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Abstract

In this paper, we present a symmetric and consistent immersed finite element method on

Cartesian meshes for elliptic interface problems with nonhomogeneous jump conditions. The

nonhomogeneous immersed finite element space which satisfies the nonhomogeneous jump con-

ditions is constructed and used as the trial function space. For the test function space, we use

the standard immersed finite element space which satisfies the homogeneous jump conditions.

To cancel the consistent error caused by the discontinuity of the test function, some correction

terms are added to the weak form near the interface. Our method can handle the case when

the interface passes through grid points or the boundary of the domain. Extensive numerical

experiments are presented and show that the new method has optimal convergence in L2, H1

and L∞ norms.
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1 Introduction

In this paper, we consider the following elliptic interface problem

−∇ · (β(x)∇u(x)) = f(x), x ∈ Ω\Γ, (1.1)

u(x) = g(x), x ∈ ∂Ω, (1.2)
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together with the nonhomogeneous jump conditions across the interface Γ

[u]Γ(x) = u+(x)− u−(x) = w(x), x ∈ Γ, (1.3)[
β
∂u

∂n

]
Γ

(x) = β∇u+ · n− β∇u− · n = Q(x), x ∈ Γ, (1.4)

where Ω = Ω+ ∪ Ω− ∪ Γ and n is outward normal of Ω−. Here the interface Γ may intersect

with the boundary ∂Ω. The interface Γ is often represented by the zero level set of a smooth

function φ(x) which is called a level-set function. We assume that Ω− = {x ∈ Ω : φ(x) < 0} and

Ω+ = {x ∈ Ω : φ(x) > 0}, then n = ∇φ/|∇φ|, see Figure 1 for an illustration. The coefficient β(x)

is uniformly elliptic and continuously differentiable on each subdomain, Ω+ and Ω−, that is, there

exist two positive constants 0 < βmin ≤ βmax < ∞ such that

βmin ≤ β(x) = βi(x) ≤ βmax for x ∈ Ωi, i = ±. (1.5)

This problem appears in many applications, such as fluid mechanics, materials science and biological

ϕ > 0

ϕ < 0

Γ

Ω+

Ω−

n

ϕ > 0

ϕ < 0
Γ

Ω+

Ω−

n

Figure 1: Left: the interface Γ lies strictly inside Ω. Right: the interface Γ intersects with the

boundary ∂Ω.

science. For an example, the static electric potential u satisfies the interface jump conditions (1.3)-

(1.4) with w = 0 and Q ̸= 0 on the interface between two media if the surface charge density is not

zero.

There are variety of numerical methods proposed in the literature to solve such an interface

problem. We refer the reader to [24] for a survey of different numerical methods. It is well known that

accurate approximations can be generated by standard finite element methods if the triangulation is

aligned with the interface, that is, a body fitted mesh is used, see for example, [1, 4, 31]. However, it

may be difficult and time consuming to generate a body fitted mesh for an interface problem in which

the interface separates the solution domain into pieces with complicated geometries (especially in

3D). Such a difficulty may become even severer for moving interface problems because a new mesh

has to be generated at each time step, or every other time steps. We limit our discussion here to

methods on structured meshes that do not align with the interface. The immersed interface method
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(IIM) [18, 21] is a second order Cartesian grid method for interface problems. Discontinuities in the

solution and the normal gradient at the interface are explicitly incorporated into the finite difference

stencil. For problems with sharp edges, the matched interface boundary (MIB) method has been

proposed in [34, 33]. Similar to the IIM, the MIB method locally modifies the finite difference stencils

near the interface to enforce the interface jump conditions. The resulting linear systems of equations

from these methods are nonsymmetric and indefinite even the original problem is self-adjoint and

uniformly elliptic.

For finite element methods on structured meshes that do not align with the interface, the im-

mersed finite element method (IFEM) has been developed in [20, 24]. In [24], two types of IFEM

were developed: the non-conforming and conforming ones. For the non-conforming IFEM, the basis

functions are still piecewise linear but are modified in the elements where the interface cuts through

so that the jump conditions are satisfied. While it has been shown that the non-conforming IFEM

is second order in the L2 norm [5], it does not have the optimal convergence rate in the L∞ norm

due to the consistent error caused by the discontinuities of the test functions (not in H1(Ω) space).

The same behavior has also been observed when the method is generalized to the bilinear immersed

finite element method [10, 11], to the planar elasticity interface problems [27, 32]. Nevertheless,

the non-conforming IFEM has been extensively studied in [5, 23]. Other related works in this di-

rection can be found in [2, 12, 17, 13, 26, 25] and others. Note that, by using the Petrov-Galerkin

finite element discretization, the method developed in [14, 15] cancels the consistent error and then

achieves second order convergence in the L∞ norm. But the resulting linear system of equations of

the Petrov-Galerkin type method is nonsymmetric because of the different trial and test spaces. We

also note that the conforming IFEM proposed in [24] has optimal convergence rate in L∞ norm and

the resulting linear system of equations is symmetric and positive definite. But the basis functions of

the conforming IFEM have wider support near the interface and the implementation is non-trivial.

