^{-}[v] = N_{D}^{-}(v) \cup \{v\}$, be the set of v and all vertices of out-degrees and in-degrees, respectively. The maximum outdegree and in-degree of D are denoted by $\Delta^+(D)$ and $\Delta^-(D)$, respectively (shortly Δ^+, Δ^-). The minimum out-degree and in-degree of D are denoted by $\delta^+(D)$ and $\delta^-(D)$, respectively (shortly δ^+, δ^-). A signed dominating function of D is defined in [6] as function $f: V \to \{-1, 1\}$ such that $f(N_D^{-}[v]) \geq 1$ for every vertex $v \in V$. The signed domination number of a directed graph D is $\gamma_s(D) = min \{W(f) \mid f \text{ is an } SDF \text{ of } D\}$. Also, a signed k-dominating function (SKDF) of D is a function $f: V \to \{-1, 1\}$ such that $f(N_{D}[v]) \ge k$ for every vertex $v \in V$. The k-signed domination number of a digraph D is $\gamma_{ks}(D) = min \{W(f) \mid f \text{ is } SKDF \text{ of } D\}$. Consult [1] for the notation and terminology which are not defined here.

The cartesian product $D_1 \times D_2$ of two digraphs D_1 and D_2 is the digraph with vertex set $V(D_1 \times D_2) = V(D_1) \times V(D_2)$ and $((u_1, u_2), (v_1, v_2)) \in A(D_1 \times D_2)$ if and only if either $u_1 = v_1$ and $(u_2, v_2) \in A(D_2)$ or $u_2 = v_2$ and $(u_1, v_1) \in A(D_1)$.

In the past few years, several types of domination problems in graphs have been studied [2-5, 9-10], most of those belonging to the vertex domination. In 1995, Dunbar et al. [2], have introduced the concept of signed domination number of an undirected graph. Hass and Wexler in [10], established a sharp lower bound on the signed domination number of a general graph with a given minimum and maximum degree and also of some simple grid graph. Zelinka [6] initiated the study of the signed domination numbers of digraphs. He studied a signed domination number of the digraphs which the indegrees of vertices do not exceed 1, also the acyclic tournament and the circulant tournament. Karami et al. [7] were established lower and

upper bounds of the signed domination number of digraphs. Atapour et al. [8], presented some sharp lower bounds on the signed k-domination number of digraphs. Also, H. Aram et al. [11], were established upper bound of the signed k-domination number of digraphs. Shaheen and Salim [12], were calculated the signed domination numbers of cartesian product $C_m \times C_n$ for m =3, 4, 5, 6, 7. In [13], Shaheen calculated $\gamma_s(C_m \times C_n)$ for m = 8, 9, 10 and for some general values of m, and n. Also, Shaheen [14], calculated the signed domination numbers of cartesian product $P_m \times P_n$ for m = 2, 3, 4, 5, 6, 7 and arbitrary n. In this paper, we study the signed domination number of cartesian product $P_m \times P_n$ for m, n 8. We mainly determine the exact values of $\gamma_s(P_8 \times P_n)$, $\gamma_s(P_9 \times P_n)$ and $\gamma_s(P_{10} \times P_n)$.

Theorem 1.1 (Zelinka [6]). Let D be a directed cycle or path with n vertices. Then $\gamma_s(D) = n$.

Lemma 1.2 (Zelinka [6]). Let D be a directed graph with n vertices. Then $\gamma_s(D) \equiv n \pmod{2}$.

In [14], the following results are proved.

Theorem 1.3 (Shaheen [14]). $\gamma_s(P_2 \times P_n) = n$: $n \equiv 0 \pmod{2}$ and $\gamma_s(P_2 \times P_n) = n + 1$: $n \equiv 1 \pmod{2}$. $\gamma_s(P_3 \times P_n) = n + 2 \lceil n/3 \rceil$. $\gamma_s(P_4 \times P_n) = 2n : n \equiv 0 \pmod{2}$ and $\gamma_s(P_4 \times P_n) = 2n + 2 : n \equiv 1 \pmod{2}$. $\gamma_s(P_5 \times P_n) = (7n + 6)/3$: $n \equiv 0 \pmod{3}$, $\gamma_s(P_5 \times P_n) = (7n + 8)/3$: $n \equiv 1 \pmod{3}$ and $\gamma_s(P_5 \times P_n) = (7n + 4)/3$: $n \equiv 2 \pmod{3}$. $\gamma_s(P_6 \times P_n) = (8n + 6)/3$: $n \equiv 0 \pmod{3}$, $\gamma_s(P_6 \times P_n) = (8n + 10)/3$: $n \equiv 1 \pmod{3}$ and $\gamma_s(P_6 \times P_n) = (8n + 8)/3$: $n \equiv 2 \pmod{3}$. $\gamma_s(P_7 \times P_n) = 3n + 4$.

