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Abstract
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1 Introduction

Sharpe (1966) defined the ratio of a fund’s excess return per unit of risk measured by its standard

deviation, as a measure of investment performance with respect to return and risk. This ratio is

known as the Sharpe ratio and it is so popular in investment analysis that investments are often

ranked and evaluated based on this ratio. This paper focuses on using asymptotic likelihood theory

to obtain accurate inference for the Sharpe ratio when returns are assumed to follow a Gaussian

autocorrelated process.

Approximations aimed at improving the accuracy of likelihood methods have been proposed over the

past three decades. Among them, Barndorff-Nielsen (1986, 1990) introduced the modified signed

log likelihood ratio statistic to approximate tail probability with order of convergence O(n−3/2).

However, the Barndoff-Nielsen (1986) method requires the existence of an ancillary statistic, which,

in a general setting may not exist or, even when it does exist, it may not be unique. Fraser (1988,

1990), Fraser and Reid (1995), and Fraser, Reid and Wu (1999), extended the modified signed log

likelihood ratio statistic method to a general model setting.

The objective of this paper is to derive the modified signed log likelihood ratio statistic to obtain

highly accurate inference for the Sharpe ratio when returns are assumed to be Gaussian autocor-

related. While most of the literature has addressed the large sample properties of the Sharpe ratio

(see for instance, Lo (2002), Mertens (2002), Christie (2005), Bailey and Lopez de Prado (2012)),

it is important to compare the performance of these methods when only a small sample of obser-

vations is available. Real life examples are used in this paper to illustrate that results obtained

by the methods discussed in this paper can vary vastly. Simulation studies are then conducted to

compare the accuracy of the methods.

Mathematically, the Sharpe ratio for a fund with an expected return µ and return standard devia-

tion σ is

SR =
µ− rf
σ

, (1)

where rf is the risk-free rate of return of a benchmark fund. This ratio can be shown to be the

slope between a risky and a risk-free fund in (µ, σ) space. According to the mean-variance the-

ory developed by Markowitz (1952) and the Capital Asset Pricing Model (CAPM) developed by

Sharpe (1964) and Lintner (1965), the Sharpe ratio of the market portfolio represents the slope of

the Capital Market Line.

The natural estimator of the Sharpe ratio is given by:

ŜR =
µ̂− rf
σ̂

, (2)
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where µ̂ is the sample mean return of the fund and σ̂ is the corresponding sample standard deviation.

The return defined here is the log return of a fund

rt = log

(
pt
pt−1

)
,

where pt is the price of the fund at time t. In this paper, we consider inference for the one sample

Sharpe ratio, and inference for the difference between two independent samples under a Gaussian

AR(1) structure. Finally, we extend the discussion to the Gaussian AR(2) structure.

2 Likelihood-Based Inference

In this section, we review two standard first-order likelihood-based methods and then introduce

a third-order likelihood-based method. Let y = (y1, . . . , yn)′ be a sample from a population with

density function given by f(·,θ), where θ is a p-dimensional parameter and p < n. Then the

likelihood function of θ is given as follows:

L (θ; y) = c ·
n∏
i=1

f (yi;θ) ,

where c = c (y) ∈ (0,+∞) is an arbitrary constant. The log likelihood function is defined as:

` (θ) = ` (θ; y) = a+
n∑
i=1

log f (yi;θ) , (3)

where a ∈ < is an arbitrary constant independent of θ. Moreover, we denote λ = λ(θ) to be the

vector of nuisance parameters, and ψ = ψ(θ) to be our scalar parameter of interest.

2.1 First-order likelihood-based methods

One of the most commonly used techniques to obtain inference for ψ = ψ(θ) is based on the

asymptotic distribution of the maximum likelihood estimator (mle) of ψ. Let θ̂ be the mle of θ,

which satisfies the first order conditions:

`θ(θ̂) =
∂`(θ)

∂θ

∣∣∣∣
θ̂

= 0.

With the regularity conditions stated in Cox and Hinkley (1979), θ̂ is asymptotically distributed

as a normal distribution with mean θ and asymptotic variance given by the inverse of the Fisher

expected information

var(θ̂) ≈
[
E

(
−∂

2`(θ)

∂θ∂θ′

)]−1
.

Calculating the Fisher expected information can be complicated, but it can be estimated by the
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observed information evaluated at the mle. Hence, we have

ˆvar(θ̂) ≈
[
j(θ̂)

]−1
=

[
−∂

2`(θ)

∂θ∂θ′

]−1
θ̂

.

By applying the delta method, the standardized mle of ψ can simply be stated as

q = q(ψ) =
ψ̂ − ψ√

ˆvar(ψ̂)
.

This statistic is asymptotically distributed as a standard normal distribution with

ˆvar(ψ̂) ≈ ψ′θ(θ̂)j−1(θ̂)ψθ(θ̂),

where ψθ(θ̂) is the derivative of ψ(θ) with respect to θ and is evaluated at the mle. If we define

the significance function of ψ obtained from q(ψ) to be

p(ψ) = Φ(q(ψ)),

where Φ(·) is the cumulative distribution function of the standard normal distribution, then in-

ference for ψ can be obtained directly from this significance function. For example, the p-value

for testing H0 : ψ = ψ0 versus Ha : ψ 6= ψ0 is 2 min {p(ψ0), 1− p(ψ0)}. Moreover, a (1 − γ)100%

confidence interval for ψ is (ψL, ψU ) where:

ψL = min
{
p−1(γ/2), p−1(1− γ/2)

}
ψU = max

{
p−1(γ/2), p−1(1− γ/2)

}
.

