BOUNDARY VALUES OF $r_{r}, r_{r}^{*}, R_{r}, R_{r}^{*}$ SETS OF CERTAIN CLASSES OF GRAPHS

Padma M M ${ }^{1}$, M. Jayalakshmi ${ }^{2}$
Dept.of Mathematical and Computational Studies, Dr.Ambedkar Institute of Technology, Bengalurue, Karnataka State, INDIA, Pin 560 056,
email: ${ }^{1}$ padmaprakash.mm@gmail.com, ${ }^{2}$ jayachatra@yahoo.co.in.

Abstract

Let $G(V, E)$ be an undirected, finite, connected and a simple graph. For $u \in V$, associate a vector $\Gamma(u / S)=\left(d\left(u / s_{1}\right), d\left(u / s_{2}\right) \ldots, d\left(u / s_{k}\right)\right)$ with respect to $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of $V(G)$, $\Gamma(u / S) \neq \Gamma(v / S)$ for all $u, v \in V-S$ and is denoted by r_{r} set. A rational resolving set S with minimum cardinality is called rational metric basis or an $r m b$ set and its cardinality is called rational metric dimension, denoted by $\operatorname{rmd}(G)$ or $l_{r_{r}}(G)$. The maximum cardinality of a minimal r_{r} set of graph G is called upper r_{r} number of G and is denoted by $u_{r_{r}}(G)$. A subset S of $V(G)$ is said to be an r_{r}^{*} set if S is r_{r} set and $\bar{S}=\{V-S\}$ is also an r_{r} set. The minimum and maximum cardinality of minimal r_{r}^{*} set of graph G are respectively called lower and upper r_{r}^{*} number of G, denoted by $l_{r_{r}^{*}}(G)$ and $u_{r_{r}^{*}}(G)$. A subset S of $V(G)$ is said to be an R_{r} set if S is an r_{r} set and $\bar{S}=\{V-S\}$ is not an r_{r} set. The minimum and maximum cardinality of minimal R_{r} set of G are called respectively lower and upper R_{r} number of G and are denoted by $l_{R_{r}}(G)$ and $u_{R_{r}}(G)$. A subset S of $V(G)$ is said to be an R_{r}^{*} set if both S and $\bar{S}=\{V-S\}$ are not r_{r} sets. The minimum and maximum cardinality of minimal R_{r}^{*} set of G are called respectively lower and upper R_{r}^{*} number of G, denoted by $l_{R_{r}^{*}}(G)$ and $u_{R_{r}^{*}}(G)$. In this paper we are obtaining the lower and upper $r_{r}, r_{r}^{*}, R_{r}, R_{r}^{*}$ numbers of certain classes of graphs.

Key words: Closed Neighborhood, Rational resoloving set, Neighborhood resolving sets, Rational Metric dimension.
AMS Subject Classification number: 05C20

1 Introduction

Many networks are represented by a graph, in which vertex play an important role and it depends on its neighbors. To determine the position of a vertex in the network, we need to select the landmarks in such a way that the distance of the vertex from the landmark and the distances of its neighborhood vertices from the landmark are considered. Here $N(u)=\{x: u x \in E(G)\}$, called open neighborhood of the vertex $u, N[u]=N(u) \cup u$ is called closed neighborhood of the vertex u and $d(u, v)$ is the length of the shortest path between u and v. A subset S of the vertex set V of a connected graph G is said to be a resolving set of G if for every pair of vertices $u, v \in V-S$ there exists a vertex $w \in S$ such that $d(u, w) \neq d(v, w)$. The minimum cardinality of a resolving set S of G is called metric dimension of a graph G and is denoted by $\beta(G)$. Metric dimension was defined by
F. Harary et al. [2] and P.J. Slater [8]. For the entire survey, we refer the latest survey article by Joseph A. Gallian [5]. All the graphs considered here are undirected, finite, connected and simple. Throughout this paper P_{n} denote a path on n vertices with a vertex set $V=\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{v_{i} v_{i+1}: 1 \leq i<n\right\}$. Similarly C_{n} denote a cycle on n vertices with a vertex set $V=\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{v_{i} v_{i+1}\right\} \cup\left\{v_{1} v_{n}\right\}$. We use the standard terminology, the terms not defined here may be found in $[1,3,4]$.