Thus the conforming IFEM has not attracted enough interest in the literature. Recently a sym-

metric and consistent IFEM has been developed in [16]. The method maintains the advantages of

the non-conforming IFEM by using the same basis functions but it is symmetric, consistent, and

second accurate in L∞ norm. The idea is to add some correction terms to the weak form to take

into account of the discontinuities in basis functions. Other finite elements for interface problems

include the extended finite element method (XFEM) in which enrichment functions are added near

the interface [7]; unfitted finite element method based on the Nitsche’s method[9, 28], and many

others. Note that immersed finite volume methods for elliptic interface problems with nonhomoge-

neous jump conditions has been proposed in [29, 30]. The method has second order convergence in

L∞ norm, but the resulting linear system of equations is also nonsymmetric.

However, most of the previous articles about IFEM are developed for interface problems with the

homogeneous jump conditions (w = 0, Q = 0). For interface with nonhomogeneous jump conditions,

X. He, T. Lin and Y. Lin [11] have developed an IFEM by enriching the IFE spaces locally in

interface elements to capture the nonhomogeneous flux jump condition. Note that the case w ̸= 0 is

not considered in that paper. Kwang S. Chang and D. Y. Kwak [3] have proposed a new numerical

method to solve an elliptic problem with jumps both in the solution and flux along the interface.

A bubble function is constructed to satisfy the same jumps as the exact solution in that paper.
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And the method can also handle the case when the interface passes through grid points. Y. Gong,

B. Li and Z. Li [8] have developed an IFEM by removing the source singularities caused by the

nonhomogeneous interface conditions. Note that a similar technique has been proposed in [6] to

solve internal discontinuity interface problems.

It is very important in scientific computing to develop a numerical method which the resulting

linear system of equations is symmetric and positive. In this paper, a symmetric and consistent

immersed finite element method is proposed for the elliptic interface problem (1.1)-(1.2) with the

nonhomogeneous jump conditions. We use the technique introduced in [11, 3] to construct the

IFE functions to satisfy the nonhomogeneous jump conditions across the interface. To cancel the

consistent error caused by the discontinuity of the test function, some correction terms are added to

the bilinear form to preserve the symmetry and consistency. Our method can also handle the case

when the interface passes through grid points. Extensive numerical experiments are presented and

show that the new method has optimal convergence in L2, H1 and L∞ norms.

The rest of the paper is organized as follows. In section 2, we introduce the weak form and

some notations. In section 3, first we construct two immersed finite element spaces, and then we

propose some immersed finite methods. In section 4, we provide various numerical experiments that

show the optimal convergence of the new method and compare with other methods. We conclude

in section 5.

2 Weak formulation

Let RΓ and R∂Ω denote the restriction operators from H1(Ω) to L2(Γ) and L2(∂Ω), respectively.

We assume that boundary data w, Q and g are the restrictions of functions w̃, Q̃ and g̃ ∈ H1(Ω),

respectively. That is, on Γ

w = RΓ(w̃), Q = RΓ(Q̃), g = R∂Ω(g̃). (2.1)

We also assume that there exist a function c̃ ∈ H1(Ω) such that

g =

{
R∂Ω(c̃− w̃) on ∂Ω ∩ ∂Ω−,

R∂Ω(c̃) on ∂Ω\∂Ω−.
(2.2)

If ∂Ω ∩ ∂Ω− = ∅, i.e. Ω− lies strictly inside Ω, then we can chose c̃ = g̃. To simplify the notations,

from now on we will drop the tildes. For the derivation of the weak formulation, we define the space

H(w, c) = {u : u− c− wχΩ− ∈ H1
0 (Ω)}, (2.3)

in which χΩ− is the characteristic function of Ω−. If u ∈ H(w, c), then [u]Γ = w and u|Ω = g. Note

that H1
0 (Ω) can be identified with H(0,0).

The original problem (1.1)-(1.4) is equivalent to find u ∈ H(w, c) such that

a(u, v) =

∫
Ω

fvdx−
∫
Γ

Qvds ∀v ∈ H1
0 (Ω), (2.4)
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where

a(u, v) =

∫
Ω−

β∇u · ∇vdx+

∫
Ω+

β∇u · ∇vdx.

Theorem 2.1. If f ∈ L2(Ω), and w, Q and c ∈ H1(Ω), and Γ is Lipschitz continuous, then there

exist a unique weak solution of (2.4) in H(w, c).