2. Main results

In this section we calculate the signed domination number of the cartesian product of two directed paths P_m and P_n for m = 8, 9, 10 and arbitrary n.

The vertices of a directed path P_n are always denoted by the integers {1, 2, ..., n}, considered modulo n. The *i*th row of V(P_m×P_n) is R_i = {(i, j) : j =1, 2,...,n} and the *j*th column K_j = {(i, j) : i = 1, 2, ..., m}. For any vertex (i, j) \in V(P_m×P_n), always we have the indices i and j are reduced modulo m and n, respectively. If *f* is a signed dominating function for P_m×P_n, then we denote $f(K_j) = \sum_{i=1}^{m} f(i, j)$ of the weight of a column K_j and put s_j = $|f(K_j)|$. The sequence

 $(s_1, s_2, ..., s_n)$ is called a signed dominating sequence corresponding to f.

Remark 2.1. Since each vertex of K_1 and R_1 is 0-in-degree or 1-in-degree, then we have f((i, 1)) = 1 for i = 1, 2, ..., m and f((1, j)) = 1 for j = 1, 2, ..., n. So, always we have $s_1 = m$. Furthermore, always we consider the signed dominating sequence $(m, s_2, ..., s_n)$ for $\gamma_s(P_m \times P_n)$.

Remark 2.2. Since f((1, j)) = 1 and f[(i, j)] = 1, then the case f((i, j)) = f((i + 1, j)) = -1 is not possible. So, $s_j = 0$ for j = 1, ..., n. Furthermore, s_j is odd if m is odd and even when m is even.

Remark 2.3: Let *f* is a $\gamma_s(P_m \times P_n)$ -function. Then f[(r, s)] = 1 for each 1 = r m and each 1 = sn. If $(i, j) \notin V\{K_1 \cup R_1 \cup K_n \cup R_m\}$ and f((i, j)) = -1, then $f((i\pm 1, j)) = f((i, j\pm 1)) = 1$ because f[(i, j)]

1, f((i+1, j-1)) = 1 because f[(i+1, j)] = 1 and f((i-1, j+1)) = 1 because f[(i, j+1)] = 1. On the other hand, if $f((i\pm 1, j)) = f((i, j\pm 1)) = 1$, f((i-1, j-1)) = 1 and f((i+1, j+1)) = 1, then we must have f((i, j)) = -1 since f is a minimum signed dominating function.

For the remainder of this section, let f be a signed domination function of $P_m \times P_n$ with signed dominating sequence (m, $s_2, ..., s_n$). We need the following Lemma:

Proof. Let $s_j = k$, then there are (m - k)/2 of vertices in K_j which get value -1. By Remark 2.3, K_{j+1} include at least 2(m - k)/2 of vertices which get the value 1 and at most m - (m - k) = k of vertices which has value -1. Hence, $s_{j+1} = m - 2k$. Furthermore, $s_j + s_{j+1} = m - k$. By the same argument (with considering f(1, j) = 1 for all j), we get $s_{j-1} = m - 2k$ and $s_{j-1} + s_j = m - k$.

To determine $\gamma_s(P_8 \times P_n)$ we need the following proposition. Here, we have $s_i = 0, 2, 4, 6$, or 8.

Proposition 2.5. For j > 1, the case $(s_j, s_{j+1}, s_{j+2}) = (2, 4, 2)$ is not possible. Furthermore, there are four cases for $(s_j, s_{j+1}, s_{j+2}) = (2, 4, 4)$ as follows:

- 1. f(2, j) = f(5, j) = f(8, j) = f(3, j+1) = f(6, j+1) = f(4, j+2) = f(7, j+2) = -1 and f(i, k) = 1 otherwise for k = j, j+1, j+2.
- 2. f(2, j) = f(5, j) = f(7, j) = f(3, j+1) = f(8, j+1) = f(4, j+2) = f(6, j+2) = -1 and f(i, k) = 1 otherwise for k = j, j+1, j+2.
- 3. f(2, j) = f(4, j) = f(7, j) = f(5, j+1) = f(8, j+1) = f(2, j+2) = f(6, j+2) = -1 and f(i, k) = 1 otherwise for k = j, j+1, j+2.
- 4. f(2, j) = f(4, j) = f(7, j) = f(5, j+1) = f(8, j+1) = f(3, j+2) = f(6, j+2) = -1 and f(i, k) = 1 otherwise for k = j, j+1, j+2.

