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Abstract. We consider finitely generated free semigroup actions on
a compact metric space and we prove a relation for two topological

pressures with a factor map.

Keywords and phrases: Topological pressure, free semigroup actons

1 Introductions

Let (X, T) be a topological dynamical system (TDS for short), where X is a compact
metric space and T : X — X is a surjective and continuous map. It is well-known
that entropies are foundational to our current understanding of dynamical systems. In
1971, Bowen [7] considered a factor map 7 : (X,T) — (Y, .S), and showed that

h(T) < h(S) +sup h(T, 7 'y),
yey
where h(T, K') denote the entropy of a compact subset K of X. Topological pressure,
firstly defined by Ruelle in [8], and later given some further study by Walters in [6], is
a generalization of topological entropy.
In the present note, we follow [7] and introduce the topological presssure for free
semigroup actions, prove a relation for two topological pressures with a factor map

similar Bowen [7].
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2 Preliminaries

Let FF be the set of all finite words of symbols 0,1,--- ,m — 1. For every w € F}},
|w| denotes the length of w, i.e., the number of symbols in w. If w,w’ € F define
ww' to be the word obtained by writing w’ to the right of w. With respect to this law
of composition, F is a free semigroup with m generators. We write w < w’ if there
exists a word w” such that w' = ww”.

Let X be a compact metric space with metric d, and fy, f1,- -, frn_1 be continuous
maps of X into itself. Then there is a free semigroup with m generators fo, fi, -, fin_1
acting on X. And we denote F = {fo, f1, -+, fm—1}. Forw = f,, 0 fo._,. We define
the Bowen metric on X by

dw(x,y) maXd(fw ( )7fw’(y))'

w! <w

For any € > 0, a subset £ C X is called (w, ¢, F)-spanning set, if for any = € X,
there exists y € E such that d,(z,y) < e. For any € > 0, a subset K C X is called
(w, €, F)-separated set, if for any x,y € K, we have d,(x,y) > €. For any w € F.'| and
neN, ze X, we set

n—1
Supla) =) p(fiw):
i=0
Definition 2.1. For any ¢ € C(X),
1
n‘P .
P,(p, F, €)= — |Z éilfn{ e; e : By is a (w,n,€) spanning set ofX}

Define the topological pressure

1
P(F, ) = hmhmsup log P, (¢, F,€).
n

—0 n—oo

On the other hands, we can define the topological pressure by separated set. From
a standard proof, we can see that they are equivalent. Now we state the definition as
follows without the proof of the equivalence.

Definition 2.2. For any ¢ € C(X),

Qn(p, F,€) Z sup{ Z eon#(@) . F, . is a (w,n,€) separated set of X}.

jwl=nTen " 2eFun

Define the topological pressure

P(F,p) = hr% lim sup — log Qnlp, F€).

n—oo



We remark that if ¢ = 0, we denote the topological entropy h(F) = P(F,p).
Clearly, the above definitions of topological pressure holds for any compact subset
K cCX.

Let (X, d) and (Y, p) be compact spaces, and there exists a free semigroup generated
by F = {fo, f1,"+, fm_1} actions on X, and a free semigroup generated by G =
{90, 91, ,gm-1} actions on Y. A continuous sujective map 7 : X — Y satisfies
mo fi =g;om, for any 0 <i < m — 1, whcih means that (Y, G) is a factor of (X, F).

Theorem 2.1. For any dynamical system (X, F) with metric d and dynamical system
(Y, G) is a factor of (X, F) with metric p and |F| =m. Let ¢ : Y — R be a continuous
map, and the factor map be w: X — Y. Then we have

P(G,¢) < P(F,pom) < P(G,pon)+suph(F,m {y}) + logm.
yey

where h(F, K) denote the entropy of a compact subset K of X.

3 Proof of main result

In the following, for any ¢ > 0, we set

var(p, ¢) = Sup {o(@) — ey« d(z,y) <c}.

We can assume that a = sup h(F, 7' (y)) < oo, since if a = oo, the proof is finished.
yey

For e > 0,w € F[, let FY denote the maximal (w, ¢, F) separated set of 7 1(y), and
Mrpy(w, €, F, 7~ (y)) denote the cardinality, we set

~ 1 ~
M(n,e, F,7 ' (y)) =— Y Mps(w,e, Fm ' (y)).
jwl=n

By the definition of h(F), for the above € > 0, let a > 0, for any y € Y, choose m(y)
such that

a+a>h(F, 7 (y),e > log M (m(y), e, F, 7 (y)). (3.1)

m(y)

Next we define
D, (w, z,2¢, F) :={ce X : d,(c,z) < 2},

where d,,(c, z) = max d(f,(c), fu(2)). Since Fy’ is a (w, ¢, F) spanning set of 7~ (y),
w'<w