Another commonly used asymptotic technique to obtain inference for ψ is based on the log likelihood

ratio statistic, 2
[
`(θ̂)− `(θ̂ψ)

]
, where θ̂ψ is the constrained mle obtained by maximizing `(θ)

subject to the constraint ψ(θ) = ψ. One way to obtain the constrained mle is to apply the

Lagrange multiplier technique which is to maximize the function

H(α,θ) = `(θ) + α [ψ(θ)− ψ] ,

with respect to (α,θ), where α is the Lagrange multiplier. Hence (α̂, θ̂ψ) satisfies the first order

conditions:
∂H(α,θ)

∂(α,θ)

∣∣∣∣
(α̂,θ̂ψ)

= 0.

From this resultant maximization, we can define the tilted log likelihood function as

˜̀(θ) = `(θ) + α̂ [ψ(θ)− ψ] .

This function has the property that ˜̀(θ̂ψ) = `(θ̂ψ). The tilted log likelihood function is an impor-

tant function for the proposed method, which will be discussed in the next section.
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With the regularity conditions given in Cox and Hinkley (1979), the log likelihood ratio statistic

is asymptotically distributed as a chi-square distribution with degrees of freedom being equal to

dim(ψ). Since the dimension of ψ is equal to one, we have the signed log likelihood ratio statistic:

R = R(ψ) = sgn(ψ̂ − ψ)

√
2
[
`(θ̂)− `(θ̂ψ)

]
. (4)

This statistic is asymptotically distributed as a standard normal distribution. Thus, the significance

function of ψ obtained from R(ψ) is

p(ψ) = Φ(R(ψ))

and, as in the standardized mle case, inference for ψ can be obtained from this significance function.

Theoretically, both q(ψ) and R(ψ) have order of accuracy O(n−1/2). Doganaksoy and Schmee

(1993) showed that R(ψ) tends to give better coverage properties than q(ψ). Moreover, R(ψ) is a

parameterization invariant method, whereas q(ψ) is not. However, q(ψ) is more popular in practice

because of its simplicity in calculations.

2.2 Third-order likelihood-based method

In recent years, there exists various improvements to obtain more accurate inference methodolo-

gies. In particular, Barndorff-Nielsen (1986, 1990) proposed the modified signed log likelihood ratio

statistic

R∗ = R∗(ψ) = R(ψ)− 1

R(ψ)
log

R(ψ)

Q(ψ)
. (5)

This statistic is asymptotically distributed as a standard normal distribution with order of accuracy

O(n−3/2). Note that R(ψ) is the signed log likelihood ratio statistic and Q(ψ) is a special statistic

that depends on an ancillary statistic. This ancillary statistic needs to be constructed on a case-

by-case basis. For the special case that ψ is a component parameter of the canonical parameter of

a canonical exponential family model, Q(ψ) is simply the standardized mle of ψ.

Fraser (1988, 1990), Fraser and Reid (1995), and Fraser, Reid and Wu (1999) derived a systematic

method to obtain Q(ψ) for a general model setting. The idea is to first obtain the locally defined

canonical parameter ϕ (θ), which takes the form

ϕ (θ) = V′
∂

∂y
` (θ) (6)

where

V =
∂y

∂θ

∣∣∣∣
θ̂

= −
(
∂z (θ,y)

∂y

)−1 ∂z (θ,y)

∂θ

∣∣∣∣
θ̂

(7)
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with z (θ,y) representing a pivotal quantity. Then Q(ψ) expressed in the ϕ(θ) scale is given by

Q = Q(ψ) = sgn(ψ̂ − ψ)

∣∣∣χ(θ̂)− χ(θ̂ψ)
∣∣∣√

ˆvar(χ(θ̂)− χ(θ̂ψ))
, (8)

where

χ(θ) = ψ′θ(θ̂ψ)ϕ−1θ (θ̂ψ)ϕ(θ), (9)

ψθ(θ) is the derivative of ψ(θ) with respect to θ, ϕθ(θ) is the derivative of ϕ(θ) with respect to

θ, and |χ(θ̂) − χ(θ̂ψ)| measures the departure
∣∣∣ψ̂ − ψ∣∣∣ in ϕ(θ) scale. The estimated variance of

(χ(θ̂)− χ(θ̂ψ)) is given as

ˆvar(χ(θ̂)− χ(θ̂ψ)) =
ψ′θ(θ̂ψ )̃j−1(θ̂ψ)ψθ(θ̂ψ)

∣∣∣̃j(θ̂ψ)
∣∣∣ ∣∣∣ϕθ(θ̂ψ)

∣∣∣−2∣∣∣j(θ̂)
∣∣∣ ∣∣∣ϕθ(θ̂)

∣∣∣−2 , (10)

with j̃(θ̂ψ) being the observed information calculated from the tilted likelihood function evaluated

at the constrained mle θ̂ψ.

In the next section, we apply the third-order likelihood methodology for inference on the Sharpe

ratio. An example is presented to illustrate the application of the proposed method along with some

existing methods in the statistical literature. Simulation results are then conducted and presented

to compare the accuracy of the methods discussed in this paper.

3 The One Sample Sharpe Ratio under AR(1) Returns

In this section, we consider the use of the method for inference on the one sample Sharpe ratio under

AR(1) returns. Consider a fund with log returns at time t denoted by rt, where t = 1, 2, . . . , T .

Under a Gaussian AR(1) assumption on this return series, we have the following basic setting:
rt = µ+ ε∗t t ≥ 1;

ε∗t = ρε∗t−1 + σvt t ≥ 2;

vt ∼ N (0, 1) t ≥ 2.

Additionally, to make this AR(1) process stationary, we require |ρ| < 1.

A stationary process is a stochastic process whose joint probability distribution function does not

change when shifted in time. Consequently, parameters such as the mean and variance do not

change over time and do not follow any trends. Thus, for a stationary AR(1) process, we have:
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rt ∼ N
(
µ, σ2

1−ρ2

)
, for t ≥ 1 and (11)

cov (ri, rj) =
σ2ρ|i−j|

1− ρ2
, for any i,j = 1,2,. . ., T. (12)

Both expressions in (??) and (??) are independent of t, which obviously conform to stationarity.