Proof. See [14] for details.

In traditional Galerkin methods, we usually construct trial function space Uh(Ω) and test function

space Vh(Ω) to approximate H(w, c) and H1
0 (Ω) respectively, and then solve the problem (2.4) to get

discrete solution uh. If Vh(Ω) ̸∈ H1
0 (Ω), then the method has a consistent error, i.e. a(u−uh, vh) ̸= 0,

∀vh ∈ Vh(Ω). Since we use the structured meshes that do not align with the interface, the interface

can cut through the inner of elements which are called interface elements. When we construct

trial function space Uh(Ω), we must take account of the jump conditions (1.3)-(1.4) to get a good

approximation on these interface elements. The nonhomogeneous IFE space discussed in subsection

3.2.2 is constructed to approximate H(w, c).

3 Numerical methods

3.1 The mesh

For simplicity of presentation, we assume that Ω is a rectangular domain. First we partition the

domain into a union of uniform rectangles of mesh size h. Then we obtain the triangulation Th by

cutting the rectangles along one of diagonals (in the same direction), see Figure 2. If we choose h

sufficiently small, then it is reasonable to assume the following assumption.

• The interface Γ will not intersect an edge of any element at more than two points unless this

edge is part of Γ;

• If Γ intersects the boundary of a triangular element at two points, then these two points must

be on different edges of this element.

Define
Nh = {xi ∈ Ω : xi is a vertex of a element},
N i

h = Nh ∩ Ω, N b
h = Nh ∩ ∂Ω, N s

h = Nh ∩ Γ.
(3.1)

The interface Γ is approximated by Γh, the union of the line segments connecting the intersections

of the interface and the edges of elements. That is

Γh =

M∪
i=1

Γi
h, Γi

h = xixi+1, x1 = xM+1, (3.2)
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where xi is the intersections of the interface and edges of elements. Such an approximation will not

affect second order convergence when Γ ∈ C2, see for example [1, 4].

We call an element T an interface element if Γ intersects ∂T at two points; otherwise we call T

a non-interface element. The sets of all interface elements and non-interface elements are denoted

by T int
h and T non

h , respectively. To deal with [u]Γ ̸= 0, we define

T d
h = {T ∈ T non

h : T ⊂ Ω+, Γ intersects with ∂T at only one vertex}. (3.3)

Let Eh be the set of the open edges in Th. Analogously, we define

E int
h = {e ∈ Eh : e ∩ Γ ̸= ∅}, (3.4)

and Enon
h = Eh\E int

h . An example of the mesh and T int
h , E int

h , T d
h is shown in Figure 2.

Ω
+

Γ

Ω
−

Figure 2: Gray: T d
h ; Dark green: T int

h ; Red: E int
h .

3.2 Immersed finite element spaces

On a non-interface element T ∈ T non
h , we use the standard linear finite element, and the local base

functions associated with the vertices of T are denoted by ϕi,T , i = 1, 2, 3.

On an interface element T ∈ T int
h , we use the following typical element to describe the IFE

base functions. Let A(xA
1 , x

A
2 ), B(xB

1 , x
B
2 ), and C(xC

1 , x
C
2 ) be vertices of interface element △ABC,

and D(xD
1 , xD

2 ) and E(xE
1 , x

E
2 ) be the intersections of the interface Γ and ∂T , see the illustration

in Figure 3. The line DE separates T into two sub-elements T+ and T−. Let n be unit vector

perpendicular to the line DE. To construct a interpolation function for approximating the exact

solution satisfying the interface jump conditions, we define the following piecewise linear functions

on the element T

ϕ(x) =

{
ϕ+ = a+ + b+x1 + c+x2, x = (x1, x2) ∈ T+,

ϕ− = a− + b−x1 + c−x2, x = (x1, x2) ∈ T−,
(3.5)
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E

A

D

B

Γ

T+

T−

C

n

(a)

E

A

B(D)

Γ

T
+

T−

C

n

(b)

Figure 3: Two typical interface elements.

satisfying

ϕ(xA
1 , x

A
2 ) = V1, ϕ(xB

1 , x
B
2 ) = V2, ϕ(xC

1 , x
C
2 ) = V3, (3.6)

ϕ+(xD
1 , xD

2 )− ϕ−(xD
1 , xD

2 ) = V4, (3.7)

ϕ+(xE
1 , x

E
2 )− ϕ−(xE

1 , x
E
2 ) = V5, (3.8)

β̃+∇ϕ+ · n− β̃−∇ϕ− · n = V6 (3.9)

where β̃+ =
β+(xD

1 ,xD
2 )+β+(xE

1 ,xE
2 )

