Signed Domination Number of Directed Paths $\mathbf{P}_{\mathrm{m}} \times \mathbf{P}_{\mathrm{n}}$

Ramy Shaheen
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria. E-mail: shaheenramy2010@hotmail.com

Abstract

Let D be a finite simple directed graph with vertex set $V(D)$ and arc set $A(D)$. A function $f: V(D) \rightarrow\{-1,1\}$ is called a signed dominating function (SDF) if $f\left(N_{D}^{-}[v]\right) \geq 1$ for each vertex $v \in V$. The weight $W(f)$ of f is defined by $\sum_{v \in V} f(v)$. The signed domination number of a digraph D is $\gamma_{s}(\mathrm{D})=\min \{W(f) \mid f$ is an $S D F$ of D$\}$. Let $P_{m} \times P_{n}$ denote the cartesian product of directed paths of length m and n . In this paper, we determine the exact values of $\gamma_{s}\left(P_{m} \times P_{n}\right)$ for $\mathrm{m}=8,9,10$ and arbitrary n . Also, we give a lower bound of $\gamma_{s}\left(P_{m} \times P_{n}\right)$.

Keywords: Directed graph, Directed path, Cartesian product, Signed dominating function, Signed domination number.

1. Introduction

Throughout this paper, a digraph $D(V, A)$ always means a finite directed graph without loops and multiple arcs, where $V=V(D)$ is the vertex set and $A=A(D)$ is the arc set. If $u v$ is an arc of D, then say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex $v \in V(D)$, let $N_{D}^{+}(v)$ and $N_{D}^{-}(v)$ denote the set of out-neighbors and in-neighbors of v, respectively. We write $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)=\left|N_{D}^{-}(v)\right|$ for the out-degree and indegree of v in D, respectively (shortly $\left.d^{+}(v), d(v)\right)$. A digraph D is r-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=r$ for any vertex $v \in \mathrm{D}$. Let $N_{D}^{+}[v]=N_{D}^{+}(v) \cup\{v\}$ and $N_{D}^{-}[v]=N_{D}^{-}(v) \cup\{v\}$, be the set of v and all vertices of out-degrees and in-degrees, respectively. The maximum outdegree and in-degree of D are denoted by $\Delta^{+}(D)$ and $\Delta^{-}(D)$, respectively (shortly Δ^{+}, Δ^{-}). The minimum out-degree and in-degree of D are denoted by $\delta^{+}(\mathrm{D})$ and $\delta(\mathrm{D})$, respectively (shortly $\left.\delta^{+}, \delta\right)$. A signed dominating function of D is defined in [6] as function $f: V \rightarrow\{-1,1\}$ such that $f\left(N_{D}^{-}[v]\right) \geq 1$ for every vertex $v \in V$. The signed domination number of a directed graph D is $\gamma_{s}(D)=\min \{W(f) \mid f$ is an $S D F$ of $D\}$. Also, a signed k-dominating function (SKDF) of D is a function $f: V \rightarrow\{-1,1\}$ such that $f\left(N_{D}^{-}[v]\right) \geq k$ for every vertex $v \in V$. The k-signed domination number of a digraph D is $\gamma_{k s}(D)=\min \{W(f) \mid f$ is $S K D F$ of $D\}$. Consult [1] for the notation and terminology which are not defined here.

The cartesian product $D_{l} \times D_{2}$ of two digraphs D_{l} and D_{2} is the digraph with vertex set $V\left(D_{l} \times D_{2}\right)=V\left(D_{I}\right) \times V\left(D_{2}\right)$ and $\left(\left(u_{1}, u_{2}\right),\left(v_{l}, v_{2}\right)\right) \in A\left(D_{I} \times D_{2}\right)$ if and only if either $u_{l}=v_{l}$ and $\left(u_{2}, v_{2}\right) \in A\left(D_{2}\right)$ or $u_{2}=v_{2}$ and $\left(u_{1}, v_{l}\right) \in A\left(D_{l}\right)$.

In the past few years, several types of domination problems in graphs have been studied [2-5, 9-10], most of those belonging to the vertex domination. In 1995, Dunbar et al. [2], have introduced the concept of signed domination number of an undirected graph. Hass and Wexler in [10], established a sharp lower bound on the signed domination number of a general graph with a given minimum and maximum degree and also of some simple grid graph. Zelinka [6] initiated the study of the signed domination numbers of digraphs. He studied a signed domination number of the digraphs which the indegrees of vertices do not exceed 1 , also the acyclic tournament and the circulant tournament. Karami et al. [7] were established lower and
upper bounds of the signed domination number of digraphs. Atapour et al. [8], presented some sharp lower bounds on the signed k-domination number of digraphs. Also, H. Aram et al. [11], were established upper bound of the signed k -domination number of digraphs. Shaheen and Salim [12], were calculated the signed domination numbers of cartesian product $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ for $\mathrm{m}=$ 3, 4, 5, 6, 7. In [13], Shaheen calculated $\gamma_{s}\left(C_{m} \times C_{n}\right)$ for $m=8,9,10$ and for some general values of m , and n . Also, Shaheen [14], calculated the signed domination numbers of cartesian product $P_{m} \times P_{n}$ for $m=2,3,4,5,6,7$ and arbitrary n. In this paper, we study the signed domination number of cartesian product $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ for $\mathrm{m}, \mathrm{n} \geq 8$. We mainly determine the exact values of $\gamma_{s}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right), \gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right)$ and $\gamma_{\mathrm{s}}\left(\mathrm{P}_{10} \times \mathrm{P}_{\mathrm{n}}\right)$.

