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Abstract: Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A
function }1,1{)(: DVf is called a signed dominating function (SDF) if 1])[(  vNf D

for each vertex vV. The weight W(f) of f is defined by 
Vv

vf )( . The signed domination number

of a digraph D is s(D) = min {W(f) | f is an SDF of D}. Let Pm×Pn denote the cartesian product
of directed paths of length m and n. In this paper, we determine the exact values of s(Pm×Pn) for
m = 8, 9, 10 and arbitrary n. Also, we give a lower bound of s(Pm×Pn).
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1. Introduction

Throughout this paper, a digraph D(V, A) always means a finite directed graph without
loops and multiple arcs, where V = V(D) is the vertex set and A = A(D) is the arc set. If uv is an
arc of D, then say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex
vV(D), let )(vN D

 and )(vN D
 denote the set of out-neighbors and in-neighbors of v,

respectively. We write |)(|)( vNvd DD
  and |)(|)( vNvd DD

  for the out-degree and in-
degree of v in D, respectively (shortly d+(v), d-(v)). A digraph D is r-regular if

rvdvd DD   )()( for any vertex vD. Let }{)(][ vvNvN DD   and }{)(][ vvNvN DD   ,
be the set of v and all vertices of out-degrees and in-degrees, respectively. The maximum out-
degree and in-degree of D are denoted by +(D) and -(D), respectively (shortly +, -). The
minimum out-degree and in-degree of D are denoted by +(D) and -(D), respectively (shortly
+, -). A signed dominating function of D is defined in [6] as function }1,1{: Vf such that

1])[(  vNf D for every vertex vV. The signed domination number of a directed graph D is
s(D) = min {W(f) | f is an SDF of D}. Also, a signed k-dominating function (SKDF) of D is a
function }1,1{: Vf such that kvNf D  ])[( for every vertex vV. The k-signed

domination number of a digraph D is ks(D) = min {W(f) | f is SKDF of D}. Consult [1] for the
notation and terminology which are not defined here.

The cartesian product D1D2 of two digraphs D1 and D2 is the digraph with vertex set
V(D1D2) = V(D1)V(D2) and ((u1,u2),(v1,v2))A(D1D2) if and only if either u1 = v1 and
(u2, v2)A(D2) or u2 = v2 and (u1, v1)A(D1).

In the past few years, several types of domination problems in graphs have been studied
[2-5, 9-10], most of those belonging to the vertex domination. In 1995, Dunbar et al. [2], have
introduced the concept of signed domination number of an undirected graph. Hass and Wexler
in [10], established a sharp lower bound on the signed domination number of a general graph
with a given minimum and maximum degree and also of some simple grid graph. Zelinka [6]
initiated the study of the signed domination numbers of digraphs. He studied a signed
domination number of the digraphs which the indegrees of vertices do not exceed 1, also the
acyclic tournament and the circulant tournament. Karami et al. [7] were established lower and
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upper bounds of the signed domination number of digraphs. Atapour et al. [8], presented some
sharp lower bounds on the signed k-domination number of digraphs. Also, H. Aram et al. [11],
were established upper bound of the signed k-domination number of digraphs. Shaheen and
Salim [12], were calculated the signed domination numbers of cartesian product CmCn for m =
3, 4, 5, 6, 7. In [13], Shaheen calculated s(Cm×Cn) for m = 8, 9, 10 and for some general values
of m, and n. Also, Shaheen [14], calculated the signed domination numbers of cartesian product
PmPn for m = 2, 3, 4, 5, 6, 7 and arbitrary n. In this paper, we study the signed domination
number of cartesian product PmPn for m, n ≥8. We mainly determine the exact values of
s(P8×Pn), s(P9×Pn) and s(P10×Pn).

Theorem 1.1 (Zelinka [6]). Let D be a directed cycle or path with n vertices. Then s(D) = n.

Lemma 1.2 (Zelinka [6]). Let D be a directed graph with n vertices. Then s(D)  n (mod 2).

In [14], the following results are proved.

Theorem 1.3 (Shaheen [14]). s(P2×Pn) = n: n 0(mod 2) and s(P2×Pn) = n +1: n 1(mod 2).
s(P3×Pn) = n + 2n/3. s(P4×Pn) = 2n : n 0(mod 2) and s(P4×Pn) = 2n +2 : n 1(mod 2).
s(P5×Pn) = (7n + 6)/3: n 0(mod 3), s(P5×Pn) = (7n + 8)/3: n 1(mod 3) and s(P5×Pn) = (7n +
4)/3 : n 2(mod 3). s(P6×Pn) = (8n + 6)/3: n 0(mod 3), s(P6×Pn) = (8n + 10)/3: n 1(mod 3)
and s(P6×Pn) = (8n + 8)/3 : n 2(mod 3). s(P7×Pn) = 3n + 4.