2 and β̃− =
β−(xD

1 ,xD
2 )+β−(xE

1 ,xE
2 )

2 . Specifically, (3.5)-(3.9) leads to

the following algebraic system for determining the uncertain coefficients,

MC = V, C = (a+, b+, c+, a−, b−, c−)T , V = (V1, V2, V3, V4, V5, V6)
T , (3.10)

where

M =



xA
1 xA

2 1 0 0 0

0 0 0 xB
1 xB

2 1

0 0 0 xC
1 xC

2 1

xD
1 xD

2 1 −xD
1 −xD

2 −1

xE
1 xE

2 1 −xE
1 −xE

2 −1

n1β̃+ n2β̃+ 0 −n1β̃− −n2β̃− 0


, (3.11)

with n = (n1, n2)
T .

Remark 3.1.

1. The interface Γ may intersect with the vertex of the interface element T , see 3(b). In this case,

D coincide with B. Because w ̸= 0, ϕ(xB
1 , x

B
2 ) has two distinct values. We restrict it on Ω−, that is

ϕ(xB
1 , x

B
2 ) = ϕ−(xB

1 , x
B
2 ) = V2 in (3.6).

2. The matrix M is invertible, see [24, 23, 22].

The interpolation of exact solution u on the interface element T = △ABC is

(Ihu)T (x) =

{
(1, x1, x2, 0, 0, 0)M

−1V x = (x1, x2) ∈ T+,

(0, 0, 0, 1, x1, x2)M
−1V x = (x1, x2) ∈ T−,

(3.12)
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where

V = (u(xA
1 , x

A
2 ), u(x

B
1 , x

B
2 ), u(x

C
1 , x

C
2 ), w(x

D
1 , xD

2 ), w(xE
1 , x

E
2 ),

Q(xD
1 , xD

2 ) +Q(xE
1 , x

E
2 )

2
)T . (3.13)

If we notice that the vector V can expressed as V = u(xA
1 , x

A
2 )e1+u(xB

1 , x
B
2 )e2+u(xC

1 , x
C
2 )e3+VJ,

where VJ =
(
0, 0, 0, w(xD

1 , xD
2 ), w(xE

1 , x
E
2 ),

Q(xD
1 ,xD

2 )+Q(xE
1 ,xE

2 )
2

)T

, then (Ihu)T = u(xA
1 , x

A
2 )ϕA,T +

u(xB
1 , x

B
2 )ϕB,T + u(xC

1 , x
C
2 )ϕC,T + ϕJ,T . The functions ϕA,T , ϕB,T , ϕC,T and ϕJ,T are defined in the

following subsections and are used to construct two IFE spaces.

3.2.1 Homogeneous IFE space

Using V = ei ∈ R6, 1 ≤ i ≤ 3, we can solve (3.10) for C and use them in (3.5) to obtain the i-th

IFE nodal local basis function ϕi,T , 1 ≤ i ≤ 3. We note that ϕi,T satisfies homogeneous interface

jump conditions.

To get the global base functions, we define R(i, T ) = j, where the global node number j relates

the local node number, i, on a element T ∈ Th. Then the j-th global base function ϕj , j ∈ N is

ϕj =
∑

R(i,T )=j

ϕi,T . (3.14)

Then we define the IFE space Sh0(Ω) = span{ϕj , j ∈ N i}, which satisfying homogeneous interface

jump conditions and homogeneous boundary condition. We must point out that Sh0 ̸∈ H1
0 (Ω)

because of the discontinuity on e ∈ E int
h , see [24].

3.2.2 Nonhomogeneous IFE space

Using V = VJ, we can solve (3.10) for C and use them in (3.5) to obtain the function ϕJ,T . We

note that ϕJ,T satisfies the non-homogeneous jump conditions and the values of vertices of T are

zeros. Then we define the following function to capture the nonhomogeneous jump conditions and

the boundary condition,

uJ =
∑

T∈T int
h

ϕJ,T +
∑

xj∈N s

∑
R(i,T )=j,T∈T d

h

ϕi,T +
∑

xj∈N b
h

∑
R(i,T )=j

g(xj)ϕi,T . (3.15)

where the second term is added to deal with the jump of u on the grid points, i.e., w ̸= 0 on N s
h ,

Then we define the interpolation of u as

Ihu =
∑

xi∈N i
h

u(xi)ϕi + uJ , (3.16)
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and the nonhomogeneous IFE space Uh(Ω) = span{ϕj , j ∈ N i} + uJ . Then the numerical solution

of (1.1)-(1.4) can be set as

uh =
∑

xi∈N i
h

Uiϕi + uJ , uhom
h + uJ , (3.17)

where Ui is the uncertain coefficient to be solved by numerical methods, and uhom
h ∈ Sh0(Ω) is the

function satisfying homogeneous interface jump conditions and homogeneous boundary condition.