Theorem 1.1 (Zelinka [6]). Let D be a directed cycle or path with n vertices. Then $\gamma_{\mathrm{s}}(\mathrm{D})=\mathrm{n}$.
Lemma 1.2 (Zelinka [6]). Let D be a directed graph with n vertices. Then $\gamma_{s}(\mathrm{D}) \equiv \mathrm{n}(\bmod 2)$.
In [14], the following results are proved.
Theorem 1.3 (Shaheen [14]). $\gamma_{s}\left(\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}: \mathrm{n} \equiv 0(\bmod 2)$ and $\gamma_{\mathrm{s}}\left(\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}+1: \mathrm{n} \equiv 1(\bmod 2)$. $\gamma_{s}\left(\mathrm{P}_{3} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}+2\left\lceil\mathrm{n} / 37 . \gamma_{\mathrm{s}}\left(\mathrm{P}_{4} \times \mathrm{P}_{\mathrm{n}}\right)=2 \mathrm{n}: \mathrm{n} \equiv 0(\bmod 2)\right.$ and $\gamma_{\mathrm{s}}\left(\mathrm{P}_{4} \times \mathrm{P}_{\mathrm{n}}\right)=2 \mathrm{n}+2: \mathrm{n} \equiv 1(\bmod 2)$. $\gamma_{\mathrm{s}}\left(\mathrm{P}_{5} \times \mathrm{P}_{\mathrm{n}}\right)=(7 \mathrm{n}+6) / 3: \mathrm{n} \equiv 0(\bmod 3), \gamma_{\mathrm{s}}\left(\mathrm{P}_{5} \times \mathrm{P}_{\mathrm{n}}\right)=(7 \mathrm{n}+8) / 3: \mathrm{n} \equiv 1(\bmod 3)$ and $\gamma_{\mathrm{s}}\left(\mathrm{P}_{5} \times \mathrm{P}_{\mathrm{n}}\right)=(7 \mathrm{n}+$ $4) / 3: \mathrm{n} \equiv 2(\bmod 3) . \gamma_{\mathrm{s}}\left(\mathrm{P}_{6} \times \mathrm{P}_{\mathrm{n}}\right)=(8 \mathrm{n}+6) / 3: \mathrm{n} \equiv 0(\bmod 3), \gamma_{\mathrm{s}}\left(\mathrm{P}_{6} \times \mathrm{P}_{\mathrm{n}}\right)=(8 \mathrm{n}+10) / 3: \mathrm{n} \equiv 1(\bmod 3)$ and $\gamma_{s}\left(\mathrm{P}_{6} \times \mathrm{P}_{\mathrm{n}}\right)=(8 \mathrm{n}+8) / 3: \mathrm{n} \equiv 2(\bmod 3) . \gamma_{\mathrm{s}}\left(\mathrm{P}_{7} \times \mathrm{P}_{\mathrm{n}}\right)=3 \mathrm{n}+4$.

2. Main results

In this section we calculate the signed domination number of the cartesian product of two directed paths P_{m} and P_{n} for $m=8,9,10$ and arbitrary n.

The vertices of a directed path P_{n} are always denoted by the integers $\{1,2, \ldots, \mathrm{n}\}$, considered modulo n. The i th row of $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)$ is $\mathrm{R}_{\mathrm{i}}=\{(\mathrm{i}, \mathrm{j}): \mathrm{j}=1,2, \ldots, \mathrm{n}\}$ and the j th column $\mathrm{K}_{\mathrm{j}}=\{(\mathrm{i}, \mathrm{j}): \mathrm{i}=1,2, \ldots, \mathrm{~m}\}$. For any vertex $(\mathrm{i}, \mathrm{j}) \in \mathrm{V}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)$, always we have the indices i and j are reduced modulo m and n , respectively. If f is a signed dominating function for $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$, then we denote $f\left(K_{j}\right)=\sum_{i=1}^{m} f(i, j)$ of the weight of a column K_{j} and put $\mathrm{s}_{\mathrm{j}}=\left|f\left(\mathrm{~K}_{\mathrm{j}}\right)\right|$. The sequence $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ is called a signed dominating sequence corresponding to f.

Remark 2.1. Since each vertex of K_{1} and R_{1} is 0 -in-degree or 1 -in-degree, then we have $f((\mathrm{i}, 1))$ $=1$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ and $f((1, \mathrm{j}))=1$ for $\mathrm{j}=1,2, \ldots, \mathrm{n}$. So, always we have $\mathrm{s}_{1}=\mathrm{m}$. Furthermore, always we consider the signed dominating sequence ($\mathrm{m}, \mathrm{s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$) for $\gamma_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)$.

Remark 2.2. Since $f((1, \mathbf{j}))=1$ and $f(\mathbf{i}, \mathrm{j})] \geq 1$, then the case $f((\mathbf{i}, \mathbf{j}))=f((\mathrm{i}+1, \mathbf{j}))=-1$ is not possible. So, $s_{j} \geq 0$ for $j=1, \ldots, n$. Furthermore, s_{j} is odd if m is odd and even when m is even.