2. Main results

In this section we calculate the signed domination number of the cartesian product of two
directed paths Pm and Pn for m = 8, 9, 10 and arbitrary n.

The vertices of a directed path Pn are always denoted by the integers {1, 2, . . ., n},
considered modulo n. The ith row of V(PmPn) is Ri = {(i, j) : j =1, 2,…,n} and the jth column
Kj = {(i, j) : i = 1, 2, …, m}. For any vertex (i, j)V(PmPn), always we have the indices i and j
are reduced modulo m and n, respectively. If f is a signed dominating function for PmPn, then

we denote 



m

i
j jifKf

1
),()( of the weight of a column Kj and put sj = |f(Kj)|. The sequence

(s1, s2, …, sn) is called a signed dominating sequence corresponding to f.

Remark 2.1. Since each vertex of K1 and R1 is 0-in-degree or 1-in-degree, then we have f((i, 1))
= 1 for i =1, 2, …,m and f((1, j)) = 1 for j =1, 2,…,n. So, always we have s1= m. Furthermore,
always we consider the signed dominating sequence (m, s2, …, sn) for s(Pm×Pn).

Remark 2.2. Since f((1, j)) = 1 and f[(i, j)] ≥ 1, then the case f((i, j)) = f((i +1, j)) = -1 is not
possible. So, sj ≥ 0 for j = 1, …, n. Furthermore, sj is odd if m is odd and even when m is even.

Remark 2.3: Let f is a s(Pm×Pn)-function. Then f[(r, s)] ≥ 1 for each 1 ≤ r ≤ m and each 1 ≤ s ≤
n. If (i, j)V{K1R1KnRm} and f((i, j)) = -1, then f((i1, j)) = f((i, j1)) = 1 because f[(i, j)]
≥ 1, f((i +1, j -1)) = 1 because f[(i +1, j)] ≥ 1 and f((i -1, j +1)) = 1 because f[(i, j +1)] ≥ 1. On the
other hand, if f((i1, j)) = f((i, j1)) = 1, f((i -1, j -1)) = 1 and f((i +1, j +1)) = 1, then we must
have f((i, j)) = -1 since f is a minimum signed dominating function.

For the remainder of this section, let f be a signed domination function of Pm×Pn with
signed dominating sequence (m, s2, …, sn). We need the following Lemma:

Lemma 2.4. If sj = k then sj-1, sj+1 ≥ m – 2k. Furthermore, sj-1 + sj ≥ m – k and sj + sj+1 ≥ m – k.
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Proof. Let sj = k, then there are (m – k)/2 of vertices in Kj which get value -1. By Remark 2.3,
Kj+1 include at least 2(m – k)/2 of vertices which get the value 1 and at most m – (m –k) = k of
vertices which has value -1. Hence, sj+1 ≥ m – 2k. Furthermore, sj + sj+1≥ m – k. By the same
argument (with considering f(1, j) = 1 for all j), we get sj-1 ≥ m – 2k and sj-1 + sj ≥ m – k. □

To determine s(P8×Pn) we need the following proposition. Here, we have sj = 0,2,4,6, or 8.

Proposition 2.5. For j > 1, the case (sj, sj+1, sj+2) = (2, 4, 2) is not possible. Furthermore, there
are four cases for (sj, sj+1, sj+2) = (2, 4, 4) as follows:

1. f(2, j) = f(5, j) = f(8, j) = f(3, j +1) = f(6, j +1) = f(4, j +2) = f(7, j +2) = -1 and f(i, k) = 1
otherwise for k = j, j +1, j +2.

2. f(2, j) = f(5, j) = f(7, j) = f(3, j +1) = f(8, j +1) = f(4, j +2) = f(6, j +2) = -1 and f(i, k) = 1
otherwise for k = j, j +1, j +2.

3. f(2, j) = f(4, j) = f(7, j) = f(5, j +1) = f(8, j +1) = f(2, j +2) = f(6, j +2) = -1 and f(i, k) = 1
otherwise for k = j, j +1, j +2.

4. f(2, j) = f(4, j) = f(7, j) = f(5, j +1) = f(8, j +1) = f(3, j +2) = f(6, j +2) = -1 and f(i, k) = 1
otherwise for k = j, j +1, j +2.