From (??), the parameter of interest and its corresponding derivative are:

ψ (θ) =
µ− rf√
var (rt)

=
µ− rf√

σ2

1−ρ2

,

ψθ (θ) = (ψρ (θ) , ψµ (θ) , ψσ2 (θ))′ ,

where θ = (ρ, µ, σ2)′.

For a clearer understanding of our testing procedure, it is useful to rewrite our model in reduced

matrix formulations. We do so as follows:

r = µ1 + σε = µ1 + ε∗,

where 1 is the one vector, and

ε = (ε1, . . . , εT )′ ∼ N

0,Ω =

(
ρ|i−j|

1− ρ2

)
ij

 .

Additionally, we will require the inverse matrix of Ω, its Cholesky decomposition, and its derivative

matrix. Specifically,

A = (aij) = Ω−1 =



1 −ρ 0 0 · · · 0 0 0

−ρ 1 + ρ2 −ρ 0 · · · 0 0 0

0 −ρ 1 + ρ2 −ρ · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 0 · · · 0 −ρ 1


= L′L ,
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and

L = (lij) =



√
1− ρ2 0 0 · · · 0 0 0

−ρ 1 0 · · · 0 0 0

0 −ρ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ρ 1 0

0 0 0 · · · 0 −ρ 1


. (13)

Notice that the dependence of matrices A and L are only on the parameter ρ. We define Aρ =(
daij
dρ

)
, Aρρ =

(
d2aij
dρ2

)
, and Lρ =

(
dlij
dρ

)
.

The probability density function of r is given by

f (r;θ) = (2π)−
n
2
∣∣σ2Ω∣∣− 1

2 e−
1
2
(r−µ·1)′(σ2Ω)−1(r−µ·1)

=
n
Π
i=2

(
1√

2πσ2
e−

1
2σ2

(ri−µ−ρ(ri−1−µ))2
)

1√
2π σ2

1−ρ2

e
− 1

2 σ2

1−ρ2
(r1−µ)2

.

The log likelihood function can be written as

` (θ) = a− n

2
log σ2 +

1

2
log
(
1− ρ2

)
− 1

2σ2
(r− µ1)′A(r− µ1).

The first and second derivatives of ` (θ) with respect to the parameter θ can be obtained in the

normal fashion. And hence the quantities: θ̂, j(θ̂), θ̂ψ, j̃(θ̂), and R(ψ) can be obtained.

3.1 Existing methods

The following is a summary of some of the popular methods in the literature used to obtain inference

for the one sample Sharpe ratio:

1. Lo (2002) showed that, for large sample size, the distribution of the estimator of the Sharpe

ratio can be derived using the mle and delta method:

ŜR = ψ̂ = ψ(θ̂)
d→ N

(
ψ(θ), ψ′θ(θ̂)var(θ̂)ψθ(θ̂)

)
. (14)

where var(θ̂) is the inverse of the Fisher expected information.

2. Alternatively, we can replace the Fisher expected information from the result above with the

observed information evaluated at θ̂:

ŜR = ψ̂ = ψ
(
θ̂
)

d→ N
(
ψ(θ), ψ′θ(θ̂)j−1(θ̂)ψθ(θ̂)

)
. (15)
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3. The signed log likelihood ratio statistic:

R(ψ) = sgn(ψ̂ − ψ)

√
2[l(θ̂)− l(θ̂ψ)]

d→ N(0, 1).

4. Van Belle (2002) noted that under a null of µ = 0, the t-statistic has a standard error of

approximately √
(1 + ρ)/(1− ρ).

With the restriction that the method is applicable only when µ = 0, it cannot be applied

to obtain confidence intervals for SR = ψ. Hence, we will not include this method in our

numerical studies.

3.2 Application of the third-order likelihood-based method

In order to apply the third-order likelihood-based method discussed in Section 2, we need the

pivotal quantity z. For this problem,

z =
(
σ2Ω

)− 1
2 (r− µ1) =

L (r− µ1)

σ
=


√

1− ρ2ε1
ε2 − ρε1

...

εn − ρεn−1


is a pivotal quantity. We note this pivotal quantity coincides with the standard quantity used to

estimate the parameters of an AR(1) model in the literature (see for example Hamilton (1994)).

Consequently, V can be constructed from (??) and takes the form

V = −
(
∂z

∂r

)−1 ∂z

∂θ

∣∣∣∣
θ̂

=
(
−L̂−1L̂ρ (r− µ̂1) 1 r−µ̂·1

2σ̂2

)
.

Note that V is a matrix of sample returns r and is not related to the parameter θ. Finally, the

locally defined canonical parameter at the data can be obtained from (??) and it takes the form

ϕ (θ) = (ϕ1 (θ) , ϕ2 (θ) , ϕ3 (θ))′ = V′ · ∂
∂r
` (θ) = V′

(
− 1

σ2
A (r− µ1)

)
.

In addition, we also need the first order derivatives of the canonical parameter:

ϕθ (θ) = V′
(

∂2

∂r∂θ
` (θ)

)
= V′

(
∂2`(θ)
∂r∂ρ

∂2`(θ)
∂r∂µ

∂2`(θ)
∂r∂σ2

)
,

where

∂2` (θ)

∂r∂ρ
= − 1

σ2
Aρ (r− µ1) ,

∂2` (θ)

∂r∂µ
=

1

σ2
A1, and

∂2` (θ)

∂r∂σ2
=

1

σ4
A (r− µ1) .
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Given the above information, the signed log likelihood ratio statistic R(ψ) can be constructed

from (??), and Q(ψ) can be obtained from (??), and finally, the proposed third-order likelihood

approximation based on the Barndorff-Nielsen method R∗(ψ) can be obtained from (??). Hence,

the significance function of ψ can be obtained.

3.3 Numerical study

We will first consider a real life data problem and illustrate results obtained by the methods

discussed in this paper are quite different. Hence, we use simulation studies to compare the accuracy

of these methods.

3.3.1 Real life example

The data used for this example are taken from Ruppert (2004, page 113) and given in Table ??.