The proof comes immediately by drawing those cases.

Theorem 2.6. For n 5, is

$$\gamma_{s} (P_{8} \times P_{n}) = \begin{cases} \frac{10 \ n + 12}{3} & \text{if } n \equiv 0 \pmod{3}, \\ \frac{10 \ n + 14}{3} & \text{if } n \equiv 1 \pmod{3}, \\ \frac{10 \ n + 10}{3} & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Proof. We define a function

f(2, 3j - 1) = f(5, 3j - 1) = f(8, 3j - 1) = -1 for 1 j $\lceil (n - 1)/3 \rceil$, f(3, 3j) = f(6, 3j) = -1 for 1 j $\lceil (n - 2)/3 \rceil$, f(4, 3j + 1) = f(7, 3j + 1) = -1 for 1 j $\lceil (n - 3)/3 \rceil$ and f(i, j) = 1 otherwise. We have f is a SDF for P₈×P_n (For an illustration $\gamma_{s}(P_{8} \times P_{7})$, see Figure 1). Therefore,

 $\gamma_{\rm s}({\rm P_8 \times P_n}) = 8n - 2(3n/3 + 2n/3 + 2(n-3)/3) = (10n + 12)/3 \text{ when } n \equiv 0 \pmod{3}.$ (1)

$$\gamma_{\rm s}(\mathbf{P}_8 \times \mathbf{P}_{\rm n}) = 8n - 2(3(n-1)/3 + 2(n-1)/3 + 2(n-1)/3) = (10n + 14)/3 \text{ when } n \equiv 1 \pmod{3}.$$
 (2)

$$\gamma_{s}(P_{8} \times P_{n}) = 8n - 2(3(n+1)/3 + 2(n-2)/3 + 2(n-2)/3) = (10n+10)/3 \text{ when } n \equiv 2 \pmod{3}.$$
 (3)

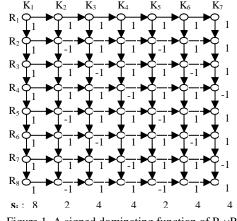


Figure 1. A signed dominating function of $P_8 \times P_7$.

By Remarks 2.1 and 2.2, $s_1 = 8$ and $s_j = 0$, 2, 4, 6 or 8. By Lemma 2.4, if $s_j = 0$ then s_{j-1} , $s_{j+1} = 8$ where 1 < j < n, and if $s_j = 2$ then s_{j+1} 4. By Proposition 2.5, if $s_j = 2$ then s_{j+1} 4, furthermore

 $s_j + s_{j+1} + s_{j+2} = 10$ where j n -2. When $s_j = 0$, we can modifying the sequence $(s_1, ..., s_n)$ to $(s'_1, ..., s'_n)$ (is not necessarily a signed dominating sequence of $P_8 \times P_n$) as follows:

For 3 j n -2, if $s_j = 0$ then we put:

 $s'_{j} = s_{j} + 4$, $s'_{j-1} = s_{j-1} - 2$, $s'_{j+1} = s_{j+1} - 2$ and $s'_{j} = s_{j}$, otherwise.

(If $s_j = 0$ for j = 2 or n - 1, then $s'_j = s_j + 4$ and $s'_{j+1} = s_{j+1} - 4$, also if $s_n = 0$ then $s'_n = s_n + 4$ and $s'_{n-1} = s'_{n-1} - 4$). The obtained sequence (s'_1, \ldots, s'_n) has required properties $s_j = 2$ for all j and if $s'_j = 2$ then $s_{j+1}, s_{j+2} = 4$. Hence, $s_j + s_{j+1} + s_{j+2} = 10$ for 2 = j = n - 2. By minimality of the signed domination number of $P_8 \times P_n$, we can assume the following order $(s_j, s_{j+1}, s_{j+2}) = (2, 4, 4)$. Thus