The proof comes immediately by drawing those cases. □

Theorem 2.6. For n ≥ 5, is


























).3(mod2
3

1010

),3(mod1
3

1410

),3(mod0
3

1210

)( 8

nif
n

nif
n

nif
n

PP ns

Proof. We define a function
f (2, 3j -1) = f (5, 3j -1) = f (8, 3j -1) = -1 for 1 ≤ j ≤ (n -1)/3, f (3, 3j) = f (6, 3j) = -1 for 1 ≤ j ≤
(n -2)/3, f (4, 3j +1) = f (7, 3j +1) = -1 for 1≤ j ≤ (n -3)/3 and f (i, j) = 1 otherwise. We have f
is a SDF for P8×Pn (For an illustration s(P8×P7), see Figure 1). Therefore,

s(P8×Pn) ≤ 8n – 2(3n/3 + 2n/3 + 2(n -3)/3) = (10n + 12)/3 when n  0(mod 3). (1)
s(P8×Pn) ≤ 8n –2(3(n-1)/3 + 2(n-1)/3 + 2(n -1)/3) = (10n +14)/3 when n 1(mod 3). (2)
s(P8×Pn) ≤ 8n –2(3(n +1)/3 +2(n -2)/3 +2(n -2)/3) = (10n +10)/3 when n  2(mod 3). (3)

By Remarks 2.1 and 2.2, s1 = 8 and sj = 0, 2, 4, 6 or 8. By Lemma 2.4, if sj = 0 then sj-1, sj+1 = 8
where 1  j  n, and if sj = 2 then sj+1 ≥ 4. By Proposition 2.5, if sj = 2 then sj+1 ≥ 4, furthermore

Figure 1. A signed dominating function of P8×P7.
P7P12.
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sj + sj+1 + sj+2 ≥ 10 where j ≤ n -2. When sj = 0, we can modifying the sequence (s1, …, sn) to
(s'1, …,s'n) (is not necessarily a signed dominating sequence of P8×Pn) as follows:

For 3 ≤ j ≤ n -2, if sj = 0 then we put:
s'j = sj + 4, s'j-1 = sj-1 – 2, s'j+1 = sj+1 – 2 and s'j = sj, otherwise.
(If sj = 0 for j = 2 or n -1, then s'j = sj + 4 and s'j+1 = sj+1 - 4, also if sn = 0 then s'n = sn + 4 and s'n-1
= s'n-1 - 4). The obtained sequence (s'1, …, s'n) has required properties sj ≥ 2 for all j and if s'j = 2
then sj+1, sj+2 ≥ 4. Hence, sj + sj+1 + sj+2 ≥ 10 for 2 ≤ j ≤ n -2. By minimality of the signed
domination number of P8×Pn, we can assume the following order (sj, sj+1, sj+2) = (2, 4,4). Thus

For n  0(mod 3):

3/)12n10(63/)3n(108ssss)PP( n1n

2n

2j
j1n8s  




 .

For n  1(mod 3):

3/)14n10(3/)1n(108ss)PP(
n

2j
j1n8s  



.

For n  2(mod 3):

3/)10n10(23/)2n(108sss)PP( n

1n

2j
j1n8s  





.

These together with (1), (2) and (3) the proof of Theorem 2.6 is complete. □

Now, we consider the signed domination number of P9×Pn. Here, we have sj is odd and 1 ≤ sj
≤ 9.

Proposition 2.7. There is one possible for (sj, sj+1) (3, 3), it is
f(2, j) = f(5, j) = f(8, j) = f(3, j +1) = f(6, j +1) = f(9, j +1) = -1, otherwise f(i, d) =1 for d = j, j +1.

The proof comes immediately by drawing those cases. □

Proposition 2.8. If sj = 3 then sj + sj+1 + sj+2 ≥ 11.

Proof. By Remark 2.2, sj = 1, 3, 5, 7 or 9. We have sj = 3, by Lemma 2.4, sj+1 ≥ 3. If sj+1 ≥ 7, we
obtained the required. If sj+1 = 5 then by Lemma 2.4, we have sj+2 ≥ 3 (otherwise sj+1 ≥ 7), again
gets the required. Let sj+1 = 3, by Proposition 2.7 is f(4, j +2) = f(7, j +2) = -1, therefore sj+2 ≥ 5.
Finally, for all cases we conclude that sj + sj+1 + sj+2 ≥ 11. □

