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Abstract. We consider finitely generated free semigroup actions on

a compact metric space and we prove a relation for two topological

pressures with a factor map.
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1 Introductions

Let (X,T ) be a topological dynamical system (TDS for short), where X is a compact

metric space and T : X → X is a surjective and continuous map. It is well-known

that entropies are foundational to our current understanding of dynamical systems. In

1971, Bowen [7] considered a factor map π : (X,T )→ (Y, S), and showed that

h(T ) ≤ h(S) + sup
y∈Y

h(T, π−1y),

where h(T,K) denote the entropy of a compact subset K of X. Topological pressure,

firstly defined by Ruelle in [8], and later given some further study by Walters in [6], is

a generalization of topological entropy.

In the present note, we follow [7] and introduce the topological presssure for free

semigroup actions, prove a relation for two topological pressures with a factor map

similar Bowen [7].
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2 Preliminaries

Let F+
m be the set of all finite words of symbols 0, 1, · · · ,m − 1. For every w ∈ F+

m ,

|w| denotes the length of w, i.e., the number of symbols in w. If w,w′ ∈ F+
m , define

ww′ to be the word obtained by writing w′ to the right of w. With respect to this law

of composition, F+
m is a free semigroup with m generators. We write w ≺ w′ if there

exists a word w′′ such that w′ = ww′′.

Let X be a compact metric space with metric d, and f0, f1, · · · , fm−1 be continuous

maps of X into itself. Then there is a free semigroup with m generators f0, f1, · · · , fm−1
acting on X. And we denote F = {f0, f1, · · · , fm−1}. For ω = fω0 ◦ · · · fωk−1

. We define

the Bowen metric on X by

dω(x, y) = max
ω′≺ω

d(fω′(x), fω′(y)).

For any ε > 0, a subset E ⊂ X is called (ω, ε,F)-spanning set, if for any x ∈ X,

there exists y ∈ E such that dω(x, y) < ε. For any ε > 0, a subset K ⊂ X is called

(ω, ε,F)-separated set, if for any x, y ∈ K, we have dω(x, y) ≥ ε. For any ω ∈ F+
m , and

n ∈ N, x ∈ X, we set

Snϕ(x) :=
n−1∑
i=0

ϕ(f iωx).

Definition 2.1. For any ϕ ∈ C(X),

Pn(ϕ,F , ε) =
1

mn

∑
|ω|=n

inf
Eω,n

{ ∑
x∈Eω,n

eSnϕ(x) : Eω,n is a (ω, n, ε) spanning set of X
}
.

Define the topological pressure

P (F , ϕ) = lim
ε→0

lim sup
n→∞

1

n
logPn(ϕ,F , ε).

On the other hands, we can define the topological pressure by separated set. From

a standard proof, we can see that they are equivalent. Now we state the definition as

follows without the proof of the equivalence.

Definition 2.2. For any ϕ ∈ C(X),

Qn(ϕ,F , ε) =
1

mn

∑
|ω|=n

sup
Fω,n

{ ∑
x∈Fω,n

eSnϕ(x) : Fω,n is a (ω, n, ε) separated set of X
}
.

Define the topological pressure

P (F , ϕ) = lim
ε→0

lim sup
n→∞

1

n
logQn(ϕ,F , ε).
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We remark that if ϕ = 0, we denote the topological entropy h(F) = P (F , ϕ).

Clearly, the above definitions of topological pressure holds for any compact subset

K ⊂ X.

Let (X, d) and (Y, ρ) be compact spaces, and there exists a free semigroup generated

by F = {f0, f1, · · · , fm−1} actions on X, and a free semigroup generated by G =

{g0, g1, · · · , gm−1} actions on Y. A continuous sujective map π : X → Y satisfies

π ◦ fi = gi ◦ π, for any 0 ≤ i ≤ m− 1, whcih means that (Y,G) is a factor of (X,F).

Theorem 2.1. For any dynamical system (X,F) with metric d and dynamical system

(Y,G) is a factor of (X,F) with metric ρ and |F| = m. Let ϕ : Y → R be a continuous

map, and the factor map be π : X → Y . Then we have

P (G, ϕ) ≤ P (F , ϕ ◦ π) ≤ P (G, ϕ ◦ π) + sup
y∈Y

h(F , π−1{y}) + logm.

where h(F , K) denote the entropy of a compact subset K of X.