3.3 Immersed finite element methods

Non-conforming immersed finite element method (non-conforming IFEM) and Petrov-Galerkin im-

mersed finite element method (PGIFEM) have been proposed in [11], [15] and [14], respectively.

To describe these methods, we define Vh0(Ω) be the standard linear FE space with zero boundary.

The nonhomogeneus IFE space Uh(Ω) is used as trial function space in both methods. For the

non-conforming IFEM, Sh0(Ω) is used as test function space. Because that Sh0(Ω) ̸⊆ H1
0 (Ω), the

method has a consistent error and is called non-conforming IFEM. For the PGIFEM, Vh0(Ω) is used

as test function space to cancel the consistent error because of Vh0(Ω) ⊆ H1
0 (Ω). Then we have the

following two numerical methods.

Method 1 (Non-conforming IFEM). Find uhom
h ∈ Sh0(Ω) such that∑

T∈Th

∫
T

∇uhom
h · ∇vhdx = −

∑
T∈Th

∫
T

∇uJ · ∇vhdx

+

∫
Ω

fvhdx−
∫
Γ

Qvhds, ∀vh ∈ Sh0(Ω).

(3.18)

Method 2 (PGIFEM). Find uhom
h ∈ Sh0(Ω) such that∑

T∈Th

∫
T

∇uhom
h · ∇vhdx = −

∑
T∈Th

∫
T

∇uJ · ∇vhdx

+

∫
Ω

fvhdx−
∫
Γ

Qvhds, ∀vh ∈ Vh0(Ω).

(3.19)

Remark 3.2.

1. Non-conforming IFEM is symmetric, but not consistent, and numerical results in [11] indicate

that the IFE solution does not have second order convergence in L∞ norm.

2. PGIFEM is consistent and has second order convergence in L∞ norm, but the resulting linear

system of equations is nonsymmetric.

Now we develop a symmetric and consistent immersed finite element method (SCIFEM). For
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any subdomain D = T ∩ Ω+ or T ∩ Ω−, T ∈ Th, we have∫
D

fvhdx =

∫
D

−∇(β∇u)vhdx

=

∫
D

β∇u · ∇vhdx−
∫
∂D

(∇uvh) · nds ∀vh ∈ Sh0(Ω).

(3.20)

Let e be an edge shared by two triangles T1 and T2, and ni is the unit normal of e pointing towards

the outside of Ti, then the average and jump of v are defined as

{{v}} =
1

2
(v|T1 + v|T2), JvKn1 = v|T1n1 + v|T2n2 = (v|T1 − v|T2)n1. (3.21)

If e is part of ∂Ω, i.e., e = ∂T ∩ ∂Ω, we define {{v}} = JvK = v|T . Summing up (3.20) over all

subdomains, we have∫
Ω

fvhdx =
∑
T∈Th

∫
T

β∇u · ∇vhdx−
∑
e∈Eh

∫
e

Jβ∇uvhK · neds−
∫
Γ

Jβ∇uvhK · nds
=

∑
T∈Th

∫
T

β∇u · ∇vhdx−
∑
e∈Eh

∫
e

({{β∇u}} JvhK + {{vh}} Jβ∇uK) · neds

−
∫
Γ

({{β∇u}} JvhK + {{vh}} Jβ∇uK) · nds
=

∑
T∈Th

∫
T

β∇u · ∇vhdx−
∑

e∈Eint
h

∫
e

{{β∇u}} JvhK · neds+

∫
Γ

Qvhds,

(3.22)

where the equality JabK = {{a}} JbK + {{b}} JaK is used in the second equality, JvhK = 0 on Γ and

the jump condition (1.4) are used to derive the third term in the last equality, JvhK = 0 on e ∈
Enon
h and Jβ∇u · neK = 0 on e ∈ Eh are used to derive the second term in the last equality. If

we notice that JuK = 0 on e ∈ E int
h \∂Ω and JuK = g on e ∈ E int

h ∩ ∂Ω, then we add the term∑
e∈Eint

h

∫
e
{{β∇vh}} · neJuKds to the above equation (3.22) for symmetric, then we have

∑
T∈Th

∫
T

β∇u · ∇vhdx−
∑

e∈Eint
h

∫
e

({{β∇u}} · neJvhK + {{β∇vh}} · neJuK) ds
=

∫
Ω

fvhdx−
∫
Γ

Qvhds−
∑

e∈Eint
h ∩∂Ω

∫
e

{{β∇vh}} · negds.