The data is a series of size 40 representing daily closing prices and returns for GE common stock in

January and February 2000. Ruppert (2004, page 124) had tested and validated that these returns

follow a Gaussian autoregressive process of order one. Moreover, the risk-free rate rf is set as the

average daily return of the 3-Month Treasury Bill during the above period. This value is 0.0001

for January and 0.0002 for February.1

Table ?? reports 95% confidence intervals for the Sharpe ratio separately for the January GE

returns and February GE returns. Upon inspection of this table, we find the resulting confidence

intervals obtained from the various methods to be quite different. Moreover, p(ψ) for some specific

ψ values are reported in Tables ?? and ??. We can see that the results vary across the methods.

For example, for the GE January returns data, suppose we are interested in testing:

H0 : SR = ψ ≤ 0 versus Ha : SR = ψ > 0

The corresponding p-value from our proposed method is 0.1028. Using this p-value, we would not

reject the null at a 90% significance level, while all other methods would in fact reject the null at a

90% significance level. Given the difference of confidence intervals produced by each method, it is

naturally of statistical interest to study the accuracy of each method. To achieve this, simulation

studies are performed.

3.3.2 Simulation study

Simulation studies to assess the performance of our third-order likelihood-based method relative

to the existing methods are presented in this section. For some combinations of: n = 26, 52,

µ − rf = −1, 0, 1, σ2 = 1, and ρ = −0.5, 0.5, 10,000 Monte Carlo replications are performed from

an AR(1) process with parameters θ = (ρ, µ, σ2)′. For each generated sample, the 95% confidence

1Source: Board of Governors of the Federal Reserve System (US), 3-Month Treasury Bill: Secondary Market Rate
[DTB3], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/DTB3
on May 3, 2016.
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interval for the Sharpe ratio is calculated. Note that, theoretically, the standard error (SE) for this

simulation study can be calculated from the Bernoulli distribution and it is
√

0.05(0.95)/10000.

The performance of each method is evaluated using the five criteria listed below:

1. The central coverage probability (CP): Proportion of the true Sharpe ratio that falls within

the 95% confidence interval;

2. The lower tail error rate (LE): Proportion of the true Sharpe ratio that falls below the lower

limit of the 95% confidence interval;

3. The upper tail error rate (UE): Proportion of the true Sharpe ratio that falls above the upper

limit of the 95% confidence interval;

4. The average bias (AB): Defined as AB = |LE−0.025|+|UE−0.025|
2 .

5. The average bias per unit of standard error (AB/SE). Notice that AB and AB/SE essentially

provide the same information except the latter is easier for visualizing how each method

compares to the nominal values.

The desired nominal values are 0.95, 0.025, 0.025, 0, and 0 respectively. These values reflect the

desired properties of the accuracy and symmetry of the interval estimates of the Sharpe ratio.

The results are recorded in Table ??. Both of Lo’s methods (expected information (Lo(exp))

and observed information (Lo(obs)) share very similar results but they produce results that are

far from the desired values. Results from the signed log likelihood ratio (Likelihood Ratio) are

slightly better but they are still not satisfactory, especially when the sample size is small. The

proposed method (Proposed) gives excellent results and outperforms all the other methods using

all of our simulation criteria.

To examine how sample size affects the performance of each method, simulation studies under var-

ious combinations of the parameters and sample sizes are conducted. As in above, 10,000 Monte

Carlo samples are generated and we obtain the 95% confidence interval for the Sharpe ratio for

each combination of parameters and sample sizes. We present a visualization of our results. Figure

?? presents two plots with sample size varying from 6 to 100. Sample size is plotted versus AB/SE

for the parameter settings: µ − rf = 0, σ2 = 1, ρ = 0.5 and µ − rf = 0, σ2 = 1, and ρ = −0.5.

It is clearly evident that the proposed method outperforms all the existing methods discussed in

this paper; this holds true even for an extremely small sample size of n = 8. The various other

methods may need up to a sample size of over 100 or 200 (depending on the value of ρ) to give

a reasonable AB/SE. Other combinations of parameters have also been calculated and the results

are visually very similar to what has been presented in this particular case. Results are available

from the authors upon request.
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Similarly, to study the effect of ρ on the accuracy of each method, we performed simulation studies.

Figure ?? presents a plot of ρ versus AB/SE with: n = 26, µ−rf = 0, and σ2 = 1. From this graph,

we can see how visually striking the proposed method is when compared to the other methods.

The proposed method gives extremely accurate results even when |ρ| is as high as 0.9.

4 Two Sample Comparison of the Sharpe Ratio under Indepen-
dent AR(1) Returns

In this section, we consider two independent returns, each following a stationary Gaussian autore-

gressive process of order one. Our aim is to obtain inference for the difference between the two

Sharpe ratios. Mathematically, let:

rk = µk1k + σkεk = µk


1
...

1

+ σk


εk,1

...

εk,Tk

 ,

εk ∼ N

0,Ωk =

(
ρ
|i−j|
k

1− ρ2k

)
ij

 ,

where k = 1, 2. The inverse matrix of Ωk, its Cholesky decomposition, and its derivatives matrix

are given in the previous subsection.

Let θ = (θ′1,θ
′
2)
′ = (ρ1, µ1, σ

2
1, ρ2, µ2, σ

2
2)′. The parameter of interest is ψ(θ) = ψ, where

ψ (θ) = ψ1(θ1)− ψ2(θ2) =
µ1 − rf1√

σ2
1

1−ρ21

−
µ2 − rf2√

σ2
2

1−ρ22

.

The log likelihood function for return k is given as

`k(θk) = ak −
nk
2

log σ2k +
1

2
log(1− ρ2k)−

1

2σ2k
(rk − µk1k)′Ak (rk − µk1k) .