For $n \equiv 0 \pmod{3}$:

$$\gamma_{s}(P_{8} \times P_{n}) = s_{1} + \sum_{j=2}^{n-2} s_{j} + s_{n-1} + s_{n} \ge 8 + 10(n-3)/3 + 6 = (10n+12)/3.$$

For $n \equiv 1 \pmod{3}$:

$$\gamma_{s}(P_{8} \times P_{n}) = s_{1} + \sum_{j=2}^{n} s_{j} \ge 8 + 10(n-1)/3 = (10n+14)/3.$$

For $n \equiv 2 \pmod{3}$:

$$\gamma_{s}(P_{8} \times P_{n}) = s_{1} + \sum_{j=2}^{n-1} s_{j} + s_{n} \ge 8 + 10(n-2)/3 + 2 = (10n+10)/3.$$

These together with (1), (2) and (3) the proof of Theorem 2.6 is complete.

Now, we consider the signed domination number of $P_9 \times P_n$. Here, we have s_j is odd and 1 s_j 9.

Proposition 2.7. There is one possible for (s_j, s_{j+1}) (3, 3), it is f(2, j) = f(5, j) = f(3, j+1) = f(6, j+1) = f(9, j+1) = -1, otherwise f(i, d) = 1 for d = j, j+1.

The proof comes immediately by drawing those cases.

Proposition 2.8. If $s_i = 3$ then $s_i + s_{i+1} + s_{i+2} = 11$.

Proof. By Remark 2.2, $s_j = 1, 3, 5, 7$ or 9. We have $s_j = 3$, by Lemma 2.4, $s_{j+1} = 3$. If $s_{j+1} = 7$, we obtained the required. If $s_{j+1} = 5$ then by Lemma 2.4, we have $s_{j+2} = 3$ (otherwise $s_{j+1} = 7$), again gets the required. Let $s_{j+1} = 3$, by Proposition 2.7 is f(4, j + 2) = f(7, j + 2) = -1, therefore $s_{j+2} = 5$. Finally, for all cases we conclude that $s_j + s_{j+1} + s_{j+2} = 11$.

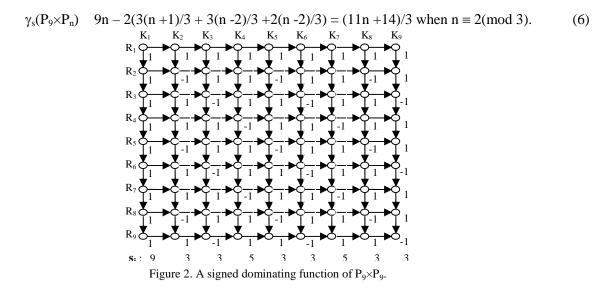
Theorem 2.9. For n 5, is

$$\gamma_{s} (P_{9} \times P_{n}) = \begin{cases} \frac{11 n + 12}{3} & \text{if } n \equiv 0 \pmod{3}, \\ \frac{11 n + 16}{3} & \text{if } n \equiv 1 \pmod{3}, \\ \frac{11 n + 14}{3} & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Proof. We define a function *f* as follows:

f(2, 3j - 1) = f(5, 3j - 1) = f(8, 3j - 1) = -1 for $1 j \lceil (n - 1)/3 \rceil$, f(3, 3j) = f(6, 3j) = f(9, 3j) = -1 for $1 j \lceil (n - 2)/3 \rceil$, f(4, 3j + 1) = f(7, 3j + 1) = -1 for $1 j \lceil (n - 3)/3 \rceil$ and f(i, j) = 1 otherwise. We have f is a SDF for $P_9 \times P_n$. See Figure 2, For an illustration $\gamma_s(P_9 \times P_9)$. Therefore,

$$\begin{split} \gamma_{s}(P_{9}\times P_{n}) & 9n-2(3n/3+3n/3+2(n-3)/3)=(11n+12)/3 \text{ when } n\equiv 0 \pmod{3}. \end{split} \tag{4} \\ \gamma_{s}(P_{9}\times P_{n}) & 9n-2(3(n-1)/3+3(n-1)/3+2(n-1)/3)=(11n+16)/3 \text{ when } n\equiv 1 \pmod{3}. \end{split} \tag{4}$$