(3.23)

If we use Uh(Ω) and Sh0(Ω) as trial and test function spaces respectively, then we have the following

symmetric and consistent immersed finite element method.
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Method 3 (SCIFEM). Find uhom
h ∈ Sh0(Ω) such that∑

T∈Th

∫
T

∇uhom
h · ∇vhdx−

∑
e∈Eint

h

∫
e

({{
β∇uhom

h

}}
· neJvhK + {{β∇vh}} · neJuhom

h K) ds
= −

∑
T∈Th

∫
T

∇uJ · ∇vhdx+
∑

e∈Eint
h

∫
e

({{β∇uJ}} · neJvhK + {{β∇vh}} · neJuJK) ds
−

∑
e∈Eint

h ∩∂Ω

∫
e

{{β∇vh}} · negds+

∫
Ω

fvhdx−
∫
Γ

Qvhds, ∀vh ∈ Sh0(Ω).

(3.24)

Remark 3.3.

1. Obviously, the resulting linear system of equations is symmetric. Furthermore, we note that

the coefficient matrix is exactly the same as that in the SCIFEM for homogeneous jump conditions

discussed in [16], then the coefficient matrix is also positive define.

2.When the discontinuity of β disappears and w = 0, Q = 0, it becomes the standard P1 conforming

finite element method.

3. Moreover, it need not a lot of time to deal with the corrections on E int
h because that the corrections

are added near the interface.

4 Numerical experiments

In this section, we present some numerical examples to show the performance of the methods in-

troduced in this paper. For simplicity, we solve the problem (1.1)-(1.4) in the rectangular domain

Ω = [−1, 1] × [−1, 1] with given analytic solution u+(x), u−(x), β+(x), β−(x) and the level set

function φ(x). Then f , g, w and Q are determined. In this section, we use x = (x, y) instead of

(x1, x2) for simplicity. The domain is partitioned into 2N2 right triangles with mesh size h.

The interface may hit grid points and [u] = w ̸= 0, which cause two different values of these

points, see Remark 3.1. We restrict these values of these points on Ω− and set φ(x) = 0, if |φ(x)| < ϵ

(ϵ =1.0E-14) to avoid the ambiguity caused by φ(x) smaller than machine precision.

In evaluating the integrals related norms and right hands, we divide an interface element into

three small triangles and then use the three-point Gaussian quadrature formulae on each small

triangle. For non-interface elements, the three-point Gaussian quadrature is used directly.

Define piecewise linear function Qh on Γh such that Qh(x
i) = Q(xi), where xi is the intersections

of the interface and edges of elements. Since the interface Γ is approximated by Γh, see (3.2), the

term
∫
Γ
Qvhds in all above numerical methods is evaluated approximatively by

∫
Γh

Qhvhds.

Errors in L∞ norm are computed approximately by

∥u− uh∥L∞ = max
p∈Nh

|u(p)− uh(p)|,
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and errors in broken H1 norm are computed by

|u− uh|H1(Ω) =
∑
T∈Th

(|u− uh|H1(T∩Ω+) + |u− uh|H1(T∩Ω−)),

where the notation |u − uh|H1(Ω) is only used for simplicity although u ̸∈ H1(Ω). It is known for

interface problems that the error does not necessarily behave monotonically under mesh refinement.

Therefore, the asymptotic convergence order is usually defined as the slope of the linear least square

fit of the error over mesh size in a log-log diagram. In the following examples, we plot errors in three

norms in log-log scale on 31 different meshes ranging from N = 23 to N = 210. For example, we

set Ni = floor(23+
7
30 (i−1)), for the i-th mesh, 1 ≤ i ≤ 31, where the function floor(k) rounds k to

the nearest integers less than or equal to k. The asymptotic convergence orders are the slopes s of

the linear least square fit of the errors on the 15 finest meshes because that coarsest meshes maybe

resolve the interface poorly.

Example 1. This example is taken from [14]. The analytic solution u±, the coefficients β± and

level set function φ are given as follows:

u+ = ln(x2 + y2), u− = sin(x+ y),

β+ = sin(x+ y) + 2, β− = cos(x+ y) + 2,

φ = x2 + y2 − 0.52.

The interface is a simple circle with radius 0.5 and center at (0, 0). The set N s is not empty, for

example, (0, 0.5), (0.3, 0.4) and so on. Table 1 shows that the PGIFEM and the SCIFEM achieves

second order accuracy in L∞ norm, but the non-conforming IFEM only has first order accuracy in

L∞ norm. Figure 4 shows the numerical solution for Example 1 by SCIFEM with N = 128 and

results of the linear regression analysis in three norms.

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.14893E-02 0.53439E-03 0.89247E-03

128 0.60514E-03 1.29927 0.16957E-03 1.65604 0.22597E-03 1.98170

256 0.27970E-03 1.11340 0.44741E-04 1.92217 0.56830E-04 1.99138

512 0.14894E-03 0.90911 0.11443E-04 1.96716 0.14217E-04 1.99902

1024 0.74133E-04 1.00657 0.29100E-05 1.97534 0.35880E-05 1.98636

Table 1: compare of the convergence results for Example 1 in L∞ norm by three methods.