Remark 2.3: Let f is a $\gamma_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)$-function. Then $f[(\mathrm{r}, \mathrm{s})] \geq 1$ for each $1 \leq \mathrm{r} \leq \mathrm{m}$ and each $1 \leq \mathrm{s} \leq$ n. If $(\mathrm{i}, \mathrm{j}) \notin \mathrm{V}\left\{\mathrm{K}_{1} \cup \mathrm{R}_{1} \cup \mathrm{~K}_{\mathrm{n}} \cup \mathrm{R}_{\mathrm{m}}\right\}$ and $\left.f(\mathrm{i}, \mathrm{j})\right)=-1$, then $\left.f((\mathrm{i} \pm 1, \mathrm{j}))=f(\mathrm{i}, \mathrm{j} \pm 1)\right)=1$ because $f[(\mathrm{i}, \mathrm{j})]$ $\geq 1, f((\mathrm{i}+1, \mathrm{j}-1))=1$ because $f[(\mathrm{i}+1, \mathrm{j})] \geq 1$ and $f((\mathrm{i}-1, \mathrm{j}+1))=1$ because $f[(\mathrm{i}, \mathrm{j}+1)] \geq 1$. On the other hand, if $f((\mathrm{i} \pm 1, \mathrm{j}))=f(\mathrm{i}, \mathrm{j} \pm 1))=1, f((\mathrm{i}-1, \mathrm{j}-1))=1$ and $f((\mathrm{i}+1, \mathrm{j}+1))=1$, then we must have $f((\mathrm{i}, \mathrm{j}))=-1$ since f is a minimum signed dominating function.

For the remainder of this section, let f be a signed domination function of $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ with signed dominating sequence ($\mathrm{m}, \mathrm{s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$). We need the following Lemma:

Lemma 2.4. If $\mathrm{s}_{\mathrm{j}}=\mathrm{k}$ then $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1} \geq \mathrm{m}-2 \mathrm{k}$. Furthermore, $\mathrm{s}_{\mathrm{j}-1}+\mathrm{s}_{\mathrm{j}} \geq \mathrm{m}-\mathrm{k}$ and $\mathrm{s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1} \geq \mathrm{m}-\mathrm{k}$.

Proof. Let $\mathrm{s}_{\mathrm{j}}=\mathrm{k}$, then there are $(\mathrm{m}-\mathrm{k}) / 2$ of vertices in K_{j} which get value -1 . By Remark 2.3, $\mathrm{K}_{\mathrm{j}+1}$ include at least $2(\mathrm{~m}-\mathrm{k}) / 2$ of vertices which get the value 1 and at most $\mathrm{m}-(\mathrm{m}-\mathrm{k})=\mathrm{k}$ of vertices which has value -1 . Hence, $s_{j+1} \geq m-2 k$. Furthermore, $s_{j}+s_{j+1} \geq m-k$. By the same $\operatorname{argument}$ (with considering $f(1, \mathrm{j})=1$ for all j), we get $\mathrm{s}_{\mathrm{j}-1} \geq \mathrm{m}-2 \mathrm{k}$ and $\mathrm{s}_{\mathrm{j}-1}+\mathrm{s}_{\mathrm{j}} \geq \mathrm{m}-\mathrm{k}$.

To determine $\gamma_{s}\left(P_{8} \times P_{n}\right)$ we need the following proposition. Here, we have $s_{j}=0,2,4,6$, or 8 .
Proposition 2.5. For $\mathrm{j}>1$, the case $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(2,4,2)$ is not possible. Furthermore, there are four cases for $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(2,4,4)$ as follows:

1. $f(2, \mathrm{j})=f(5, \mathrm{j})=f(8, \mathrm{j})=f(3, \mathrm{j}+1)=f(6, \mathrm{j}+1)=f(4, \mathrm{j}+2)=f(7, \mathrm{j}+2)=-1$ and $f(\mathrm{i}, \mathrm{k})=1$ otherwise for $\mathrm{k}=\mathrm{j}, \mathrm{j}+1, \mathrm{j}+2$.
2. $f(2, \mathrm{j})=f(5, \mathrm{j})=f(7, \mathrm{j})=f(3, \mathrm{j}+1)=f(8, \mathrm{j}+1)=f(4, \mathrm{j}+2)=f(6, \mathrm{j}+2)=-1$ and $f(\mathrm{i}, \mathrm{k})=1$ otherwise for $\mathrm{k}=\mathrm{j}, \mathrm{j}+1, \mathrm{j}+2$.
3. $f(2, \mathrm{j})=f(4, \mathrm{j})=f(7, \mathrm{j})=f(5, \mathrm{j}+1)=f(8, \mathrm{j}+1)=f(2, \mathrm{j}+2)=f(6, \mathrm{j}+2)=-1$ and $f(\mathrm{i}, \mathrm{k})=1$ otherwise for $\mathrm{k}=\mathrm{j}, \mathrm{j}+1, \mathrm{j}+2$.
4. $f(2, \mathrm{j})=f(4, \mathrm{j})=f(7, \mathrm{j})=f(5, \mathrm{j}+1)=f(8, \mathrm{j}+1)=f(3, \mathrm{j}+2)=f(6, \mathrm{j}+2)=-1$ and $f(\mathrm{i}, \mathrm{k})=1$ otherwise for $\mathrm{k}=\mathrm{j}, \mathrm{j}+1, \mathrm{j}+2$.