By Remarks 2.1 and 2.2, $s_1 = 9$ and $s_j = 1, 3, 5, 7$ or 9. If $s_j = 3$ for all j, then by Proposition 2.8, we obtained the required. Let $s_j = 1$ for some j. By Lemma 2.4, we have $s_j, s_{j+1} = 7$. Then by modifying the sequence $(s_1, ..., s_n)$ to $(s'_1, ..., s'_n)$ (is not necessarily a signed dominating sequence of $P_9 \times P_n$ as follows:

For 3 j n -2, if $s_j = 1$ then we put:

 $s'_{j} = s_{j} + 4$, $s'_{j-1} = s_{j-1} - 2$, $s'_{j+1} = s_{j+1} - 2$ and $s'_{j} = s_{j}$, otherwise.

(If $s_j = 1$ for j = 2 or n -1, then $s'_j = s_j + 4$ and $s'_{j+1} = s_{j+1} - 4$, also if $s_n = 1$ then $s'_n = s_n + 4$ and $s'_{n-1} = s'_{n-1} - 4$). The obtained sequence $(s'_1, ..., s'_n)$ has required properties $s_j = 3$ for all j. Furthermore $s_j + s_{j+1} + s_{j+2} = 11$ for 2 = j = n - 2. By minimality of the signed domination number of $P_9 \times P_n$, we can assume the following order $(s_j, s_{j+1}, s_{j+2}) = (3, 3, 5)$. Thus For $n \equiv 0 \pmod{3}$:

$$\gamma_{s}(P_{9} \times P_{n}) = s_{1} + \sum_{j=2}^{n-2} s_{j} + s_{n-1} + s_{n} \ge 9 + 11(n-3)/3 + 6 = (11n+12)/3.$$

For $n \equiv 1 \pmod{3}$:

$$\gamma_{s}(P_{9} \times P_{n}) = s_{1} + \sum_{j=2}^{n} s_{j} \ge 9 + 11(n-1)/3 = (11n+16)/3.$$

For $n \equiv 2 \pmod{3}$:

$$\gamma_{s}(P_{9} \times P_{n}) = s_{1} + \sum_{j=2}^{n-1} s_{j} + s_{n} \ge 9 + 11(n-2)/3 + 3 = (11n+14)/3.$$

These together with (4), (5) and (6) the proof of Theorem 2.9 is complete.

Next, we consider the signed domination number of $P_{10} \times P_n$. Here, we have $s_j = 0, 2, 4, 6, 8$ or 10.

Proposition 2.10. There are only six possibilities for $(s_j, s_{j+1}) = (2, 6)$. Furthermore, the case $(s_j, s_{j+1}, s_{j+2}) = (2, 6, 2)$ is not possible.

Proof. By the drawing, we have only these cases for $(s_j, s_{j+1}) = (2, 6)$ which are: **1.** f(2, j) = f(4, j) = f(6, j) = f(9, j) = -1 and f(7, j+1) = f(10, j+1) = -1, **2.** f(2, j) = f(4, j) = f(7, j) = f(9, j) = -1 and f(5, j+1) = f(10, j+1) = -1, **3.** f(2, j) = f(4, j) = f(7, j) = f(10, j) = -1 and f(5, j+1) = f(8, j+1) = -1, **4.** f(2, j) = f(5, j) = f(7, j) = f(9, j) = -1 and f(3, j+1) = f(10, j+1) = -1, **5.** f(2, j) = f(5, j) = f(7, j) = f(10, j) = -1 and f(3, j+1) = f(8, j+1) = -1, **6.** f(2, j) = f(5, j) = f(8, j) = f(10, j) = -1 and f(3, j+1) = f(6, j+1) = -1. We note that $(s_i, s_{i+1}, s_{i+2}) = (2, 6, 2)$ is not possible, this for all the previous cases.

Proposition 2.11. If $s_j = 2$ the $s_j + s_{j+1} + s_{j+2} = 12$ for 2 = j = n - 2.

Proof. By Lemma 2.4, if $s_j = 2$ then s_{j-1} , $s_{j+1} = 6$. If $s_{j+1} = 8$, we obtained the required (when $s_{j+1} = 8$ is $s_{j+2} = 2$). Let $s_{j+1} = 6$, by applying Proposition 2.10 we get the required.

Theorem 2.12. For n 5, is $\gamma_s(P_{10} \times P_n) = 4n + 6$.