Thus, the joint log likelihood function is

`(θ) = a− n1
2

log σ21 +
1

2
log
(
1− ρ21

)
− 1

2σ21
(r1 − µ111)

′A1 (r1 − µ111)

− n2
2

log σ22 +
1

2
log
(
1− ρ22

)
− 1

2σ22
(r2 − µ212)

′A2 (r2 − µ212) . (16)

All the basic required likelihood-based quantities can be derived as in Section 3. The details are

available in Qi (2016).
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4.1 Existing methods

As in Section 3, the existing methods are:

1. Extending the method in Lo (2002). Each sample will have its own estimator of the Sharpe

ratio with asymptotic distribution given in (??), the asymptotic distribution of the difference

of two Sharpe ratio estimators is therefore

ψ
(
θ̂
)

= ψ̂ = ŜR1 − ŜR2

d→ N
(
ψ (θ) , ψ′1θ1

(θ̂1)var(θ̂1)ψ1θ1(θ̂1) + ψ′2θ2
(θ̂2)var(θ̂2)ψ2θ2(θ̂2)

)
where var(θ̂k) is taken to be the inverse of the Fisher expected information obtained from

`k(θk).

2. The Fisher expected information from the result above is replaced with the observed infor-

mation evaluated at mle to obtain

ψ
(
θ̂
)

= ψ̂ = ŜR1 − ŜR2

d→ N
(
ψ (θ) , ψ′1θ1

(θ̂1)j
−1
1 (θ̂1)ψ1θ1(θ̂1) + ψ′2θ2

(θ̂2)j
−1
2 (θ̂2)ψ2θ2(θ̂2)

)
where jk(θ̂k) is the expected expected information obtained from `k(θk) evaluated at θ̂k.

3. The signed log likelihood ratio statistic in (??):

R(ψ) = sgn(ψ̂ − ψ)

√
2[l(θ̂)− l(θ̂ψ)] .

4.2 Application of the third-order method

The pivotal quantity z for this problem is chosen to coincide with the standard quantity used to

estimate the parameters of an AR(1) model in the literature (see for example Hamilton (1994)):

z =

(
σ21Ω1 0

0 σ22Ω2

)− 1
2
(

r1 − µ111

r2 − µ212

)
=

(
L1(r1−µ111)

σ
L2(r2−µ212)

σ2

)
.
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Hence, V can be constructed from (??) as:

V = −
(
∂z

∂r

)−1 ∂z

∂θ

∣∣∣∣
θ̂

=

(
−L̂−11 L̂ρ1 (r1 − µ̂111) 11

r1−µ̂111

2σ̂2
1

0

0 −L̂−12 L̂ρ2 (r2 − µ̂212) 12
r2−µ̂212

2σ̂2
2

)

=

(
V1 0
0 V2

)
.

Finally, ϕ(θ) can be obtained by (??) and is given as

ϕ (θ) =

(
− 1

σ21
(r1 − µ111)

′A1V1,−
1

σ22
(r2 − µ212)

′A2V2

)′
.

With the above information, R∗(ψ) can be obtained from (??).

4.3 Numerical Study

As in the previous section, we will first consider a real life data problem and illustrate how discordant

the results can be based on the method used. We will then use simulation studies to compare the

accuracy of the methods.

4.3.1 Real life example

The data used for this example are the same data as in the previous example and are recorded in

Table ??. However, this time, our interest is in comparing the performance of GE common stock

in January 2000 with its performance in February 2000. We conduct this inference by evaluating

the difference between the Sharpe ratios. The 95% confidence intervals obtained from the various

methods discussed in this section, for the difference between the Sharpe ratios in January and

February under a Gaussian AR(1) returns process, are presented in Table ??. Again by looking at

this table, it is clear the resulting confidence intervals are very different from each other. Table ??

records the p-values for various ψ values. For example, for testing H0 : ψ = SRJan − SRFeb ≤ 0.3

vs Ha : ψ > 0.3 at 5% level of significance, both the Lo(obs) and Likelihood Ratio method

will reject H0 because the corresponding p(0.3) < 0.05, whereas the Proposed method gives a

contradictory result because its p(0.3) > 0.05. Hence it is important to compare the accuracy of

the methods. We do this through simulation studies.

4.3.2 Simulation study

To compare the performance of the proposed method relative to the existing methods, simulation

studies are performed. For various combinations of: n1, n2 = 20, 30, µ − rf = −1, 0, 1, σ2 = 1,

and ρ = −0.2, 0.7, 10,000 Monte Carlo replications are generated. For each generated sample, the

14



95% confidence interval for the difference of the Sharpe ratios is calculated based on the methods

discussed in this section. As in Section 3, the performance of a method is judged using the same

five simulation criteria. The results are recorded in Table ??. Both of Lo’s methods with the

expected information and with the observed information share very similar simulation results and

they are far from the desired values. Results from the signed log likelihood ratio method are slightly

better but still far from the desired values. The proposed method gives extremely accurate results

regardless of the choice of the parameter values.

5 Likelihood Methodology for the One Sample Sharpe Ratio un-
der AR(2) Returns

We extend the third-order methodology to the case of stationary Gaussian AR(2) returns. Consider

a fund with returns at time t denoted by rt, where t = 1, 2, . . . , T . Under a Gaussian AR(2)

assumption on this return series, we have the following basic setting:
rt = µ+ ε∗t t ≥ 1;

ε∗t = ρ1ε
∗
t−1 + ρ2ε

∗
t−2 + σvt t ≥ 3;

vt ∼ N (0, 1) t ≥ 2.

Additionally, to make this AR(2) process stationary, we assume:
ρ2 − ρ1 < 1

ρ2 + ρ1 < 1

|ρ2| < 1

The calculations of each required quantity for the third-order likelihood-based method are simply

a direct extension of the methodology illustrated in the previous sections. Details of these calcula-

tions are available in Ji (2016).

