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Abstract: Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A
function f:V(D) —>{-1 L} is called a signed dominating function (SDF) if f (N [v]) >1
for each vertex veV. The weight W(f) of f is defined by Z f(v). The signed domination number

vev

of a digraph D is y(D) = min {W(f) | f is an SDF of D}. Let P,xP, denote the cartesian product
of directed paths of length m and n. In this paper, we determine the exact values of y(PxP,) for
m =8, 9, 10 and arbitrary n. Also, we give a lower bound of (P Py).
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1. Introduction

Throughout this paper, a digraph D(V, A) always means a finite directed graph without
loops and multiple arcs, where V = V(D) is the vertex set and A= A(D) is the arc set. If uvis an
arc of D, then say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex

veV(D), let Nj(v)and N (Vv)denote the set of out-neighbors and in-neighbors of v,
respectively. We write dj(v)=| N;(v)|and d,(v)=| Ny (V) |for the out-degree and in-
degree of v in D, respectively (shortly d"(v), d(v)). A digraph D is r-regular if
d, (V)=dg (v)=r for any vertex veD. LetN;[v]=N/ (v) u{v}and N;[v]=N; (V) u{v},
be the set of v and all vertices of out-degrees and in-degrees, respectively. The maximum out-
degree and in-degree of D are denoted by A"(D) and 4'(D), respectively (shortly 4%, A). The
minimum out-degree and in-degree of D are denoted by §*(D) and & (D), respectively (shortly
8", 8). A signed dominating function of D is defined in [6] as function f :V —{-1,1} such that

f (N [v]) 21 for every vertex veV. The signed domination number of a directed graph D is
7(D) = min {W(f) | f is an SDF of D}. Also, a signed k-dominating function (SKDF) of D is a
function f:V —>{-1 I} such that f(Nj[v]) >k for every vertex veV. The k-signed

domination number of a digraph D is #s(D) = min {W(f) | f is SKDF of D}. Consult [1] for the
notation and terminology which are not defined here.

The cartesian product DyxD, of two digraphs D; and D, is the digraph with vertex set
V(D1xDy) = V(D)xV(Dy) and ((ug,Un),(v1,V2)) eA(D1xD,) if and only if either u; = v; and
(Uz, V2) EA(Dz) oru=Vv, and (U]_, V]_) EA(D]_)

In the past few years, several types of domination problems in graphs have been studied
[2-5, 9-10], most of those belonging to the vertex domination. In 1995, Dunbar et al. [2], have
introduced the concept of signed domination number of an undirected graph. Hass and Wexler
in [10], established a sharp lower bound on the signed domination number of a general graph
with a given minimum and maximum degree and also of some simple grid graph. Zelinka [6]
initiated the study of the signed domination numbers of digraphs. He studied a signed
domination number of the digraphs which the indegrees of vertices do not exceed 1, also the
acyclic tournament and the circulant tournament. Karami et al. [7] were established lower and
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upper bounds of the signed domination number of digraphs. Atapour et al. [8], presented some
sharp lower bounds on the signed k-domination number of digraphs. Also, H. Aram et al. [11],
were established upper bound of the signed k-domination number of digraphs. Shaheen and
Salim [12], were calculated the signed domination numbers of cartesian product C,,xC, for m =
3,4,5,6, 7. In[13], Shaheen calculated vs(C,xC,) for m = 8, 9, 10 and for some general values
of m, and n. Also, Shaheen [14], calculated the signed domination numbers of cartesian product
PmxP, for m =2, 3, 4, 5, 6, 7 and arbitrary n. In this paper, we study the signed domination
number of cartesian product P,xP, for m, n =8. We mainly determine the exact values of

Ys(PeXPn), vs(PoxPn) and ys(P1o%Pn).

Theorem 1.1 (Zelinka [6]). Let D be a directed cycle or path with n vertices. Then y,(D) = n.
Lemma 1.2 (Zelinka [6]). Let D be a directed graph with n vertices. Then ys(D) = n (mod 2).
In [14], the following results are proved.