The proof comes immediately by drawing those cases.
Theorem 2.6. For $n \geq 5$, is

Proof. We define a function
$f(2,3 \mathrm{j}-1)=f(5,3 \mathrm{j}-1)=f(8,3 \mathrm{j}-1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-1) / 3\rceil, f(3,3 \mathrm{j})=f(6,3 \mathrm{j})=-1$ for $1 \leq \mathrm{j} \leq$ $\lceil(\mathrm{n}-2) / 3\rceil, f(4,3 \mathrm{j}+1)=f(7,3 \mathrm{j}+1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-3) / 3\rceil$ and $f(\mathrm{i}, \mathrm{j})=1$ otherwise. We have f is a SDF for $\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}$ (For an illustration $\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{7}\right)$, see Figure 1). Therefore,
$\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right) \leq 8 \mathrm{n}-2(3 \mathrm{n} / 3+2 \mathrm{n} / 3+2(\mathrm{n}-3) / 3)=(10 \mathrm{n}+12) / 3$ when $\mathrm{n} \equiv 0(\bmod 3)$.
$\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right) \leq 8 \mathrm{n}-2(3(\mathrm{n}-1) / 3+2(\mathrm{n}-1) / 3+2(\mathrm{n}-1) / 3)=(10 \mathrm{n}+14) / 3$ when $\mathrm{n} \equiv 1(\bmod 3)$.
$\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right) \leq 8 \mathrm{n}-2(3(\mathrm{n}+1) / 3+2(\mathrm{n}-2) / 3+2(\mathrm{n}-2) / 3)=(10 \mathrm{n}+10) / 3$ when $\mathrm{n} \equiv 2(\bmod 3)$.

Figure 1. A signed dominating function of $\mathrm{P}_{8} \times \mathrm{P}_{7}$.
By Remarks 2.1 and 2.2, $\mathrm{s}_{1}=8$ and $\mathrm{s}_{\mathrm{j}}=0,2,4,6$ or 8 . By Lemma 2.4, if $\mathrm{s}_{\mathrm{j}}=0$ then $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1}=8$ where $1<\mathrm{j}<\mathrm{n}$, and if $\mathrm{s}_{\mathrm{j}}=2$ then $\mathrm{s}_{\mathrm{j}+1} \geq 4$. By Proposition 2.5 , if $\mathrm{s}_{\mathrm{j}}=2$ then $\mathrm{s}_{\mathrm{j}+1} \geq 4$, furthermore
$\mathrm{s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1}+\mathrm{s}_{\mathrm{j}+2} \geq 10$ where $\mathrm{j} \leq \mathrm{n}-2$. When $\mathrm{s}_{\mathrm{j}}=0$, we can modifying the sequence $\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ to ($s_{1}^{\prime}, \ldots, s_{n}^{\prime}$) (is not necessarily a signed dominating sequence of $P_{8} \times P_{n}$) as follows:

For $3 \leq \mathrm{j} \leq \mathrm{n}-2$, if $\mathrm{s}_{\mathrm{j}}=0$ then we put:
$s_{j}^{\prime}=s_{j}+4, s_{j-1}^{\prime}=s_{j-1}-2, s_{j+1}^{\prime}=s_{j+1}-2$ and $s_{j}^{\prime}=s_{j}$, otherwise.
(If $\mathrm{s}_{\mathrm{j}}=0$ for $\mathrm{j}=2$ or $\mathrm{n}-1$, then $\mathrm{s}_{\mathrm{j}}^{\prime}=\mathrm{s}_{\mathrm{j}}+4$ and $\mathrm{s}_{\mathrm{j}+1}^{\prime}=\mathrm{s}_{\mathrm{j}+1}-4$, also if $\mathrm{s}_{\mathrm{n}}=0$ then $\mathrm{s}_{\mathrm{n}}^{\prime}=\mathrm{s}_{\mathrm{n}}+4$ and $\mathrm{s}_{\mathrm{n}-1}^{\prime}$ $=s_{n-1}^{\prime}-4$). The obtained sequence ($s_{1}^{\prime}, \ldots, s_{n}^{\prime}$) has required properties $s_{j} \geq 2$ for all j and if $s_{j}^{\prime}=2$ then $\mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2} \geq 4$. Hence, $\mathrm{s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1}+\mathrm{s}_{\mathrm{j}+2} \geq 10$ for $2 \leq \mathrm{j} \leq \mathrm{n}-2$. By minimality of the signed domination number of $\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}$, we can assume the following order $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(2,4,4)$. Thus

For $\mathrm{n} \equiv 0(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}-2} \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{n}-1}+\mathrm{s}_{\mathrm{n}} \geq 8+10(\mathrm{n}-3) / 3+6=(10 \mathrm{n}+12) / 3
$$

For $n \equiv 1(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}} \mathrm{~s}_{\mathrm{j}} \geq 8+10(\mathrm{n}-1) / 3=(10 \mathrm{n}+14) / 3 .
$$

For $\mathrm{n} \equiv 2(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{8} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}-1} \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{n}} \geq 8+10(\mathrm{n}-2) / 3+2=(10 \mathrm{n}+10) / 3
$$

These together with (1), (2) and (3) the proof of Theorem 2.6 is complete.
Now, we consider the signed domination number of $\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}$. Here, we have s_{j} is odd and $1 \leq \mathrm{s}_{\mathrm{j}}$ ≤ 9.