2 Boundary values of $r_{r}, r_{r}^{*}, R_{r}, R_{r}^{*}$ sets of certain classes of Graphs

Rational metric dimension of graphs were originally proposed by A. Raghavendra, B. Sooryanarayana, C. Hegde [11]. Consider a graph $G(V, E)$. For $u \in V$, associate a vector $\Gamma(u / S)=$ $\left(d\left(u / s_{1}\right), d\left(u / s_{2}\right) \ldots, d\left(u / s_{k}\right)\right)$ with respect to $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of V, where $d(u / v)=\frac{\sum_{u_{i} \in N[u]} d\left(u_{i}, v\right)}{\operatorname{deg}(u)+1}$. Then subset S is said to be a rational resolving set if $\Gamma(x / S) \neq \Gamma(y / S)$ for all $x, y \in V-S$ and is denoted by r_{r} set. The minimum cardinality of a rational resolving set S is called rational metric dimension and is denoted by $r m d(G)$ or $l_{r_{r}}(G)$. A rational resolving set S with minimum cardinality is called rational metric basis or an $r m b$ set. An r_{r} set of G is said to be minimal if no subset of it is a r_{r} set. Clearly minimum cardinality of a minimal r_{r} set is $l_{r_{r}}(G)$, called lower r_{r} number of G. Now we define the following. The maximum cardinality of a minimal r_{r} set of graph G is called upper r_{r} number of G and is denoted by $u_{r_{r}}(G)$. A subset S of $V(G)$ is said to be an r_{r}^{*} set if S is r_{r} set and $\bar{S}=\{V-S\}$ is also an r_{r} set. The minimum cardinality of an r_{r}^{*} set of graph G is called lower r_{r}^{*} number of G and is denoted by $l_{r_{r}^{*}}(G)$ and the maximum cardinality of a minimal r_{r}^{*} set of graph G is called upper r_{r}^{*} number of G and is denoted by $u_{r_{r}^{*}}(G)$. A subset S of $V(G)$ is said to be an R_{r} set if S an r_{r} set and $\bar{S}=\{V-S\}$ is not an r_{r} set. The minimum and maximum cardinality of minimal R_{r} sets of G are called respectively lower and upper R_{r} number of G and are denoted by $l_{R_{r}}(G)$ and $u_{R_{r}}(G)$. A subset S of $V(G)$ is said to be an R_{r}^{*} set if both S and $\bar{S}=\{V-S\}$ are not r_{r} sets. The minimum and maximum cardinality of minimal R_{r}^{*} sets of G are called respectively lower and upper R_{r}^{*} number of G and are denoted by $l_{R_{r}^{*}}(G)$ and $u_{R_{r}^{*}}(G)$. (Suppose p and q represent some graph theoretical properties like domination, resolving, rmd etc, then a subset S of $V(G)$ is said to be $p q$ set if S is both p set and q set. If S is an arbitrary set, need not be minimal having the property p then minimum and maximum cardinality of S is denoted by $\hat{l}_{p}(G)$ and $\hat{u}_{p}(G)$.)

Remark 2.1. For a path P_{n},

$$
d\left(v_{j} / v_{i}\right)=\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } \quad i=j=1 \text { or } i=j=n \\
\frac{2}{3} & \text { if } \quad i=j \neq 1 \text { or } i=j \neq n \\
|j-i| & \text { if } \quad i \neq j \text { and }(j \neq 1 \text { or } j \neq n) \\
\frac{2|j-i|-1}{2} & \text { if } \quad i \neq j \text { and }(j=1 \text { or } j=n) .
\end{array}\right.
$$

Lemma 2.2. For a Path P_{n}, a singleton set $\left\{v_{i}\right\}$ is an rmb set if and only if either v_{i} is an end vertex or a support vertex in P_{n}.