Example 2. This example is taken from [14]. The analytic solution u±, the coefficients β± and

level set function φ are given as follows:

u+ = 1− x2 − y2, u− = x2 + y2 + 2,

β+ = x2 − y2 + 3, β− = 1000(xy + 3),

φ = x2 + y2 − 0.52.
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Figure 4: Solution for Example 1 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

The difficulty of the example is that β+/β− ≈ 1/1000. The results are reported in Table 2 and Figure

5. From Table 2, we find that the error constant in L∞ norm of SCIFEM is much smaller that that

of PGIFEM although they both have second order accuracy, and the non-conforming IFEM also

only has nearly first order accuracy in L∞ norm.

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.19181E+00 0.28255E+00 0.10346E+00

128 0.85401E-01 1.16732 0.71235E-01 1.98785 0.30468E-01 1.76366

256 0.52817E-01 0.69325 0.17731E-01 2.00627 0.74824E-02 2.02574

512 0.17012E-01 1.63449 0.44679E-02 1.98863 0.19830E-02 1.91580

1024 0.98813E-02 0.78374 0.10857E-02 2.04102 0.48505E-03 2.03149

Table 2: Compare of the convergence results for Example 2 in L∞ norm by three methods.

Example 3. The analytic solution u±, the coefficients β± and level set function φ are given as

follows:
u+ = 5− 5x2 − 5y2, u− = 7x2 + 7y2 + 6,

β+ = (xy + 2)/5, β− = (x2 − y2 + 3)/7,

φ = r − (0.5 + 0.1 sin(5θ)),

where (r, θ) is the polar coordinate of (x, y). The difficulty of this example is that the interface has

complicated geometry. Similar results are reported in Table 3 and Figure 6. From the picture, we

see that the order of SCIFEM in L∞ is 2.13 when the mesh resolved the complicated interface.
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Figure 5: Solution for Example 2 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.70391E-02 0.69993E-02 0.78501E-02

128 0.10552E-02 2.73782 0.10545E-02 2.73072 0.14928E-02 2.39468

256 0.35071E-03 1.58923 0.34386E-03 1.61661 0.41616E-03 1.84283

512 0.97224E-04 1.85088 0.95652E-04 1.84595 0.12020E-03 1.79167

1024 0.59412E-04 0.71055 0.20257E-04 2.23937 0.21450E-04 2.48641

Table 3: Compare of the convergence results for Example 3 in L∞ norm by three methods.
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Figure 6: Solution for Example 3 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

Example 4. This example is taken from [19]. The analytic solution u±, the coefficients β± and
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level set function φ are given as follows:

u+ =
r4 − C0 log(2r)

β+
, u− =

r2

β− ,

β+ = const., β− = const.,

φ =
√
(x− xc)2 + (y − yc)2 − (r0 + r1 sin(ωθ)),

where (r, θ) is the polar coordinate of (x, y), C0 = −0.1, (xc, yc) = (0.2/
√
20, 0.2/

√
20), r0 = 0.5,

r1 = 0.2, ω = 5 and β± are positive constants. We provide numerical results for three typical cases.

Case 1 (moderate jump): β+ = 10, β− = 1. Case 2 (large jump): β+ = 1000, β− = 1. Case 3

(large jump): β+ = 1, β− = 1000. The results are reported in Table 4-6 and Figure 7-9.

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.23951E-02 0.96132E-03 0.90778E-03

128 0.10078E-02 1.24883 0.17549E-03 2.45365 0.13393E-03 2.76091

256 0.72664E-03 0.47192 0.47604E-04 1.88221 0.38253E-04 1.80778

512 0.38903E-03 0.90134 0.16422E-04 1.53548 0.17286E-04 1.14602

1024 0.19958E-03 0.96294 0.31922E-05 2.36302 0.30992E-05 2.47961

Table 4: Compare of the convergence results for Example 4 case 1 in L∞ norm by three methods.
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Figure 7: Solution −uh for Example 4 case 1 solved by SCIFEM with N = 128 (left) and the linear

regression analysis in three norms in log-log scale (right).
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Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.20093E-02 0.32980E-02 0.81674E-03

128 0.46009E-03 2.12671 0.54701E-03 2.59194 0.19840E-03 2.04144

256 0.21123E-03 1.12312 0.23527E-03 1.21726 0.72054E-04 1.46128

512 0.78331E-04 1.43114 0.68935E-04 1.77101 0.20948E-04 1.78228

1024 0.37179E-04 1.07510 0.15269E-04 2.17466 0.11668E-05 4.16620

Table 5: Compare of the convergence results for Example 4 case 2 in L∞ norm by three methods.
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Figure 8: Solution −uh for Example 4 case 2 solved by SCIFEM with N = 128 (left) and the linear

regression analysis in three norms in log-log scale (right).