Proposition 2.7. There is one possible for $\left(s_{j}, s_{j+1}\right)(3,3)$, it is
$f(2, \mathrm{j})=f(5, \mathrm{j})=f(8, \mathrm{j})=f(3, \mathrm{j}+1)=f(6, \mathrm{j}+1)=f(9, \mathrm{j}+1)=-1$, otherwise $f(\mathrm{i}, \mathrm{d})=1$ for $\mathrm{d}=\mathrm{j}, \mathrm{j}+1$.
The proof comes immediately by drawing those cases.
Proposition 2.8. If $\mathrm{s}_{\mathrm{j}}=3$ then $\mathrm{s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1}+\mathrm{s}_{\mathrm{j}+2} \geq 11$.
Proof. By Remark 2.2, $\mathrm{s}_{\mathrm{j}}=1,3,5,7$ or 9 . We have $\mathrm{s}_{\mathrm{j}}=3$, by Lemma 2.4, $\mathrm{s}_{\mathrm{j}+1} \geq 3$. If $\mathrm{s}_{\mathrm{j}+1} \geq 7$, we obtained the required. If $\mathrm{s}_{\mathrm{j}+1}=5$ then by Lemma 2.4 , we have $\mathrm{s}_{\mathrm{j}+2} \geq 3$ (otherwise $\mathrm{s}_{\mathrm{j}+1} \geq 7$), again gets the required. Let $\mathrm{s}_{\mathrm{j}+1}=3$, by Proposition 2.7 is $f(4, \mathrm{j}+2)=f(7, \mathrm{j}+2)=-1$, therefore $\mathrm{s}_{\mathrm{j}+2} \geq 5$. Finally, for all cases we conclude that $s_{j}+s_{j+1}+s_{j+2} \geq 11$.

Theorem 2.9. For $n \geq 5$, is

$$
\gamma_{s}\left(P_{9} \times P_{n}\right)=\left\{\begin{array}{ll}
\frac{11 n+12}{3} & \text { if } n \equiv 0(\bmod 3
\end{array}\right),
$$

Proof. We define a function f as follows:
$f(2,3 \mathrm{j}-1)=f(5,3 \mathrm{j}-1)=f(8,3 \mathrm{j}-1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-1) / 3\rceil, f(3,3 \mathrm{j})=f(6,3 \mathrm{j})=f(9,3 \mathrm{j})=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-2) / 3\rceil, f(4,3 \mathrm{j}+1)=f(7,3 \mathrm{j}+1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-3) / 3\rceil$ and $f(\mathrm{i}, \mathrm{j})=1$ otherwise. We have f is a SDF for $\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}$. See Figure 2, For an illustration $\gamma_{s}\left(\mathrm{P}_{9} \times \mathrm{P}_{9}\right)$. Therefore,

$$
\begin{align*}
& \gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right) \leq 9 \mathrm{n}-2(3 \mathrm{n} / 3+3 \mathrm{n} / 3+2(\mathrm{n}-3) / 3)=(11 \mathrm{n}+12) / 3 \text { when } \mathrm{n} \equiv 0(\bmod 3) . \tag{4}\\
& \gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right) \leq 9 \mathrm{n}-2(3(\mathrm{n}-1) / 3+3(\mathrm{n}-1) / 3+2(\mathrm{n}-1) / 3)=(11 \mathrm{n}+16) / 3 \text { when } \mathrm{n} \equiv 1(\bmod 3) . \tag{5}
\end{align*}
$$

$\gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right) \leq 9 \mathrm{n}-2(3(\mathrm{n}+1) / 3+3(\mathrm{n}-2) / 3+2(\mathrm{n}-2) / 3)=(11 \mathrm{n}+14) / 3$ when $\mathrm{n} \equiv 2(\bmod 3)$.

Figure 2. A signed dominating function of $\mathrm{P}_{9} \times \mathrm{P}_{9}$.
By Remarks 2.1 and 2.2, $\mathrm{s}_{1}=9$ and $\mathrm{s}_{\mathrm{j}}=1,3,5,7$ or 9 . If $\mathrm{s}_{\mathrm{j}} \geq 3$ for all j , then by Proposition 2.8, we obtained the required. Let $s_{j}=1$ for some j. By Lemma 2.4, we have $s_{j}, s_{j+1} \geq 7$. Then by modifying the sequence $\left(s_{1}, \ldots, s_{n}\right)$ to $\left(s_{1}, \ldots, s_{n}^{\prime}\right)$ (is not necessarily a signed dominating sequence of $\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}$ as follows:

For $3 \leq \mathrm{j} \leq \mathrm{n}-2$, if $\mathrm{s}_{\mathrm{j}}=1$ then we put:
$s_{j}^{\prime}=s_{j}+4, s_{j-1}^{\prime}=s_{j-1}-2, s_{j+1}^{\prime}=s_{j+1}-2$ and $s_{j}^{\prime}=s_{j}$, otherwise.
(If $\mathrm{s}_{\mathrm{j}}=1$ for $\mathrm{j}=2$ or $\mathrm{n}-1$, then $\mathrm{s}_{\mathrm{j}}^{\prime}=\mathrm{s}_{\mathrm{j}}+4$ and $\mathrm{s}_{\mathrm{j}+1}^{\prime}=\mathrm{s}_{\mathrm{j}+1}-4$, also if $\mathrm{s}_{\mathrm{n}}=1$ then $\mathrm{s}_{\mathrm{n}}^{\prime}=\mathrm{s}_{\mathrm{n}}+4$ and $\mathrm{s}_{\mathrm{n}-1}^{\prime}$ $\left.=s_{n-1}^{\prime}-4\right)$. The obtained sequence ($s_{1}^{\prime}, \ldots, s_{n}^{\prime}$) has required properties $s_{j} \geq 3$ for all j. Furthermore $\mathrm{s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1}+\mathrm{s}_{\mathrm{j}+2} \geq 11$ for $2 \leq \mathrm{j} \leq \mathrm{n}-2$. By minimality of the signed domination number of $\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}$, we can assume the following order $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(3,3,5)$. Thus
For $\mathrm{n} \equiv 0(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}-2} \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{n}-1}+\mathrm{s}_{\mathrm{n}} \geq 9+11(\mathrm{n}-3) / 3+6=(11 \mathrm{n}+12) / 3
$$

For $\mathrm{n} \equiv 1(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}} \mathrm{~s}_{\mathrm{j}} \geq 9+11(\mathrm{n}-1) / 3=(11 \mathrm{n}+16) / 3
$$

For $\mathrm{n} \equiv 2(\bmod 3)$:

$$
\gamma_{\mathrm{s}}\left(\mathrm{P}_{9} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}-1} \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{n}} \geq 9+11(\mathrm{n}-2) / 3+3=(1 \ln +14) / 3
$$

These together with (4), (5) and (6) the proof of Theorem 2.9 is complete.
Next, we consider the signed domination number of $P_{10} \times P_{n}$. Here, we have $s_{j}=0,2,4,6,8$ or 10 .

Proposition 2.10. There are only six possibilities for $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}\right)=(2,6)$. Furthermore, the case $\left(\mathrm{s}_{\mathrm{j}}\right.$, $\left.\mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(2,6,2)$ is not possible.

Proof. By the drawing, we have only these cases for $\left(s_{j}, s_{j+1}\right)=(2,6)$ which are:

1. $f(2, \mathrm{j})=f(4, \mathrm{j})=f(6, \mathrm{j})=f(9, \mathrm{j})=-1$ and $f(7, \mathrm{j}+1)=f(10, \mathrm{j}+1)=-1$,
2. $f(2, \mathrm{j})=f(4, \mathrm{j})=f(7, \mathrm{j})=f(9, \mathrm{j})=-1$ and $f(5, \mathrm{j}+1)=f(10, \mathrm{j}+1)=-1$,
3. $f(2, \mathrm{j})=f(4, \mathrm{j})=f(7, \mathrm{j})=f(10, \mathrm{j})=-1$ and $f(5, \mathrm{j}+1)=f(8, \mathrm{j}+1)=-1$,
4. $f(2, \mathrm{j})=f(5, \mathrm{j})=f(7, \mathrm{j})=f(9, \mathrm{j})=-1$ and $f(3, \mathrm{j}+1)=f(10, \mathrm{j}+1)=-1$,
5. $f(2, \mathrm{j})=f(5, \mathrm{j})=f(7, \mathrm{j})=f(10, \mathrm{j})=-1$ and $f(3, \mathrm{j}+1)=f(8, \mathrm{j}+1)=-1$,
6. $f(2, \mathrm{j})=f(5, \mathrm{j})=f(8, \mathrm{j})=f(10, \mathrm{j})=-1$ and $f(3, \mathrm{j}+1)=f(6, \mathrm{j}+1)=-1$.

We note that $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}, \mathrm{~s}_{\mathrm{j}+2}\right)=(2,6,2)$ is not possible, this for all the previous cases.
Proposition 2.11. If $s_{j}=2$ the $s_{j}+s_{j+1}+s_{j+2} \geq 12$ for $2 \leq j \leq n-2$.
Proof. By Lemma 2.4, if $\mathrm{s}_{\mathrm{j}}=2$ then $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1} \geq 6$. If $\mathrm{s}_{\mathrm{j}+1} \geq 8$, we obtained the required (when $\mathrm{s}_{\mathrm{j}+1}=$ 8 is $\mathrm{s}_{\mathrm{j}+2} \geq 2$). Let $\mathrm{s}_{\mathrm{j}+1}=6$, by applying Proposition 2.10 we get the required. \square

Theorem 2.12. For $n \geq 5$, is $\gamma_{s}\left(P_{10} \times P_{n}\right)=4 n+6$.
Proof. We define a function f as follows:
$f(2,3 \mathrm{j}-1)=f(5,3 \mathrm{j}-1)=f(8,3 \mathrm{j}-1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-1) / 3\rceil, f(3,3 \mathrm{j})=f(6,3 \mathrm{j})=f(9,3 \mathrm{j})=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-2) / 3\rceil, f(4,3 \mathrm{j}+1)=f(7,3 \mathrm{j}+1)=f(10,3 \mathrm{j}+1)=-1$ for $1 \leq \mathrm{j} \leq\lceil(\mathrm{n}-3) / 3\rceil$ and $f(\mathrm{i}, \mathrm{j})$ $=1$ otherwise. We note that f is a SDF for $\mathrm{P}_{10} \times \mathrm{P}_{\mathrm{n}}$. Furthermore, $\mathrm{s}_{\mathrm{j}}=4$ for $\mathrm{j}=2, \ldots$, n. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{P}_{10} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}} \mathrm{s}_{\mathrm{j}} \leq 10+4(\mathrm{n}-1)=4 \mathrm{n}+6$.