Theorem 1.3 (Shaheen [14]). ys(P2%P,) = n: n = 0(mod 2) and ys(P,xP,) = n +1: n =1(mod 2).
vs(P3xPy) = n + 2/ n/3 1. v5(P4xP,) = 2n : n =0(mod 2) and ys(PsxP,) = 2n +2 : n =1(mod 2).
Ys(PsxPp) = (7n + 6)/3: n = 0(mod 3), ys(PsxP,) = (7n + 8)/3: n=1(mod 3) and ys(PsxP,) = (7n +
413 : n=2(mod 3). ys(PsxPy) = (8n + 6)/3: n =0(mod 3), ys(PsxP,) = (8n + 10)/3: n = 1(mod 3)
and ys(PexPy) = (8n + 8)/3 : h =2(mod 3). ys(P;xP,) = 3n + 4.

2. Main results

In this section we calculate the signed domination number of the cartesian product of two
directed paths P, and P, for m =8, 9, 10 and arbitrary n.

The vertices of a directed path Pn are always denoted by the integers {1, 2, ..., n},
considered modulo n. The ith row of V(PxP,) is R = {(i, j) : j =1, 2,...,n} and the jth column
Ki={(@,j):1=1,2, ..., m}. Forany vertex (i, j) e V(PmxPy), always we have the indices i and j
are reduced modulo m and n, respectively. If f is a signed dominating function for P,xP;, then

m

we denote f (K, )22 f(i,]) of the weight of a column K; and put s; = [f(K;)|. The sequence
i=1

(S1, Sz, ---, Sn) is called a signed dominating sequence corresponding to f.

Remark 2.1. Since each vertex of K; and R; is 0-in-degree or 1-in-degree, then we have f((i, 1))
=1fori=1,2, ....mandf((1, ) =1forj=1,2,...,n. So, always we have s;= m. Furthermore,
always we consider the signed dominating sequence (m, Sy, ..., Sy) for ys(Pm*Py).

Remark 2.2. Since f((1, j)) = 1 and f[(i, j)] = 1, then the case f((i, j)) = f((i +1, j)) = -1 is not
possible. So, s; 20 for j =1, ..., n. Furthermore, s; is odd if m is odd and even when m is even.

Remark 2.3: Let f is a ys(Pm%Py)-function. Then f[(r,s)] =1 foreachl1<r<mandeach1l<s<
n. If (i, j) ¢ V{KUR UK URW} and f((i, j)) = -1, then f((i£1, j)) = f((i, j£1)) = 1 because f[(i, )]
=1, f((i +1, j -1)) = 1 because f[(i +1, j)] = 1 and f((i -1, j +1)) = 1 because f[(i, j +1)] = 1. On the
other hand, if f((i£1, j)) = f((i, j£1)) =1, f((i -1, j -1)) = 1 and f((i +1, j +1)) = 1, then we must
have f((i, j)) = -1 since f is a minimum signed dominating function.

For the remainder of this section, let f be a signed domination function of PmxPn with
signed dominating sequence (m, S,, ..., sn). We need the following Lemma:

Lemma 2.4. If s; = k then .4, Sj.1 = m — 2k. Furthermore, sj.; +s;=2m—kand sj + sj0 = m—k.



Proof. Let s; = k, then there are (m — K)/2 of vertices in K; which get value -1. By Remark 2.3,
Kj:1 include at least 2(m — k)/2 of vertices which get the value 1 and at most m — (m —k) = k of
vertices which has value -1. Hence, sj;; = m — 2k. Furthermore, s; + sj.:= m — k. By the same
argument (with considering f(1, j) = 1 for all j), we get s;.; = m - 2k and s, + ;= m—k. O

To determine y5(PgxP,) we need the following proposition. Here, we have s; = 0,2,4,6, or 8.

Proposition 2.5. For j > 1, the case (S, Sj+1, Sj+2) = (2, 4, 2) is not possible. Furthermore, there
are four cases for (s, Sj+1, Sj+2) = (2, 4, 4) as follows:
1. f(2,j))=1(5,j)=1(8,j)=1(3,j +1) =1f(6,j +1) =f(4,j +2) =f(7,j +2) =-1and f(i,k) =1
otherwise for k =j, j +1, j +2.
2. 1(2,))=15,))=1(7,j) =1(3,j +1) = 1(8, ] +1) =1(4,j +2) =1(6,j +2) =-Lland f(i, k) =1
otherwise for k =j, j +1, j +2.
3. 1(2,))=1(4,)) =1(7,)) =1(5,j +1) = 1(8, ) +1) =1(2,j +2) =1(6,j +2) =-1and f(i,k) =1
otherwise for k =j, j +1, j +2.
4. 1(2,))=1(4,)) =1(7,j) =1(5,j +1) =1(8,j +1) =1(3,j +2) =f(6,j +2) =-1and f(i,k) =1
otherwise for k =j, j +1, j +2.