We provide a very basic simulation study to compare the accuracy of the methods discussed in

this paper. Given the Lo(obs) and Lo(exp) methods from our AR(1) analyses produced very

similar poor results, we only include the results from the observed information case here and label

it Lo(obs). 10,000 Monte Carlo replications are performed for a variety of parameter values for

the AR(2) model. Without loss of generality, the risk-free rate of return was assumed to be 0. In

Table ?? we provide only a representative sample of our simulation results. Criteria for comparison

are those stated in Section 3. The results are consistent with those obtained in the previous

sections: the proposed method outperformed both the Lo’s method and the signed log likelihood

ratio method.
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6 Conclusion

The objective of this paper was to apply the third-order likelihood-based method to obtain highly

accurate inference for the Sharpe ratio when returns are assumed to follow a Gaussian autoregressive

process. We considered the one and two sample cases for an AR(1) process and shed light on the

one sample AR(2) case. Through simulation analyses, we showed that our proposed method is

superior to the existing methods in the literature. Future research could include the evaluation of

more general time series models such as stationary autoregressive moving average (ARMA) models.
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Table 1: GE Daily Closing Prices and Daily Returns
Date Closing prices Return Date Closing prices Return

1/3/2000 50.4792 -0.02143497 2/1/2000 45.1667 0.007408923

1/4/2000 48.6771 -0.036352677 2/2/2000 45.2812 0.002531846

1/5/2000 48.2604 -0.008597345 2/3/2000 45.8438 0.012348031

1/6/2000 48.2604 0 2/4/2000 47.2708 0.030652803

1/7/2000 49.3854 0.023043485 2/7/2000 46.2708 -0.021381676

1/10/2000 50.8646 0.029512366 2/8/2000 45.8229 -0.009727126

1/11/2000 50.5521 -0.006162713 2/9/2000 45.2917 -0.011660173

1/12/2000 50.6354 0.001646449 2/10/2000 45.0104 -0.006230219

1/13/2000 51.3229 0.01348611 2/11/2000 45.1458 0.003003678

1/14/2000 50.6979 -0.012252557 2/14/2000 44.9167 -0.005087589

1/18/2000 49.3958 -0.026019089 2/15/2000 45.4896 0.012674065

1/19/2000 49.5312 0.002737374 2/16/2000 45.2188 -0.005970799

1/20/2000 48.7292 -0.016324334 2/17/2000 44.2708 -0.021187612

1/21/2000 48.6979 -0.000642532 2/18/2000 42.8125 -0.033495201

1/24/2000 47.0625 -0.034159402 2/22/2000 42.5104 -0.007081364

1/25/2000 46.2292 -0.017864872 2/23/2000 43.5521 0.024209171

1/26/2000 46.8438 0.01320703 2/24/2000 43.1667 -0.008888558

1/27/2000 46.4688 -0.008037543 2/25/2000 42.7708 -0.009213738

1/28/2000 45.6875 -0.016956382 2/28/2000 43.0417 0.006313786

1/31/2000 44.8333 -0.018873571 2/29/2000 44.0208 0.022492836

Table 2: 95% Confidence Intervals for the Sharpe Ratio for January and February GE Returns
Method CI for SR of January GE Returns CI for SR of February GE Returns

Lo(exp) (-1.0352, 0.1492) (-0.5640, 0.4707)

Lo(obs) (-1.0326, 0.1467) (-0.5683, 0.4750)

Likelihood Ratio (-1.0748, 0.2044) (-0.5868, 0.5573)

Proposed (-1.0690, 0.2801) (-0.6043, 0.5953)

Table 3: p-values for the Sharpe Ratio under AR(1) GE January Returns
ψ -1.2 -1.1 -1 -0.9 -0.8 -0.5 -0.3 -0.1

Lo(exp) 0.9939 0.9852 0.9674 0.9348 0.8813 0.5749 0.3181 0.1282

Lo(obs) 0.9941 0.9855 0.9680 0.9356 0.8823 0.5752 0.3173 0.1271

Likelihood Ratio 0.9890 0.9787 0.9600 0.9279 0.8763 0.5751 0.3180 0.1335

Proposed 0.9890 0.9793 0.9621 0.9327 0.8856 0.6059 0.3554 0.1631

ψ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo(exp) 0.0713 0.0362 0.0167 0.0070 0.0026 0.0009 0.0003 0.0001

Lo(obs) 0.0705 0.0356 0.0163 0.0068 0.0025 0.0009 0.0003 0.0001

Likelihood Ratio 0.0796 0.0457 0.0257 0.0143 0.0080 0.0045 0.0026 0.0016

Proposed 0.1028 0.0628 0.0377 0.0226 0.0137 0.0084 0.0054 0.0036

19



Table 4: p-values for the Sharpe Ratio under AR(1) GE February Returns
ψ -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Lo(exp) 0.9978 0.9933 0.9820 0.9570 0.9096 0.8314 0.7194 0.5801

Lo(obs) 0.9977 0.9929 0.9812 0.9557 0.9078 0.8294 0.7177 0.5794

Likelihood Ratio 0.9953 0.9896 0.9774 0.9527 0.9069 0.8307 0.7194 0.5798

Proposed 0.9941 0.9876 0.9742 0.9481 0.9009 0.8243 0.7145 0.5790

ψ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Lo(exp) 0.4299 0.2893 0.1751 0.0946 0.0453 0.0192 0.0072 0.0023

Lo(obs) 0.4304 0.2908 0.1771 0.0964 0.0467 0.0200 0.0076 0.0025

Likelihood Ratio 0.4308 0.2950 0.1875 0.1121 0.0640 0.0354 0.0193 0.0104

Proposed 0.4351 0.3032 0.1978 0.1223 0.0728 0.0423 0.0244 0.0141
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Table 5: Simulation Results for Sharpe Ratio Under AR(1) Returns
Setting Method CP LE UE AB AB/ER

n = 52
µ = 0
σ2 = 1
ρ = 0.5

Lo(exp) 0.9172 0.0414 0.0414 0.0164 10.25
Lo(obs) 0.9172 0.0415 0.0413 0.0164 10.25