Theorem 2.9. For n ≥ 5, is


























).3(mod2nif
3

14n11

),3(mod1nif
3

16n11

),3(mod0nif
3

12n11

)PP( n9s

Proof. We define a function f as follows:
f (2, 3j -1) = f (5, 3j -1) = f (8, 3j -1) = -1 for 1 ≤ j ≤ (n -1)/3, f (3, 3j) = f (6, 3j) = f (9, 3j) = -1
for 1≤ j ≤ (n -2)/3, f (4, 3j +1) = f (7, 3j +1) = -1 for 1≤ j ≤ (n -3)/3 and f (i, j) = 1 otherwise.
We have f is a SDF for P9×Pn. See Figure 2, For an illustration s(P9×P9). Therefore,

s(P9×Pn) ≤ 9n – 2(3n/3 + 3n/3 + 2(n -3)/3) = (11n + 12)/3 when n  0(mod 3). (4)
s(P9×Pn) ≤ 9n –2(3(n-1)/3 + 3(n-1)/3 + 2(n -1)/3) = (11n +16)/3 when n 1(mod 3). (5)
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s(P9×Pn) ≤ 9n – 2(3(n +1)/3 + 3(n -2)/3 +2(n -2)/3) = (11n +14)/3 when n  2(mod 3). (6)

By Remarks 2.1 and 2.2, s1 = 9 and sj = 1, 3, 5, 7 or 9. If sj ≥ 3 for all j, then by Proposition 2.8,
we obtained the required. Let sj = 1 for some j. By Lemma 2.4, we have sj, sj+1 ≥ 7. Then by
modifying the sequence (s1, …, sn) to (s'1, …,s'n) (is not necessarily a signed dominating
sequence of P9×Pn as follows:

For 3 ≤ j ≤ n -2, if sj = 1 then we put:
s'j = sj + 4, s'j-1 = sj-1 – 2, s'j+1 = sj+1 – 2 and s'j = sj, otherwise.
(If sj = 1 for j = 2 or n -1, then s'j = sj + 4 and s'j+1 = sj+1 – 4, also if sn = 1 then s'n = sn + 4 and s'n-1
= s'n-1 - 4). The obtained sequence (s'1, …, s'n) has required properties sj ≥ 3 for all j.
Furthermore sj + sj+1 + sj+2 ≥11 for 2 ≤ j ≤ n -2. By minimality of the signed domination number
of P9×Pn, we can assume the following order (sj, sj+1, sj+2) = (3, 3,5). Thus
For n  0(mod 3):

3/)12n11(63/)3n(119ssss)PP( n1n

2n

2j
j1n9s  




 .

For n  1(mod 3):

3/)16n11(3/)1n(119ss)PP(
n

2j
j1n9s  



.

For n  2(mod 3):

3/)14n11(33/)2n(119sss)PP( n

1n

2j
j1n9s  





.

These together with (4), (5) and (6) the proof of Theorem 2.9 is complete. □

Next, we consider the signed domination number of P10×Pn. Here, we have sj = 0, 2, 4, 6, 8
or 10.

Proposition 2.10. There are only six possibilities for (sj, sj+1) = (2, 6). Furthermore, the case (sj,
sj+1, sj+2) = (2, 6, 2) is not possible.

Proof. By the drawing, we have only these cases for (sj, sj+1) = (2, 6) which are:
1. f(2, j) = f(4, j) = f(6, j) = f(9, j) = -1 and f(7, j +1) = f(10, j +1) = -1,
2. f(2, j) = f(4, j) = f(7, j) = f(9, j) = -1 and f(5, j +1) = f(10, j +1) = -1,
3. f(2, j) = f(4, j) = f(7, j) = f(10, j) = -1 and f(5, j +1) = f(8, j +1) = -1,
4. f(2, j) = f(5, j) = f(7, j) = f(9, j) = -1 and f(3, j +1) = f(10, j +1) = -1,
5. f(2, j) = f(5, j) = f(7, j) = f(10, j) = -1 and f(3, j +1) = f(8, j +1) = -1,
6. f(2, j) = f(5, j) = f(8, j) = f(10, j) = -1 and f(3, j +1) = f(6, j +1) = -1.

Figure 2. A signed dominating function of P9×P9.
P7P12.
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We note that (sj, sj+1, sj+2) = (2, 6, 2) is not possible, this for all the previous cases. □

Proposition 2.11. If sj = 2 the sj + sj+1 + sj+2 ≥ 12 for 2 ≤ j ≤ n -2.

Proof. By Lemma 2.4, if sj = 2 then sj-1, sj+1 ≥ 6. If sj+1 ≥ 8, we obtained the required (when sj+1 =
8 is sj+2 ≥ 2). Let sj+1= 6, by applying Proposition 2.10 we get the required.□

Theorem 2.12. For n ≥ 5, is s(P10×Pn) = 4n + 6.