The proof comes immediately by drawing those cases. O

Theorem 2.6. Forn =5, is
10 n+ 12

3 if n=0(mod 3),
yoPyx Py = Y e e 3),
Wnel0 4 s 2mod 3).

Proof. We define a function
f(2,3j-1)=f(5,3]-1)=f(8,3j-1)=-1for1<j<[(n-1)/3],f(3,3j)=f(6,3))=-1for1<j<
[(n-2)/31,f(4,3)+1) = (7, 3j +1) = -1 for 1< j <[ (n -3)/3]and f (i, j) = 1 otherwise. We have f
is a SDF for PgxP, (For an illustration ys(PgxP5), see Figure 1). Therefore,

vs(PsXPp) < 8n —2(3n/3 + 2n/3 + 2(n -3)/3) = (10n + 12)/3 when n = 0(mod 3). (1)
vs(PsXPp) < 8n -2(3(n-1)/3 + 2(n-1)/3 + 2(n -1)/3) = (10n +14)/3 when n =1(mod 3). 2
vs(PexPp) < 8n =2(3(n +1)/3 +2(n -2)/3 +2(n -2)/3) = (10n +10)/3 when n = 2(mod 3). 3
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Figure 1. A signed dominating function of PgxP-.

By Remarks 2.1 and 2.2, s; =8 and s; = 0, 2, 4, 6 or 8. By Lemma 2.4, if 5; = 0 then sj4, Sjs1 = 8
where 1 < j <n, and if s; = 2 then s;.; = 4. By Proposition 2.5, if s; = 2 then s;,; > 4, furthermore

3



Sj + Sjv1 * Sj+2 = 10 where j < n -2. When s; = 0, we can modifying the sequence (sy, ..., Sy) to
(s'y, ...,S'n) (is not necessarily a signed dominating sequence of PgxP,) as follows:

For3<j<n-2,ifs;=0then we put:

Sj=5j+4,51=811—2, S} =S+ — 2 and s = s, otherwise.
(Ifsj=0forj=2o0rn-1,thens}=s;+4and Sj;; = Sj+1 - 4, also if s, =0 then s',= s, + 4 and S’
= S'n1 - 4). The obtained sequence (s, ..., S'n) has required properties s; = 2 for all j and if s’ = 2
then sj.1, Sj+2 = 4. Hence, sj + Sji1 + Sj32 2 10 for 2 < j < n -2. By minimality of the signed
domination number of PgxP,, we can assume the following order (sj, Sj:1, Sj+2) = (2, 4,4). Thus

For n=0(mod 3):
n-2
v.(Ps xP,) =s,; +Zsj +S,,+S, 28+10(n-3)/3+6=(10n+12)/3.

j=2
For n=1(mod 3):

vs(PgxP,) =5, + > s,28+10(n—1)/3 =(10n+14)/3.
j=2

For n=2(mod 3):
n-1
V(P xP,) =5, + Y s, +s, >8+10(n —2)/3+2=(10n+10)/3.

j=2
These together with (1), (2) and (3) the proof of Theorem 2.6 is complete. O

Now, we consider the signed domination number of PyxP,. Here, we have s; is odd and 1 < s;
<9.

Proposition 2.7. There is one possible for (s;, sj+1) (3, 3), itis
f(2,]) =1(5,)) =1(8,]) =1(3,] +1) = (6, j +1) = (9, j +1) = -1, otherwise f(i, d) =1 for d =, j +1.

The proof comes immediately by drawing those cases. O
Proposition 2.8. If s; = 3 then s; + Sju1 + Sjup 2 11.

Proof. By Remark 2.2, s;=1, 3,5, 7 or 9. We have s; = 3, by Lemma 2.4, Sj,; 2 3. If 55,1 2 7, we
obtained the required. If s;;; = 5 then by Lemma 2.4, we have s;., = 3 (otherwise s;.; = 7), again
gets the required. Let sj.; = 3, by Proposition 2.7 is f(4, j +2) = f(7, j +2) = -1, therefore sj., 2 5.