Uy = U Dm(y)(w,z,%,}")

z€Fy



is a open cover of 7 !(y). For any y € Y,

(X\U) N7 (B (y) =0,

r>0

where B,(y) = {z € Y : p(z,y) < r}. From the finite intersection property, there
exists W, = B,(y) such that U, D 7= 1(W,). Let {W,,,W,,,---, W, } is a finite cover
of Y, with the Lebesgue number §. By the definition of P(G, ¢ o ), we can choose a
(w, 0, G)-spanning set of Y, denotes by E,, ,, which satisfies

P.(E,G,pom) = % Z Z Snpom (@) P(G,pom). (3.2)

|0J|:n xEEw,n

At the same time, we assume this 0 is small enough such that
var (S (y,) @, 0) < € (3.3)
for each 1 <1 < p. For any y € E,,, 0 < j <mn, choose ¢;(y) € {y1, -+ ,y,} such that

Bslguuy) = {2 €Y+ pl95%u(9),2) < 0} € Weygy,
Where g(':il):,iw(y) = ng O+«++0 gwj,uW e WD B wn_] SN wn_l‘
Recuresly, we define ¢5(y) = 0 and t,11(y) = ts(y) + m(ci, ) (y)) until t144(y) > n,
and set I(y) = [. For y € E,,, 9 € F¥

()T € I () We consider the following

set

V(y> Lo, " - ,$l)
D= {x € X: d(fbjll:t“s(y)(w), 1 (x5)) < 2eforall 0<t<m(c,(y)and0<s< l(y)}

W <w w! W <w

Then we claim that

(la) V ={V(y; 20, - ,25) 1 Yy € Eyp,xs € Iy, (4,0 <5 < I(y)} is a cover of X.

(1b) For any w € F}\, with |w| = n, (w, 4¢, F)-separated set, and any element of V
can have at most one separated point.

Now we prove the claim as follows.

Let x € X, since E,,, is a (w,d,G)-spanning set of Y, then there exists ay € £
such that p,(y,m(x)) = ‘rdrllixi(p(gl:f!f,iw(y),gljfl:,iw(ﬂx)) < 4 for each 0 < j < n. For
any 0 < s <I(y),

wo fITW gy — W0 ) e Wy, (3.4)

fw'<w - gw’,w’—«u

This implies that there exists z, € F2 ) such that d( folf’lulfizts(y)(x), lff;ljiw(xs)) < 2

for all 0 <t < m(c, (y)) and 0 < s < I(y). So we have x € V(y;xq, -+ ,x;). So we get
(1a).



For (1b). For any z,c € V(y;zo,- - ,;), then
AL @), I 0) < aUl @), B ()
A5 @), 155 ) < e,

for each 0 <t < m(ce,(y)) and 0 < s < [(y).
For any (w,4e, F)-separated set H,, ,, of X, we estimate the upper bound of

Z esn por(x)

Z‘EFw,n

By the definition of V' (y; xg, - ,2;), we can denote

Vy ={V(y;xo,--- ,x1) : xZGF:() 10 <i<lI}
Set V = Uyeg, ,, Vy, where
I=l(y)
#Vy = H M(wcti(y)7m(cti(y>>7 67;7 W_l(y» S en(a+a)mn7 (35)
i=0
where A = max{m(y1),---,m(y,)}. For each z € H,,, there exist y € E,, and
Tg € Fc"jl(y), e x € Fg:l(y) such that x € V(y;xo, -+ ,x;). Hence,

l

Sppom(r) < Z Stey, () ¥ © T(2i) + nvar(p o m, 2€)
i=0

<Sm(er, iy NP Wer, 4y () T MCtiy) (y))var(p o m, 2e)
Furhtermore, by (3.3))

Siner, @) P © (1(25)) Sy (£ @ (9)) + € + My () var(p o m,2¢)  (3.6)

for 0 <4 <(y). Hence,

!
S om(a Z ( lery el fh y)( )) + € +m(c, (y))var(p o, 26)) + nvar(p o T, 2€)

i=0
<Sne(y) + l(y)e + 2nvar(p o , 2¢) (3.7)
By (8.7)
Z eSneem(@) < Z #V, exp (Sngo(y) + U(y)e + 2nvar(p o T, 26)) (3.8)
xEHw n yEEw n

From ,
Z Z eSneom(@) < mi Z Z #V, exp( W (y )+l(y)e—|—2nvar(g007r,2€)>.

|UJ| nil?GHwn \w| nyeEwn



From (3.5),

% Z Z eSngoow(a:)

|0J|:’I’L IEHw’n

Let n — oo and € — 0, and connect with (3.2)) we finish the proof.
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