Proof. From Ragavendra et al [11], $\operatorname{rmd}\left(P_{n}\right)=1,\left\{v_{1}\right\},\left\{v_{n}\right\}$ are $r m b$ sets. Now $\left\{v_{2}\right\}$ is an $r m b$ set, because from the Remark 2.1,

$$
d\left(v_{j} / v_{2}\right)=\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } & j=1 \\
j-2 & \text { if } & 3 \leq i \leq n-1 \\
\frac{2 n-3}{2} & \text { if } & j=n
\end{array}\right.
$$

Thus $\Gamma\left(v_{i} /\left\{v_{2}\right\}\right) \neq \Gamma\left(v_{j} /\left\{v_{2}\right\}\right)$ for every $i \neq j$. Similarly by symmetry $\left\{v_{n-1}\right\}$ is also an $r m b$ set. But for a vertex v_{i} which is not an end vertex or a support vertex in P_{n}, singleton set $\left\{v_{i}\right\}$ is not an $r m b$ set, because $d\left(v_{i-1} / v_{i}\right)=1=d\left(v_{i+1} / v_{i}\right)$ which imply $\Gamma\left(v_{i-1} /\left\{v_{i}\right\}\right)=\Gamma\left(v_{i+1} /\left\{v_{i}\right\}\right)$

Theorem 2.3. For a Path P_{n}, a subset $S=\left\{v_{i}, v_{j}\right\}, \forall i, j$ with $3 \leq i<j \leq n-2$ of $V\left(P_{n}\right)$ is a minimal r_{r} set.

Proof. Let $S=\left\{v_{i}, v_{j}\right\}, 3 \leq i<j \leq n-2$ be a subset of $V\left(P_{n}\right)$. Let x, y be any two vertices of P_{n}. Since $3<i<n-2$, from Lemma 2.2, $\left\{v_{i}\right\}$ is not an r_{r} set, which imply $d\left(x / v_{i}\right)=d\left(y / v_{i}\right)$, for some x, y of $V\left(P_{n}\right)$. Let $d\left(x / v_{i}\right)=d\left(y / v_{i}\right)$ for $x=v_{l}$ and $y=v_{m}$ for some l, m with $1 \leq l, m \leq n$. Without loss of generality, consider $l<m$. Consider the following cases.

Case 1: $l=1$.
From Remark 2.1, $d\left(v_{l} / v_{j}\right)=\frac{2|j-l|-1}{2}$ and $d\left(v_{m} / v_{j}\right)=|j-m|$ as $l<m$. Therefor $d\left(v_{l} / v_{j}\right) \neq$ $d\left(v_{m} / v_{j}\right)$ as $d\left(v_{m} / v_{j}\right)$ is an integer whereas $d\left(v_{l} / v_{j}\right)$ is not an integer. Hence $\Gamma(x / S) \neq \Gamma(y / S)$

Case 2: $l \neq 1$
From Remark 2.1, $d\left(v_{l} / v_{j}\right)=|j-l|$ and $d\left(v_{m} / v_{j}\right)=|j-m|$ as $l \neq 1 \Rightarrow m \neq 1$.
Suppose $d\left(v_{l} / v_{j}\right)=d\left(v_{m} / v_{j}\right)$, then $|j-m|=|j-l|$ which imply $j-m=-(j-l)$, because $j-m \neq j-l$ as $l \neq m$. But $j-m=-(j-l) \Rightarrow 2 j=m+l$. Similarly we have $d\left(v_{l} / v_{i}\right)=d\left(v_{m} / v_{i}\right)$ $\Rightarrow 2 i=m+l$. Combining we have $2 j=m+l$ and $2 i=m+l$ imply $i=j$ which is not possible. Therefore $d\left(v_{l} / v_{i}\right) \neq d\left(v_{m} / v_{i}\right)$ and hence $\Gamma(x / S) \neq \Gamma(y / S)$. Other cases follow by symmetry.

Therefore $\forall i, j$ with $3 \leq i<j \leq n-2,\left\{V_{i}\right\},\left\{V_{j}\right\}$ are not r_{r} sets, but $S=\left\{v_{i}, v_{j}\right\}$ of $V\left(P_{n}\right)$ is an r_{r} set which imply $S=\left\{v_{i}, v_{j}\right\}$ is a minimal r_{r} set.

Corollary 2.4. For a Path $P_{n}, n \geq 2$, any k-element subset S of $V\left(P_{n}\right)$ for $k \geq 2$ is an r_{r} set,but not minimal, because either S contain end vertices or support vertices or a subset $\left\{v_{i}, v_{j}\right\}$ with $3 \leq i<j \leq n-2$.

Corollary 2.5. For a Path $P_{n}, n \geq 6$, a subset $\left\{v_{i}, v_{j}\right\}$ of $V\left(P_{n}\right)$ with $3 \leq i<j \leq n-2$ is a minimal r_{r} set with maximum cardinality from Corollary 2.4.