3 Proof of main result

In the following, for any c > 0, we set

var(ϕ, c) = sup
x,y∈X

|{ϕ(x)− ϕ(y)| : d(x, y) < c}.

We can assume that a = sup
y∈Y

h(F , π−1(y)) < ∞, since if a = ∞, the proof is finished.

For ε > 0, ω ∈ F+
m , let F ω

y denote the maximal (ω, ε,F) separated set of π−1(y), and

MFω
y

(ω, ε,F , π−1(y)) denote the cardinality, we set

M(n, ε,F , π−1(y)) :=
1

mn

∑
|ω|=n

MFω
y

(ω, ε,F , π−1(y)).

By the definition of h(F), for the above ε > 0, let α > 0, for any y ∈ Y , choose m(y)

such that

a+ α ≥ h(F , π−1(y), ε) ≥ 1

m(y)
logM(m(y), ε,F , π−1(y)). (3.1)

Next we define

Dn(ω, z, 2ε,F) := {c ∈ X : dω(c, z) < 2ε},

where dω(c, z) = max
ω′≺ω

d(fω(c), fω(z)). Since F ω
y is a (ω, ε,F) spanning set of π−1(y),

Uy =
⋃
z∈Fy

Dm(y)(ω, z, 2ε,F)
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is a open cover of π−1(y). For any y ∈ Y ,

(X \ Uy) ∩
⋂
r>0

π−1(Br(y)) = ∅,

where Br(y) = {z ∈ Y : ρ(z, y) < r}. From the finite intersection property, there

exists Wy = Br(y) such that Uy ⊃ π−1(Wy). Let {Wy1 ,Wy2 , · · · ,Wyp} is a finite cover

of Y , with the Lebesgue number δ. By the definition of P (G, ϕ ◦ π), we can choose a

(ω, δ,G)-spanning set of Y , denotes by Eω,n, which satisfies

Pn(E,G, ϕ ◦ π) =
1

mn

∑
|ω|=n

∑
x∈Eω,n

eSnϕ◦π(x) < P (G, ϕ ◦ π). (3.2)

At the same time, we assume this δ is small enough such that

var(Sm(yi)ϕ, δ) < ε (3.3)

for each 1 ≤ i ≤ p. For any y ∈ Eω,n, 0 ≤ j < n, choose cj(y) ∈ {y1, · · · , yp} such that

Bδ(g
|ω′|=j
ω′,ω′≺ω(y)) = {z ∈ Y : ρ(g

|ω′|=j
ω′,ω′≺ω(y), z) < δ} ⊂ Wcj(y),

where g
|ω′|=j
ω′,ω′≺ω(y) = gω0 ◦ · · · ◦ gωj−1

, ω = ω0 · · ·ωn−j · · ·ωn−1.
Recuresly, we define t0(y) = 0 and ts+1(y) = ts(y) + m(cts(y)(y)) until tl+1(y) ≥ n,

and set l(y) = l. For y ∈ Eω,n, x0 ∈ F ω
ct0 (y)

, · · · , xl ∈ F ω
ctl (y)

we consider the following

set

V (y;x0, · · · , xl)

: =
{
x ∈ X : d(f

|ω′|=t+ts(y)
ω′,ω′≺ω (x), f

|ω′|=t
ω′,ω′≺ω(xs)) < 2ε for all 0 ≤ t < m(cts(y)) and 0 ≤ s ≤ l(y)

}
Then we claim that

(1a) V = {V (y;x0, · · · , xs) : y ∈ Eω,n, xs ∈ Fcts (y), 0 ≤ s ≤ l(y)} is a cover of X.

(1b) For any ω ∈ F+
m , with |ω| = n, (ω, 4ε,F)-separated set, and any element of V

can have at most one separated point.

Now we prove the claim as follows.