Likelihood Ratio 0.9389 0.0301 0.0310 0.0056 3.47
Proposed 0.9522 0.0238 0.0240 0.0011 0.69

n = 52
µ = 0
σ2 = 1
ρ = −0.5

Lo(exp) 0.9471 0.0253 0.0276 0.0015 0.91
Lo(obs) 0.9472 0.0253 0.0275 0.0014 0.87

Likelihood Ratio 0.9458 0.0259 0.0283 0.0021 1.31
Proposed 0.9492 0.0243 0.0265 0.0011 0.69

n = 52
µ = 1
σ2 = 1
ρ = 0.5

Lo(exp) 0.9226 0.0527 0.0247 0.0140 8.75
Lo(obs) 0.9235 0.0527 0.0238 0.0145 9.03

Likelihood Ratio 0.9398 0.0364 0.0238 0.0063 3.94
Proposed 0.9481 0.0255 0.0264 0.0009 0.59

n = 52
µ = 1
σ2 = 1
ρ = −0.5

Lo(exp) 0.9515 0.0274 0.0211 0.0032 1.97
Lo(obs) 0.9518 0.0274 0.0208 0.0033 2.06

Likelihood Ratio 0.9534 0.0282 0.0184 0.0049 3.06
Proposed 0.9467 0.0261 0.0272 0.0017 1.03

n = 52
µ = −1
σ2 = 1
ρ = 0.5

Lo(exp) 0.9216 0.0232 0.0552 0.0160 10.00
Lo(obs) 0.9225 0.0230 0.0545 0.0158 9.84

Likelihood Ratio 0.9382 0.0228 0.0390 0.0081 5.06
Proposed 0.9497 0.0248 0.0255 0.0004 0.22

n = 52
µ = −1
σ2 = 1
ρ = −0.5

Lo(exp) 0.9531 0.0202 0.0267 0.0033 2.03
Lo(obs) 0.9528 0.0205 0.0267 0.0031 1.94

Likelihood Ratio 0.9544 0.0178 0.0278 0.0050 3.13
Proposed 0.9476 0.0256 0.0268 0.0012 0.75

n = 26
µ = 0
σ2 = 1
ρ = 0.5

Lo(exp) 0.8769 0.0578 0.0653 0.0366 22.84
Lo(obs) 0.8780 0.0578 0.0642 0.0360 22.50

Likelihood Ratio 0.9174 0.0383 0.0443 0.0163 10.19
Proposed 0.9462 0.0249 0.0289 0.0020 1.25

n = 26
µ = 0
σ2 = 1
ρ = −0.5

Lo(exp) 0.9465 0.0278 0.0257 0.0018 1.09
Lo(obs) 0.9474 0.0274 0.0252 0.0013 0.81

Likelihood Ratio 0.9443 0.0287 0.0270 0.0029 1.78
Proposed 0.9489 0.0258 0.0253 0.0005 0.34

n = 26
µ = 1
σ2 = 1
ρ = 0.5

Lo(exp) 0.8964 0.0724 0.0312 0.0268 16.75
Lo(obs) 0.8966 0.0724 0.0310 0.0267 16.69

Likelihood Ratio 0.9264 0.0476 0.0260 0.0118 7.38
Proposed 0.9497 0.0256 0.0247 0.0005 0.28

n = 26
µ = 1
σ2 = 1
ρ = −0.5

Lo(exp) 0.9526 0.0260 0.0214 0.0023 1.44
Lo(obs) 0.9533 0.0264 0.0203 0.0031 1.91

Likelihood Ratio 0.9568 0.0260 0.0172 0.0044 2.75
Proposed 0.9496 0.0243 0.0261 0.0009 0.56
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Table 6: 95% Confidence Intervals for the Difference between Sharpe Ratios for January and
February GE Returns

Method CI for Difference of SR

Lo(obs) (-1.1836, 0.3910)

Likelihood Ratio (-1.2300, 0.4159)

Proposed (-1.2239, 0.4762)

Table 7: p-values for the Difference between Sharpe Ratios for January and February GE Returns
ψ -1.5 -1.4 -1.2 -1.1 0 0.3 0.4 0.5 0.6

Lo(obs) 0.9970 0.9938 0.9773 0.9601 0.1619 0.0415 0.0237 0.0128 0.0066

Likelihood Ratio 0.9941 0.9897 0.9710 0.9531 0.1626 0.0448 0.0271 0.0160 0.0093

Proposed 0.9941 0.9898 0.9719 0.9551 0.1878 0.0572 0.0361 0.0222 0.0134
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Table 8: Simulation Results for the Difference of Sharpe Ratios under AR(1) Returns.
Setting Method CP LE UE AB AB/SE

n1 = 20, ρ1 = −0.2
n2 = 30, ρ2 = 0.7
µ1 = µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8744 0.0640 0.0616 0.0378 23.63
Lo(obs) 0.8759 0.0630 0.0611 0.0371 23.16

Likelihood Ratio 0.9129 0.0450 0.0421 0.0186 11.59
Proposed 0.9479 0.0278 0.0243 0.0018 1.09

n1 = 20, ρ1 = 0.7
n2 = 30, ρ2 = 0.7
µ1 = µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8443 0.0783 0.0774 0.0529 33.03
Lo(obs) 0.8471 0.0767 0.0762 0.0515 32.16

Likelihood Ratio 0.8893 0.0543 0.0564 0.0304 18.97
Proposed 0.9494 0.0248 0.0258 0.0005 0.31

n1 = 20, ρ1 = −0.2
n2 = 30, ρ2 = 0.7
µ1 = −1, µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8935 0.0462 0.0603 0.0283 17.66
Lo(obs) 0.8955 0.0451 0.0594 0.0273 17.03