Theorem 2.6. For a Path $P_{n}, l_{r_{r}}\left(P_{n}\right)=1$ for $n \geq 1$ and

$$
u_{r_{r}}\left(P_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } & n \leq 5 \\
2 & \text { if } & n \geq 6
\end{array}\right.
$$

Proof. $\left\{v_{1}\right\}$ is one of the r_{r} set with minimum cardinality. Therefore $l_{r_{r}}\left(P_{n}\right)=1$.
To find $u_{r_{r}}\left(P_{n}\right)$, consider the following cases.
Case 1: $n \leq 4$.
From Lemma 2.2, every singleton subset of $V\left(P_{n}\right)$ is a minimal r_{r} set which imply $u_{r_{r}}\left(P_{n}\right)=1$.
Case 2: $n=5$.
From Lemma 2.2, every singleton subset of $V\left(P_{5}\right)$ except $\left\{v_{3}\right\}$ is a minimal r_{r} set and hence no 2-element subset of $V\left(P_{5}\right)$ is an r_{r} set which imply $u_{r_{r}}\left(P_{5}\right)=1$

Case 3: $n \geq 6$.
From Corollary 2.5, a subset $\left\{v_{i}, v_{j}\right\}$ with $3 \leq i<j \leq n-2$ is a minimal r_{r} set with maximum cardinality Therefore $u_{r_{r}}\left(P_{n}\right)=2$.

Theorem 2.7. For a Path $P_{n}, l_{r_{r}^{*}}\left(P_{n}\right)=1$ for $n>1$ and

$$
u_{r_{r}^{*}}\left(P_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } & n \leq 5 \\
2 & \text { if } & n \geq 6
\end{array}\right.
$$

Proof. $S=\left\{v_{1}\right\}$ is an r_{r} set and $\bar{S}=V-S=\left\{v_{2}, v_{3}, \ldots, v_{n},\right\}$ is also an r_{r} set as it contain the end vertex v_{n}. Hence S is r_{r}^{*} set with minimum cardinality. Therefor $l_{r_{r}^{*}}\left(P_{n}\right)=1$.
To find $u_{r_{r}^{*}}\left(P_{n}\right)$, consider the following cases.
Case 1: $n \leq 5$.
From Lemma 2.2, a singleton subset $S=\left\{v_{1}\right\}$ or $\left\{v_{2}\right\}$ or $\left\{v_{n-1}\right\}$ or $\left\{v_{n}\right\}$ is an r_{r} set and for any $S, \bar{S}=V-S$ is also an r_{r} set and no k-element subset for $k \geq 2$ of $V\left(P_{n}\right)$ is an r_{r} set which imply S is a minimal r_{r}^{*} set with maximum cardinality. Therefore $u_{r_{r}^{*}}\left(P_{n}\right)=1$.

Case 2: $n \geq 6$.
From Corollary 2.5, a subset $S=\left\{v_{i}, v_{j}\right\}$ with $3 \leq i<j \leq n-2$ of $V\left(P_{n}\right)$ and $\bar{S}=V-S$ are r_{r} sets and no k-element subset for $k \geq 3$ of $V\left(P_{n}\right)$ is an r_{r} set which imply S is an minimal r_{r}^{*} set with maximum cardinality. Therefore $u_{r_{r}^{*}}\left(P_{n}\right)=2$.

Theorem 2.8. For a Path P_{n},

$$
l_{R_{r}}\left(P_{n}\right)=u_{R_{r}}\left(P_{n}\right)= \begin{cases}0 & \text { if } \quad 1<n \leq 4 \\ n-1 & \text { if } \quad n \geq 5\end{cases}
$$

Proof. To find $l_{R_{r}}\left(P_{n}\right)$, consider the following cases.
Case 1: $1<n \leq 4$.
From Lemma 2.2, every singleton subset of $V\left(P_{n}\right)$ is an r_{r} set which imply for any k with $1 \leq k \leq 3$, a k-element subset S of $V\left(P_{n}\right)$ is an r_{r} set and for any $S, \bar{S}=V-S$ is also an r_{r} set which imply S is not an R_{r} set and therefore $l_{R_{r}}\left(P_{n}\right)=u_{R_{r}}\left(P_{n}\right)=0$.