Finally, for all cases we conclude that s; + Sj.1 + Sjr2 = 11. O

Theorem 2.9. Forn=5, is
11n + 12

if n=0(mod 3),
v (P, xP.)= 11”;16 if n=1(mod 3),
Un+18 i n—omod 3),

Proof. We define a function f as follows:
f(2,3-1)=1(5,3j-1)=f(8,3j-1)=-1for1<j<[(n-1)/3] (3, 3j)=f(6,3j) =9, 3j)=-1
for 1<j <[ (n-2)/31, f (4, 3j +1) = (7, 3j +1) = -1 for 1= j <[ (n -3)/3 ] and f (i, j) = 1 otherwise.
We have f is a SDF for PgxP,. See Figure 2, For an illustration ys(PgxPg). Therefore,

¥s(PoXPp) <9n —2(3n/3 + 3n/3 + 2(n -3)/3) = (11n + 12)/3 when n = 0O(mod 3). 4)
Ys(PoXPp) < 9n -2(3(n-1)/3 + 3(n-1)/3 + 2(n -1)/3) = (11n +16)/3 when n =1(mod 3). (5)
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Ys(PoXPp) <9n —2(3(n +1)/3 + 3(n -2)/3 +2(n -2)/3) = (11n +14)/3 when n = 2(mod 3). (6)
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Figure 2. A signed dominating function of PgxP,,.

By Remarks 2.1 and 2.2,s; =9 ands; =1, 3,5, 7 or 9. If s; 2 3 for all j, then by Proposition 2.8,
we obtained the required. Let s; = 1 for some j. By Lemma 2.4, we have s;, sj;1 = 7. Then by
modifying the sequence (Si, ..., Sp) to (S, ...,8h) (is not necessarily a signed dominating
sequence of PyxP, as follows:

For3<j<n-2,ifs;=1then we put:

Sj=sj+ 4,81 =81 -2, S} = Sj¢ — 2 and s = s;, otherwise.
(Ifsj=1forj=2orn-1,thensj=s;+4and S}, = Sjs1 — 4, also if s,= 1 then s, = s, + 4 and s’y
= S'ha - 4). The obtained sequence (S, ..., S’») has required properties s; = 3 for all j.
Furthermore s; + sj.1 + Sji2 211 for 2 < j < n -2. By minimality of the signed domination number
of PgxP,,, we can assume the following order (sj, Sj:1, Sj+2) = (3, 3,5). Thus

For n= 0(mod 3):

n-2
Vo(PgxP,) =8, + > s;+5, , +s, 29+11(n—3)/3+6=(11n+12)/3.
j=2

For n=1(mod 3):
Vs(PgxP,) =5, + > 5;29+11(n —1)/3 =(11n +16)/3.

i=2

For n=2(mod 3):
n-1
Vs(PgxP,) =5, + > s;+s, 29+11(n - 2)/3+3=(11n+14)/3.

j=2
These together with (4), (5) and (6) the proof of Theorem 2.9 is complete. O

Next, we consider the signed domination number of P,oxP,. Here, we have s; =0, 2, 4, 6, 8
or 10.

Proposition 2.10. There are only six possibilities for (s;j, sj+1) = (2, 6). Furthermore, the case (s;,
Sj+1, Sj+2) = (2, 6, 2) is not possible.

Proof. By the drawing, we have only these cases for (s;, sj+1) = (2, 6) which are:
1.1(2,)) =1(4,)) =1(6,)) =1(9,)) =-1and f(7, j +1) = f(10, j +1) = -1,
2.12,)) =1(4,)) =1(7,]) =1(9, J) = -1 and f(5, j +1) = f(10, j +1) = -1,
3.1(2,)) =1(4,)) =1(7,]) =f(10, j) =-1 and f(5, j +1) =1(8, ] +1) = -1,
4.1(2,]) =1(5,)) =f(7,j) = (9, j) =-1 and f(3, j +1) = f(10, j +1) = -1,
5.1(2,j) =1(5,)) =f(7,]) = (10, j) =-1 and f(3, j +1) = f(8, j +1) = -1,
6.f(2,j) =1(5,j) =1(8,j) =f(10, j) =-1and f(3, j +1) =f(6, j +1) = -1.
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We note that (S;, Sj+1, Sj+2) = (2, 6, 2) is not possible, this for all the previous cases. O
Proposition 2.11. If sj=2the s; + sj.1 + Sjp 2 12for2<j<n-2.

Proof. By Lemma 2.4, if s; = 2 then s;.4, Sj+1 2 6. If sj41 = 8, we obtained the required (when sj,; =
8 is sj2 2 2). Let sj.4= 6, by applying Proposition 2.10 we get the required.C]

Theorem 2.12. For n =25, is ys(P1o%xP,) = 4n + 6.