Proof. We define a function *f* as follows:

f(2, 3j - 1) = f(5, 3j - 1) = f(8, 3j - 1) = -1 for $1 j \lceil (n - 1)/3 \rceil$, f(3, 3j) = f(6, 3j) = f(9, 3j) = -1 for $1 j \lceil (n - 2)/3 \rceil$, f(4, 3j + 1) = f(7, 3j + 1) = f(10, 3j + 1) = -1 for $1 j \lceil (n - 3)/3 \rceil$ and f(i, j) = 1 otherwise. We note that f is a SDF for $P_{10} \times P_n$. Furthermore, $s_j = 4$ for j = 2, ..., n. Hence

$$\gamma_{s}(P_{10} \times P_{n}) = s_{1} + \sum_{j=2}^{n} s_{j} \le 10 + 4(n-1) = 4n + 6.$$
(7)

We will prove that $\gamma_s(P_{10} \times P_n) = 4n + 6$. For this we need the following claim.

Claim A. For k 3 is $\sum_{j=k}^{j+k} s_j \ge 4(k+1)$ where j 2.

Proof. Here, we consider the Claim at least for four columns. By Remarks 2.1 and 2.2, $s_1 = 10$ and $s_j = 0, 2, 4, 8$ or 10. If $s_j = 4$ for all j, then we get the required.

Assume that $s_j = 2$ for some 2 = j = n. By Lemma 2.4, we have $s_{j-1}, s_{j+1} = 10 - 2s_j$, i.e. $s_{j-1}, s_{j+1} = 10$ when $s_j = 0$ and $s_{j-1}, s_{j+1} = 6$ when $s_j = 2$. From Propositions 2.10 and 2.11, we have $(s_j, s_{j+1}, s_{j+2}) = (2, 6, 2)$ is not possible and $s_j + s_{j+1} + s_{j+2} = 12$. Here we aim to calculate the summation $\sum_{j=1}^{j+k} s_j$. If $s_j = 2$ where 3 = j = n-1, we can modifying the sequence $(\dots, s_{j-1}, s_j, s_{j+1}, \dots)$ to $(\dots, s_{j-1} - (4 - s_j)/2, 4, s_{j+1} - (4 - s_j)/2, \dots)$. While, if $s_j = 2$ or n, then we put $s_j = 4$ and $s_{j+1} = s_{j+1} - (4 - s_j)$ and $s_{j-1} = s_{j-1} - (4 - s_j)$ for j = 2 or n, respectively. We repeat this process if necessary (for each $s_j = 2$), eventually leading to a sequence set which has the same summation of the basic sequence with $s_j = 4$ for all j. Note s_1 is still equal 10. Hence,

$$\sum_{j=1}^{j+k} s_{j} \ge 4(k+1) \, .$$

Now by applying Claim A, we get $\gamma_s(P_{10} \times P_n) = s_1 + \sum_{j=2}^n s_j \ge 10 + 4(n-1) = 4n + 6$.

By using this result together with (7), the proof of Theorem 2.12 is complete.

Lemma 2.13.
$$\gamma_s(P_m \times P_n) \ge \max\{\frac{m(n+1)}{3}, \frac{n(m+1)}{3}\}.$$

Proof. By Lemma 2.4, we have $s_{j-1} + 2s_j$ m and $2s_j + s_{j+1}$ m. This implies that $s_{j-1} + 4s_j + s_{j+1}$ 2m. Then the following equations are true:

 $\begin{array}{ll} s_2+4s_3+s_4&2m,\\ s_3+4s_4+s_5&2m,\\ s_4+4s_5+s_6&2m, \end{array}$

 $\begin{array}{c} \ldots \\ s_{n-4}+4s_{n-3}+s_{n-2} & 2m, \\ s_{n-3}+4s_{n-2}+s_{n-1} & 2m, \\ s_{n-2}+4s_{n-1}+s_{n} & 2m. \mbox{ Thus} \end{array}$