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.57000E-02 0.57055E-02 0.44289E-02

128 0.19265E-02 1.56501 0.20804E-02 1.45553 0.94519E-03 2.22828

256 0.67517E-03 1.51262 0.70046E-03 1.57045 0.72597E-04 3.70262

512 0.17765E-03 1.92620 0.17819E-03 1.97488 0.69692E-04 0.05892

1024 0.56174E-04 1.66110 0.30348E-04 2.55375 0.28918E-05 4.59097

Table 6: Compare of the convergence results for Example 4 case 3 in L∞ norm by three methods.

Example 5. This example is taken from [14]. The analytic solution u±, the coefficients β± and

level set function φ are given as follows:

u+ = 4− x2 − y2, u− = x2 + y2,

β+ = xy + 2, β− = x2 − y2 + 3,

φ = x2 − y − 1.
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Figure 9: Solution −uh for Example 4 case 3 solved by SCIFEM with N = 128 (left) and the linear

regression analysis in three norms in log-log scale (right).

The interface is tangential to the boundary ∂Ω at (0,−1), and it intersects with the boundary ∂Ω

at (−1, 0) and (1, 0) at certain nonzero angles. The results are reported in Table 7 and Figure 10.

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.86962E-03 0.18257E-03 0.29018E-03

128 0.49958E-03 0.79966 0.46145E-04 1.98421 0.77109E-04 1.91197

256 0.26691E-03 0.90438 0.12095E-04 1.93183 0.20634E-04 1.90185

512 0.14432E-03 0.88712 0.30143E-05 2.00446 0.51842E-05 1.99287

1024 0.75154E-04 0.94130 0.76066E-06 1.98649 0.13548E-05 1.93602

Table 7: Compare of the convergence results for Example 5 in L∞ norm by three methods.
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Figure 10: Solution for Example 5 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

Example 6. This example is taken from [22, p. 50, Example 3.2]. The analytic solution u±, the
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coefficients β± and level set function φ are given as follows:

u+ = sin(2x) cos(2y), u− = (2x)2 − (2y)2,

β+ = 10, β− = 1,

φ = x2 + (2y)2 − 0.52.

The results are reported in Table 8 and Figure 11.

Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.11712E-01 0.31748E-02 0.11800E-02

128 0.57292E-02 1.03153 0.88727E-03 1.83921 0.29410E-03 2.00437

256 0.32554E-02 0.81550 0.25454E-03 1.80148 0.62505E-04 2.23425

512 0.15209E-02 1.09794 0.61939E-04 2.03897 0.17074E-04 1.87219

1024 0.86572E-03 0.81295 0.15939E-04 1.95829 0.35861E-05 2.25127

Table 8: Compare of the convergence results for Example 6 in L∞ norm by three methods.
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Figure 11: Solution for Example 6 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

Example 7. This example is taken from [14]. The analytic solution u±, the coefficients β± and

level set function φ are given as follows:

u+ = 1− x2 − y2, u− = x2 + y2 + 2,

β+ = x2 − y2 + 3, β− = xy + 3,

φ = (3(x2 + y2)− x)2 − x2 − y2.

The specific feature of this example is the singular point of the interface with a cusp point at (0, 0).

The results are reported in Table 9 and Figure 12.
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Non-conforming IFEM PGIFEM SCIFEM

N ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order ∥u− uh∥L∞ Order

64 0.92622E-03 0.92845E-03 0.87632E-03

128 0.30335E-03 1.61039 0.30352E-03 1.61303 0.28133E-03 1.63917

256 0.66835E-04 2.18229 0.66891E-04 2.18191 0.66515E-04 2.08053

512 0.16286E-04 2.03699 0.16298E-04 2.03713 0.16210E-04 2.03680

1024 0.57653E-05 1.49814 0.38885E-05 2.06742 0.39384E-05 2.04121

Table 9: Compare of the convergence results for Example 7 in L∞ norm by three methods.
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Figure 12: Solution for Example 7 solved by SCIFEM with N = 128 (left) and the linear regression

analysis in three norms in log-log scale (right).

5 Conclusions

We have developed a new symmetric and consistent immersed finite element method (SCIFEM)

for solving elliptic interface problems with nonhomogeneous jump conditions on structured meshes.

The interface may intersect with ∂Ω and grid points. The new SCIFEM has optimal convergence

rates in the H1, L2, and L∞ norms which are verified numerically.
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