We will prove that $\gamma_{s}\left(\mathrm{P}_{10} \times \mathrm{P}_{\mathrm{n}}\right) \geq 4 \mathrm{n}+6$. For this we need the following claim.
Claim A. For $\mathrm{k} \geq 3$ is $\sum_{\mathrm{j}}^{\mathrm{j}+\mathrm{k}} \mathrm{s}_{\mathrm{j}} \geq 4(\mathrm{k}+1)$ where $\mathrm{j} \geq 2$.
Proof. Here, we consider the Claim at least for four columns. By Remarks 2.1 and 2.2, $\mathrm{s}_{1}=10$ and $s_{j}=0,2,4,8$ or 10 . If $s_{j} \geq 4$ for all j, then we get the required.

Assume that $\mathrm{s}_{\mathrm{j}} \leq 2$ for some $2 \leq \mathrm{j} \leq \mathrm{n}$. By Lemma 2.4, we have $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1} \geq 10-2 \mathrm{~s}_{\mathrm{j}}$, i.e. $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1} \geq$ 10 when $\mathrm{s}_{\mathrm{j}}=0$ and $\mathrm{s}_{\mathrm{j}-1}, \mathrm{~s}_{\mathrm{j}+1} \geq 6$ when $\mathrm{s}_{\mathrm{j}}=2$. From Propositions 2.10 and 2.11 , we have $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{j}+1}\right.$, $\left.s_{j+2}\right)=(2,6,2)$ is not possible and $s_{j}+s_{j+1}+s_{j+2} \geq 12$. Here we aim to calculate the summation $\sum_{j}^{j+k} s_{j}$. If $s_{j} \leq 2$ where $3 \leq j \leq n-1$, we can modifying the sequence $\left(\ldots, s_{j-1}, s_{j}, s_{j+1}\right.$, $\ldots)$ to $\left(\ldots, \mathrm{s}_{\mathrm{j}-1}-\left(4-\mathrm{s}_{\mathrm{j}}\right) / 2,4, \mathrm{~s}_{\mathrm{j}+1}-\left(4-\mathrm{s}_{\mathrm{j}}\right) / 2, \ldots\right)$. While, if $\mathrm{s}_{\mathrm{j}} \leq 2$ for $\mathrm{j}=2$ or n , then we put $\mathrm{s}_{\mathrm{j}}=4$ and $\mathrm{s}_{\mathrm{j}+1}=\mathrm{s}_{\mathrm{j}+1}-\left(4-\mathrm{s}_{\mathrm{j}}\right)$ and $\mathrm{s}_{\mathrm{j}-1}=\mathrm{s}_{\mathrm{j}-1}-\left(4-\mathrm{s}_{\mathrm{j}}\right)$ for $\mathrm{j}=2$ or n , respectively. We repeat this process if necessary (for each $s_{j} \leq 2$), eventually leading to a sequence set which has the same summation of the basic sequence with $s_{j} \geq 4$ for all j. Note s_{1} is still equal 10. Hence, $\sum_{j}^{j+k} s_{j} \geq 4(k+1)$.

Now by applying Claim A, we get $\gamma_{\mathrm{s}}\left(\mathrm{P}_{10} \times \mathrm{P}_{\mathrm{n}}\right)=\mathrm{s}_{1}+\sum_{\mathrm{j}=2}^{\mathrm{n}} \mathrm{s}_{\mathrm{j}} \geq 10+4(\mathrm{n}-1)=4 \mathrm{n}+6$.
By using this result together with (7), the proof of Theorem 2.12 is complete.
Lemma 2.13. $\gamma_{s}\left(P_{m} \times P_{n}\right) \geq \max \left\{\frac{m(n+1)}{3}, \frac{n(m+1)}{3}\right\}$.

Proof. By Lemma 2.4, we have $\mathrm{s}_{\mathrm{j}-1}+2 \mathrm{~s}_{\mathrm{j}} \geq \mathrm{m}$ and $2 \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1} \geq \mathrm{m}$. This implies that $\mathrm{s}_{\mathrm{j}-1}+4 \mathrm{~s}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}+1} \geq 2 \mathrm{~m}$. Then the following equations are true:
$\mathrm{s}_{2}+4 \mathrm{~s}_{3}+\mathrm{s}_{4} \geq 2 \mathrm{~m}$,
$\mathrm{s}_{3}+4 \mathrm{~s}_{4}+\mathrm{s}_{5} \geq 2 \mathrm{~m}$,
$\mathrm{s}_{4}+4 \mathrm{~s}_{5}+\mathrm{s}_{6} \geq 2 \mathrm{~m}$,
\qquad
......................,
$\mathrm{s}_{\mathrm{n}-4}+4 \mathrm{~s}_{\mathrm{n}-3}+\mathrm{s}_{\mathrm{n}-2} \geq 2 \mathrm{~m}$,
$\mathrm{s}_{\mathrm{n}-3}+4 \mathrm{~s}_{\mathrm{n}-2}+\mathrm{s}_{\mathrm{n}-1} \geq 2 \mathrm{~m}$,
$\mathrm{s}_{\mathrm{n}-2}+4 \mathrm{~s}_{\mathrm{n}-1}+\mathrm{s}_{\mathrm{n}} \geq 2 \mathrm{~m}$. Thus
$6\left(\mathrm{~s}_{1}+\mathrm{s}_{2}+\ldots+\mathrm{s}_{\mathrm{n}}\right)-\left(6 \mathrm{~s}_{1}+5 \mathrm{~s}_{2}+\mathrm{s}_{3}+\mathrm{s}_{\mathrm{n}-1}+5 \mathrm{~s}_{\mathrm{n}}\right) \geq(\mathrm{n}-3) 2 \mathrm{~m}$.
But, we have $\mathrm{s}_{1}=\mathrm{m}, 2 \mathrm{~s}_{2}+\mathrm{s}_{3} \geq \mathrm{m}$ and $\mathrm{s}_{\mathrm{n}-1}+2 \mathrm{~s}_{\mathrm{n}} \geq \mathrm{m}$ (By Lemma 2.4). Hence
$6 \gamma_{s}\left(P_{m} \times P_{n}\right) \geq(n-3) 2 m+6 m+m+m+3 s_{2}+3 s_{n}$. Then
$\gamma_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right) \geq \mathrm{m}(\mathrm{n}+1) / 3$.
Also, by changing the rows by columns gets:
$\gamma_{s}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right) \geq \mathrm{n}(\mathrm{m}+1) / 3$. So, $\gamma_{s}\left(P_{m} \times P_{n}\right) \geq \max \left\{\frac{m(n+1)}{3}, \frac{n(m+1)}{3}\right\}$.