 $6(s_1+s_2+\ldots+s_n)-(6s_1+5s_2+s_3+s_{n\text{-}1}+5s_n)\quad (n-3)\ 2m.$

But, we have $s_1 = m$, $2s_2 + s_3 m$ and $s_{n-1} + 2s_n m$ (By Lemma 2.4). Hence

$$6\gamma_{s}(P_{m} \times P_{n})$$
 (n - 3) 2m + 6 m + m + m + 3s₂ + 3s_n. Then

$$\gamma_{s}(\mathbf{P}_{m} \times \mathbf{P}_{n}) \quad m(n+1)/3.$$

Also, by changing the rows by columns gets:

$$\gamma_{s}(\mathbf{P}_{m}\times\mathbf{P}_{n})$$
 n(m + 1)/3. So,

$$\gamma_s(P_m \times P_n) \ge \max\{\frac{m(n+1)}{3}, \frac{n(m+1)}{3}\}.$$

3. Conclusions

This paper determined that exact value of the signed domination number of $P_m \times P_n$ for m = 8, 9, 10 and arbitrary n. By using same technique methods, our hope eventually lead to determination $\gamma_s(P_m \times P_n)$ for general m and n.

Based on the results in this paper and [14], we arrive to the following conjecture:

Conjecture 3.1.

1.

For m = 0(mod 3) and m, n 3, is

$$\gamma_s(P_m \times P_n) = \left\lceil \frac{(m+2)n}{3} \right\rceil + 2 \left\lfloor \frac{m}{3} \right\rfloor - 2 : n \equiv 0, 2 \pmod{3},$$

$$\gamma_s(P_m \times P_n) = \left\lceil \frac{(m+2)n}{3} \right\rceil + 2 \left\lfloor \frac{m}{3} \right\rfloor - 1 : n \equiv 1 \pmod{3}.$$

2. For m = 1(mod 3) and m, n > 4, is $\gamma_s(P_m \times P_n) = \left\lceil \frac{(m+2)n}{3} \right\rceil + 2 \left\lfloor \frac{m}{3} \right\rfloor.$

3. For
$$m \equiv 2 \pmod{3}$$
 and $m, n > 2$, is

$$\gamma_s(P_m \times P_n) = \left\lceil \frac{(m+2)n}{3} \right\rceil + 2 \left\lfloor \frac{m}{3} \right\rfloor : n \equiv 0, 1 \pmod{3},$$

$$\gamma_s(P_m \times P_n) = \left\lceil \frac{(m+2)n}{3} \right\rceil + 2 \left\lfloor \frac{m}{3} \right\rfloor - 1 : n \equiv 2 \pmod{3}.$$

References

[1] T.W. Haines, S.T. Hedetniemi, P.J. Slater, Fundamental of domination in graphs, *Marcel Dekker, New York*, 1998.

[2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater., Signed domination in graphs, Graph Theory, *Combinatorics and Application, John Wiley & Sons, Inc.*, 1 (1995), 311–322.

[3] E.J. Cockayne, C.M. Mynhart., On a generalization of signed domination functions of graphs, *Ars. Combin.*, 43 (1996), 235–245.

[4] J.H. Hattingh, E. Ungerer., The signed and minus k-subdomination numbers of comets, *Discrete Math.*, 183 (1998), 141–152.

[5] B. Xu, On signed edge domination numbers of graphs, Discrete Math., 239 (2001), 179–189.

[6] B. Zelinka, Signed domination numbers of directed graphs, *Czechoslovak Mathematical Journal.*, 55 (2005), 479–482.

[7] H. Karami, S.M., Sheikholeslami, A. Khodkar., Lower bounds on the signed domination numbers of directed graphs, *Discrete Math.*, 309 (8) (2009), 2567–2570.

[8] M., Atapour, S. Sheikholeslami, R. Hajypory, L. Volkmann., The signed k-domination number of directed graphs., *Cent. Eur. J. of Math.*, 8(6) (2010), 1048-1057.

[9] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, *Discrete Math.*, 138 (1995), 125–135.

[10] R. Hass and T.B. Wexler, Bounds on the signed domination number of a graph, *Discrete Math.* 195 (1999), 295–298.

[11] H. Aram, S. M. Sheikholeslami and L. Volkmann, Upper Signed k-domination number of directed graphs, *Acta Math. Univ. Comenianae Vol. LXXXI*, 1 (2012), pp. 9-14.

[12] R. Shaheen and H. Salim, The signed domination number of Cartesian Products of Directed Cycles, *Submitted to Utilitas Math.*

[13] R. Shaheen, On signed domination number of Cartesian Products of two Directed Cycles $C_m \times C_n$. Submitted to Ars Comb.

[14] R. Shaheen, On signed domination number of Cartesian Products of Directed Paths, Submitted to *Contributions to Discrete Math.*