Proof. We define a function f as follows:

f(2,3-1)=f(5,3j-1)=f(8,3j-1)=-1forl<j< r(n -1)/31, f(3,3))=f(6,3)=f(9,3)=-1
for 1<j<[(n-2)/31, f (4, 3j +1) = £ (7, 3j +1) = f (10, 3j +1) = -1 for 1< j <[ (n -3)/3Tand f i, j)
= 1 otherwise. We note that f is a SDF for P,oxP,. Furthermore, sj = 4 for j = 2, ..., n. Hence

Vo(Pp xP,) =s,+> 5,<10+4(n-1)=4n+6. ™

i=2

We will prove that ys(P10%P,) = 4n + 6. For this we need the following claim.

j+k

Claim A.Fork=3is ) s; >4(k+1) where j 2.
j

Proof. Here, we consider the Claim at least for four columns. By Remarks 2.1 and 2.2, s; = 10
and s;=0, 2, 4, 8 or 10. If s; = 4 for all j, then we get the required.

Assume that s; < 2 for some 2 < j < n. By Lemma 2.4, we have s;4, Sj:1 = 10 — 2sj, i.€. Sj.1, Sjs1 2
10 when s; = 0 and sj4, Sj:1 = 6 when s; = 2. From Propositions 2.10 and 2.11, we have (sj, Sj:1,
Si+2) = (2, 6, 2) is not possible and s; + sj;; + Sj2 2 12. Here we aim to calculate the
j+k
summation Zsj . If s;< 2 where 3 <j <n -1, we can modifying the sequence (..., Sj1, Sj, Sj+1,
j

L)t (S -(4-9)12, 4, S5 - (4-15)/2, ...). While, if s;< 2 for j = 2 or n, then we put s; = 4
and Sj1 = Sjr1 — (4 —5;) and s = S0 — (4 — s5) for j = 2 or n, respectively. We repeat this process
if necessary (for each s; < 2), eventually leading to a sequence set which has the same
summation of the basic sequence with s; = 4 for all j. Note s; is still equal 10. Hence,
j+k

Zsj24(k+1). O
J

Now by applying Claim A, we get v, (P, xP,) =s, + > s,210+4(n—-1)=4n+6.
j=2
By using this result together with (7), the proof of Theorem 2.12 is complete. O
m(n+1) n(m+1)

Lemma 2.13. y (P, x P,)>max{ 3 3 }.

Proof. By Lemma 2.4, we have sj; + 2s; =2 m and 2s; + sjx3 = m. This implies that
Sj-1 + 4sj + sj+1 = 2m. Then the following equations are true:

Sp + 4s3 + 54 = 2m,
Sz + 454 + S5 = 2m,
Sy + 4S5 + Sg = 2m,



Sn-a t 45n—3 +Spo 2 2m,

Sn-3 + 482 + Sp1 2 2m,

Sn-2 + 4Sp.1 + Sp = 2m. Thus

6(s;+S2+ ... +57) — (651 + 55y + S3+ Sp1 + 5sp) = (0N —3) 2m.

But, we have s; =m, 2s; + s3 = m and sp.; + 2s, = m (By Lemma 2.4). Hence
6ys(Pm*Pn) = (N—-3)2m+6m+ m+m + 3s, + 3s,. Then

Ys(Pm*Pn) = m(n + 1)/3.

Also, by changing the rows by columns gets:

Ys(Pm*Pn) = n(m + 1)/3. So,

(P xP)> max{m(n; n ”(”: Uy 0

3. Conclusions

This paper determined that exact value of the signed domination number of P, xP, for
m = 8, 9, 10 and arbitrary n. By using same technique methods, our hope eventually lead to
determination ys(P,%P,) for general m and n.

Based on the results in this paper and [14], we arrive to the following conjecture:
Conjecture 3. 1.

1. Form=0(mod 3)and m,n= 3, is

y.(P.xP)= @ 12 g ~2:n=0,2(mod 3),
7s(P,xP) = @ +2 g -1:n=1(mod 3).

2. Form=1(mod3)and m,n>4,is

(PP =| {2

w3

3. Form=2(mod 3)and m,n> 2, is
7s(P,xP)= ’7@—‘+2{gJ :n=0,1(mod 3),

7s(PaxR,) = {@LZEJ—L n=2(mod 3).
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