Let x ∈ X, since Eω,n is a (ω, δ,G)-spanning set of Y , then there exists a y ∈ E
such that ρω(y, π(x)) = max

ω′≺ω
ρ(g
|ω′|=j
ω′,ω′≺ω(y), g

|ω′|=j
ω′,ω′≺ω(πx)) < δ for each 0 ≤ j < n. For

any 0 ≤ s ≤ l(y),

π ◦ f |ω
′|=ts(y)

ω′,ω′≺ω (x) = g
|ω′|=ts(y)
ω′,ω′≺ω (πx) ∈ Wcs(y). (3.4)

This implies that there exists xs ∈ F ω
cts (y)

such that d(f
|ω′|=t+ts(y)
ω′,ω′≺ω (x), f

|ω′|=t
ω′,ω′≺ω(xs)) < 2ε

for all 0 ≤ t < m(cts(y)) and 0 ≤ s ≤ l(y). So we have x ∈ V (y;x0, · · · , xl). So we get

(1a).
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For (1b). For any z, c ∈ V (y;x0, · · · , xl), then

d(f
|ω′|=t+ts(y)
ω′,ω′≺ω (z), f

|ω′|=t
ω′,ω′≺ω(c)) ≤ d(f

|ω′|=t+ts(y)
ω′,ω′≺ω (z), f

|ω′|=t
ω′,ω′≺ω(xs))

+ d(f
|ω′|=t+ts(y)
ω′,ω′≺ω (xs), f

|ω′|=t
ω′,ω′≺ω(c)) < 4ε,

for each 0 ≤ t < m(cts(y)) and 0 ≤ s ≤ l(y).

For any (ω, 4ε,F)-separated set Hω,n of X, we estimate the upper bound of∑
x∈Fω,n

eSnϕ◦π(x)

By the definition of V (y;x0, · · · , xl), we can denote

Vy := {V (y;x0, · · · , xl) : xi ∈ F ω
cti(y)

: 0 ≤ i ≤ l}.

Set V = ∪y∈Eω,nVy, where

#Vy =

l=l(y)∏
i=0

M(ωcti (y),m(cti(y)), ε,F , π−1(y)) ≤ en(a+α)mn, (3.5)

where A = max{m(y1), · · · ,m(yp)}. For each x ∈ Hω,n, there exist y ∈ Eω,n and

x0 ∈ F ω
ct1 (y)

, · · · , xl ∈ F ω
ctl (y)

such that x ∈ V (y;x0, · · · , xl). Hence,

Snϕ ◦ π(x) ≤
l∑

i=0

Sm(cti(y)(y))
ϕ ◦ π(xi) + nvar(ϕ ◦ π, 2ε)

≤Sm(cti(y)(y)))
ϕ(ycti(y)(y)) +m(cti(y)(y))var(ϕ ◦ π, 2ε)

Furhtermore, by (3.3)

Sm(cti(y)(y))
ϕ ◦ (π(xi)) ≤Sm(cti(y)(y)))

ϕ(f ti(y)ω (y)) + ε+m(cti(y)(y))var(ϕ ◦ π, 2ε) (3.6)

for 0 ≤ i ≤ l(y). Hence,

Snϕ ◦ π(x) ≤
l∑

i=0

(
Sm(cti(y)(y)))

ϕ(f ti(y)ω (y)) + ε+m(cti(y)(y))var(ϕ ◦ π, 2ε)
)

+ nvar(ϕ ◦ π, 2ε)

≤Snϕ(y) + l(y)ε+ 2nvar(ϕ ◦ π, 2ε) (3.7)

By (3.7)∑
x∈Hω,n

eSnϕ◦π(x) ≤
∑

y∈Eω,n

#Vy exp
(
Snϕ(y) + l(y)ε+ 2nvar(ϕ ◦ π, 2ε)

)
(3.8)

From (3.8),

1

mn

∑
|ω|=n

∑
x∈Hω,n

eSnϕ◦π(x) ≤ 1

mn

∑
|ω|=n

∑
y∈Eω,n

#Vy exp
(
Sn(y) + l(y)ε+ 2nvar(ϕ ◦ π, 2ε)

)
.
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From (3.5),

1

mn

∑
|ω|=n

∑
x∈Hω,n

eSnϕ◦π(x)

≤ 1

mn

∑
|ω|=n

∑
y∈Eω,n

en(a+α)mn exp
(
Sn(y) + l(y)ε+ 2nvar(ϕ ◦ π, 2ε)

)
.

Let n→∞ and ε→ 0, and connect with (3.2) we finish the proof.
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