3. Conclusions

This paper determined that exact value of the signed domination number of $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ for $m=8,9,10$ and arbitrary n. By using same technique methods, our hope eventually lead to determination $\gamma_{s}\left(P_{m} \times P_{n}\right)$ for general m and n.

Based on the results in this paper and [14], we arrive to the following conjecture:

Conjecture 3. 1.

1. For $m \equiv 0(\bmod 3)$ and $m, n \geq 3$, is

$$
\begin{aligned}
& \gamma_{s}\left(P_{m} \times P_{n}\right)=\left\lceil\frac{(m+2) n}{3}\right\rceil+2\left\lfloor\frac{m}{3}\right\rfloor-2: n \equiv 0,2(\bmod 3), \\
& \gamma_{s}\left(P_{m} \times P_{n}\right)=\left\lceil\frac{(m+2) n}{3}\right\rceil+2\left\lfloor\frac{m}{3}\right\rfloor-1: n \equiv 1(\bmod 3) .
\end{aligned}
$$

2. For $m \equiv 1(\bmod 3)$ and $m, n>4$, is

$$
\gamma_{s}\left(P_{m} \times P_{n}\right)=\left\lceil\frac{(m+2) n}{3}\right\rceil+2\left\lfloor\frac{m}{3}\right\rfloor .
$$

3. For $m \equiv 2(\bmod 3)$ and $m, n>2$, is

$$
\begin{aligned}
& \gamma_{s}\left(P_{m} \times P_{n}\right)=\left\lceil\frac{(m+2) n}{3}\right\rceil+2\left\lfloor\frac{m}{3}\right\rfloor: n \equiv 0,1(\bmod 3), \\
& \gamma_{s}\left(P_{m} \times P_{n}\right)=\left\lceil\frac{(m+2) n}{3}\right\rceil+2\left\lfloor\frac{m}{3}\right\rfloor-1: n \equiv 2(\bmod 3) .
\end{aligned}
$$

References

[1] T.W. Haines, S.T. Hedetniemi, P.J. Slater, Fundamental of domination in graphs, Marcel Dekker, New York, 1998.
[2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater., Signed domination in graphs, Graph Theory, Combinatorics and Application, John Wiley \& Sons, Inc., 1 (1995), 311-322.
[3] E.J. Cockayne, C.M. Mynhart., On a generalization of signed domination functions of graphs, Ars. Combin., 43 (1996), 235-245.
[4] J.H. Hattingh, E. Ungerer., The signed and minus k-subdomination numbers of comets, Discrete Math., 183 (1998), 141-152.
[5] B. Xu, On signed edge domination numbers of graphs, Discrete Math., 239 (2001), 179-189.
[6] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Mathematical Journal., 55 (2005), 479-482.
[7] H. Karami, S.M., Sheikholeslami, A. Khodkar., Lower bounds on the signed domination numbers of directed graphs, Discrete Math., 309 (8) (2009), 2567-2570.
[8] M., Atapour, S. Sheikholeslami, R. Hajypory, L. Volkmann., The signed k-domination number of directed graphs., Cent. Eur. J. of Math., 8(6) (2010), 1048-1057.
[9] I. Broere, J.H. Hattingh, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math., 138 (1995), 125-135.
[10] R. Hass and T.B. Wexler, Bounds on the signed domination number of a graph, Discrete Math. 195 (1999), 295-298.
[11] H. Aram, S. M. Sheikholeslami and L. Volkmann, Upper Signed k-domination number of directed graphs, Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 9-14.
[12] R. Shaheen and H. Salim, The signed domination number of Cartesian Products of Directed Cycles, Submitted to Utilitas Math.
[13] R. Shaheen, On signed domination number of Cartesian Products of two Directed Cycles $C_{m} \times C_{n}$, Submitted to Ars Comb.
[14] R. Shaheen, On signed domination number of Cartesian Products of Directed Paths, Submitted to Contributions to Discrete Math.