Likelihood Ratio 0.9225 0.0326 0.0449 0.0138 8.59
Proposed 0.9530 0.0252 0.0218 0.0017 1.06

n1 = 20, ρ1 = 0.7
n2 = 30, ρ2 = 0.7
µ1 = −1, µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8483 0.0485 0.1032 0.0509 31.78
Lo(obs) 0.8516 0.0473 0.1011 0.0492 30.75

Likelihood Ratio 0.8901 0.0387 0.0712 0.0300 18.72
Proposed 0.9473 0.0235 0.0292 0.0029 1.78

n1 = 20, ρ1 = −0.2
n2 = 30, ρ2 = 0.7
µ1 = 0, µ2 = 1
σ21 = σ22 = 1

Lo(exp) 0.8707 0.0394 0.0899 0.0397 24.78
Lo(obs) 0.8720 0.0386 0.0894 0.0390 24.38

Likelihood Ratio 0.9144 0.0312 0.0544 0.0178 11.13
Proposed 0.9499 0.0258 0.0243 0.0008 0.47

n1 = 20, ρ1 = −0.2
n2 = 20, ρ2 = 0.7
µ1 = µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8377 0.0811 0.0812 0.0562 35.09
Lo(obs) 0.8407 0.0799 0.0794 0.0547 34.16

Likelihood Ratio 0.8937 0.0529 0.0534 0.0282 17.59
Proposed 0.9491 0.0247 0.0262 0.0008 0.47

n1 = 20, ρ1 = 0.7
n2 = 20, ρ2 = 0.7
µ1 = µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8264 0.0858 0.0878 0.0618 38.63
Lo(obs) 0.8330 0.0817 0.0853 0.0585 36.56

Likelihood Ratio 0.8790 0.0594 0.0616 0.0355 22.19
Proposed 0.9502 0.0239 0.0259 0.0010 0.62

n1 = 20, ρ1 = −0.2
n2 = 20, ρ2 = 0.7
µ1 = −1, µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8570 0.0651 0.0779 0.0465 29.06
Lo(obs) 0.8597 0.0637 0.0766 0.0452 28.22

Likelihood Ratio 0.9004 0.0429 0.0567 0.0248 15.50
Proposed 0.9495 0.0272 0.0233 0.0020 1.22

n1 = 20, ρ1 = 0.7
n2 = 20, ρ2 = 0.7
µ1 = −1, µ2 = 0
σ21 = σ22 = 1

Lo(exp) 0.8303 0.0616 0.1081 0.0599 37.41
Lo(obs) 0.8352 0.0592 0.1056 0.0574 35.88

Likelihood Ratio 0.8782 0.0474 0.0744 0.0359 22.44
Proposed 0.9480 0.0248 0.0272 0.0012 0.75

n1 = 20, ρ1 = −0.2
n2 = 20, ρ2 = 0.7
µ1 = 0, µ2 = 1
σ21 = σ22 = 1

Lo(exp) 0.8416 0.0487 0.1097 0.0542 33.88
Lo(obs) 0.8445 0.0477 0.1078 0.0528 32.97

Likelihood Ratio 0.8994 0.0355 0.0651 0.0253 15.81
Proposed 0.9511 0.0241 0.0248 0.0006 0.34
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Table 9: Simulation Results for Sharpe Ratio Under AR(2) Returns
Setting Method CP LE UE AB AB/SE

n = 50,
µ = 0,
σ2 = 1,
ρ1 = −0.5,
ρ2 = −0.5

Lo(obs) 0.9402 0.0289 0.0309 0.0049 3.0625
Likelihood Ratio 0.9433 0.0284 0.02830 0.0034 2.0938

Proposed 0.9511 0.0241 0.0248 0.0006 0.3438

n = 50,
µ = 0,
σ2 = 1,
ρ1 = 0.5,
ρ2 = −0.5

Lo(obs) 0.9387 0.0309 0.0304 0.0057 3.5313
Likelihood Ratio 0.9410 0.0313 0.0277 0.0045 2.8125

Proposed 0.9495 0.0264 0.0241 0.0012 0.7188

n = 50,
µ = 0,
σ2 = 1,
ρ1 = −0.8,
ρ2 = −0.2

Lo(obs) 0.9461 0.0221 0.0318 0.0049 3.0313
Likelihood Ratio 0.9422 0.0284 0.0294 0.0039 2.4375

Proposed 0.9463 0.0254 0.0283 0.0019 1.1563

n = 50,
µ = 0,
σ2 = 1,
ρ1 = 0.8,
ρ2 = −0.2

Lo(obs) 0.9219 0.0397 0.0384 0.0141 8.7813
Likelihood Ratio 0.9335 0.0335 0.0330 0.0083 5.1563

Proposed 0.9479 0.0254 0.0267 0.0011 0.6562

n = 50,
µ = 0,
σ2 = 1,
ρ1 = 0.4,
ρ2 = 0.2

Lo(obs) 0.9088 0.0380 0.0532 0.0206 12.8750
Likelihood Ratio 0.9291 0.0298 0.0411 0.0105 6.5313

Proposed 0.9459 0.0242 0.0299 0.0029 1.7813

n = 50,
µ = 0,
σ2 = 1,
ρ1 = −0.4,
ρ2 = 0.2

Lo(obs) 0.9380 0.0291 0.0329 0.0060 3.7500
Likelihood Ratio 0.9443 0.0275 0.0282 0.0029 1.7813

Proposed 0.9506 0.0240 0.0254 0.0007 0.4375

n = 50,
µ = 0,
σ2 = 1,
ρ1 = −0.2,
ρ2 = 0.5

Lo(obs) 0.9095 0.0448 0.0457 0.0203 12.6563
Likelihood Ratio 0.9304 0.0351 0.0345 0.0098 6.1250

Proposed 0.9472 0.0268 0.0260 0.0014 0.8750
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Figure 1: The Effect of Sample Size on AB/SE under AR(1) Returns (Upper graph: ρ = −0.5;
Lower graph: ρ = 0.5 )
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Figure 2: The Effect of ρ on AB/ER when ψ = 0
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