Proof. We define a function f as follows:
f (2, 3j -1) = f (5, 3j -1) = f (8, 3j -1) = -1 for 1 ≤ j ≤ (n -1)/3, f (3, 3j) = f (6, 3j) = f (9, 3j) = -1
for 1≤ j ≤ (n -2)/3, f (4, 3j +1) = f (7, 3j +1) = f (10, 3j +1) = -1 for 1≤ j ≤ (n -3)/3 and f (i, j)
= 1 otherwise. We note that f is a SDF for P10×Pn. Furthermore, sj = 4 for j = 2, …, n. Hence





n

2j
j1n10s 6n4)1n(410ss)PP( . (7)

We will prove that s(P10×Pn) ≥ 4n + 6. For this we need the following claim.

Claim A. For k ≥ 3 is 



kj

j
j )1k(4s where j ≥ 2.

Proof. Here, we consider the Claim at least for four columns. By Remarks 2.1 and 2.2, s1 = 10
and sj = 0, 2, 4, 8 or 10. If sj ≥ 4 for all j, then we get the required.

Assume that sj ≤ 2 for some 2 ≤ j ≤ n. By Lemma 2.4, we have sj-1, sj+1 ≥ 10 – 2sj, i.e. sj-1, sj+1 ≥
10 when sj = 0 and sj-1, sj+1 ≥ 6 when sj = 2. From Propositions 2.10 and 2.11, we have (sj, sj+1,
sj+2) = (2, 6, 2) is not possible and sj + sj+1 + sj+2 ≥ 12. Here we aim to calculate the

summation
 kj

j
js . If sj ≤ 2 where 3 ≤ j ≤ n -1, we can modifying the sequence (…, sj-1, sj, sj+1,

…) to (…, sj-1 - (4 – sj)/2, 4, sj+1 - (4 – sj)/2, …). While, if sj ≤ 2 for j = 2 or n, then we put sj = 4
and sj+1 = sj+1 – (4 – sj) and sj-1 = sj-1 – (4 – sj) for j = 2 or n, respectively. We repeat this process
if necessary (for each sj ≤ 2), eventually leading to a sequence set which has the same
summation of the basic sequence with sj ≥ 4 for all j. Note s1 is still equal 10. Hence,





kj

j
j )1k(4s . □

Now by applying Claim A, we get 



n

2j
j1n10s 6n4)1n(410ss)PP( .

By using this result together with (7), the proof of Theorem 2.12 is complete. □

Lemma 2.13. }.
3

)1(,
3

)1({max)( 


mnnm
PP nms

Proof. By Lemma 2.4, we have sj-1 + 2sj ≥ m and 2sj + sj+1 ≥ m. This implies that
sj-1 + 4sj + sj+1 ≥ 2m. Then the following equations are true:

s2 + 4s3 + s4 ≥ 2m,
s3 + 4s4 + s5 ≥ 2m,
s4 + 4s5 + s6 ≥ 2m,
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…………………,
…………………,
sn-4 + 4sn-3 + sn-2 ≥ 2m,
sn-3 + 4sn-2 + sn-1 ≥ 2m,
sn-2 + 4sn-1 + sn ≥ 2m. Thus

6(s1 + s2 + … + sn) – (6s1 + 5s2 + s3 + sn-1 + 5sn) ≥ (n – 3) 2m.

But, we have s1 = m, 2s2 + s3 ≥ m and sn-1 + 2sn ≥ m (By Lemma 2.4). Hence

6s(Pm×Pn) ≥ (n – 3) 2m + 6 m + m + m + 3s2 + 3sn. Then

s(Pm×Pn) ≥ m(n + 1)/3.

Also, by changing the rows by columns gets:

s(Pm×Pn) ≥ n(m + 1)/3. So,

}.
3

)1(,
3

)1({max)( 


mnnm
PP nms □

3. Conclusions

This paper determined that exact value of the signed domination number of Pm×Pn for
m = 8, 9, 10 and arbitrary n. By using same technique methods, our hope eventually lead to
determination s(Pm×Pn) for general m and n.

Based on the results in this paper and [14], we arrive to the following conjecture:

Conjecture 3. 1.

1. For m  0(mod 3) and m, n ≥ 3, is

).3(mod1:1
3

2
3

)2()(

),3(mod2,0:2
3

2
3

)2()(









 











 



n
mnm

PP

n
mnm

PP

nms

nms





2. For m  1(mod 3) and m, n > 4, is

.
3

2
3

)2()( 







 


mnm

PP nms

3. For m  2(mod 3) and m, n > 2, is

).3(mod2:1
3

2
3

)2()(

),3(mod1,0:
3

2
3

)2()(









 











 



n
mnm

PP

n
mnm

PP

nms

nms




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