Case 2: $n \geq 5$.
From Lemma 2.2, every k-element subset of $V\left(P_{n}\right)$ for $k \geq 2$ is an r_{r} set and every singleton subset $\left\{v_{i}\right\}, 3 \leq i \leq n-2$ of $V\left(P_{n}\right)$ is not an r_{r} set, which imply a subset S of $V\left(P_{n}\right)$ is an R_{r} set, only if $\bar{S}=V-S$ is a singleton subset $\left\{v_{i}\right\}, 3 \leq i \leq n-2$ of $V\left(P_{n}\right)$. Therefore $l_{R_{r}}\left(P_{n}\right)=u_{R_{r}}\left(P_{n}\right)=n-1$.

Theorem 2.9. For a Path $P_{n}, n>1, l_{R_{r}^{*}}\left(P_{n}\right)=u_{R_{r}^{*}}\left(P_{n}\right)=0$
Proof. For any k-element subset S of $V\left(P_{n}\right)$ with $1 \leq k<n-1$, either S or $V-S$ contain atleast one end vertex which imply either S or $V-S$ is always an r_{r} set. Therefore there exists no R_{r}^{*} set for P_{n} and hence $l_{R_{r}^{*}}\left(P_{n}\right)=u_{R_{r}^{*}}\left(P_{n}\right)=0$.

Theorem 2.10. For a complete graph $K_{n}, n>2$, (when $n=2, K_{n}=P_{n}$)
(i) $l_{r_{r}}\left(K_{n}\right)=u_{r_{r}}\left(K_{n}\right)=n-1$
(ii) $l_{r_{r}^{*}}\left(K_{n}\right)=u_{r_{r}^{*}}\left(K_{n}\right)=0$
(iii) $l_{R_{r}}\left(K_{n}\right)=u_{R_{r}}\left(K_{n}\right)=n-1$
(iv) $l_{R_{r}^{*}}\left(K_{n}\right)=u_{R_{r}^{*}}\left(K_{n}\right)=2$

Proof. From Ragavendra et al [11], $\operatorname{rmd}\left(K_{n}\right)=n-1$ and any $(n-1)$-element subset S of $V\left(K_{n}\right)$ is a minimal r_{r} set.
(i) $\operatorname{rmd}\left(K_{n}\right)=n-1 \Rightarrow l_{r_{r}}\left(K_{n}\right)=n-1$ and there exists no minimal r_{r} set with cardinality greater than $n-1$ which imply $u_{r_{r}}\left(K_{n}\right)=n-1$.
(ii) Since from (i), any r_{r} set contain minimum $n-1$ elements, for any subset S of $V\left(K_{n}\right)$, both S and $\bar{S}=V-S$ cannot contain minimum $n-1$ elements. Hence there exist no r_{r}^{*} set for K_{n} and therefore $l_{r_{r}^{*}}\left(K_{n}\right)=u_{r_{r}^{*}}\left(K_{n}\right)=0$.
(iii) Since from (i), any minimal r_{r} set S contain minimum $n-1$ elements, imply $\bar{S}=V-S$ contain exactly one element and hence \bar{S} is not an r_{r} set. Therefore S is a minimal R_{r} set with minimum and maximum cardinality which imply $l_{R_{r}}\left(K_{n}\right)=u_{R_{r}}\left(K_{n}\right)=n-1$.
(iv) Since from (i), any subset of $V\left(K_{n}\right)$ containing $n-1$ elements is an r_{r} set, if S is a singleton subset of $V\left(K_{n}\right)$, then $\bar{S}=V-S$ contain $n-1$ elements which imply S is a non r_{r} set and $\bar{S}=V-S$ is an r_{r} set so that S is not an R_{r}^{*} set. But if S is 2-element subset of $V\left(K_{n}\right)$, then $\bar{S}=V-S$ contain $n-2$ elements which imply both S and $\bar{S}=V-S$ are non r_{r} sets so that S is an R_{r}^{*} set and is minimal. Therefore $l_{R_{r}^{*}}\left(K_{n}\right)=u_{R_{r}^{*}}\left(K_{n}\right)=2$.

Theorem 2.11. For a star graph $K_{1, n}, n>2$, (when $n=2, K_{1, n}=P_{n+1}$)
(i) $l_{r_{r}}\left(K_{1, n}\right)=u_{r_{r}}\left(K_{1, n}\right)=n-1$
(ii) $l_{r_{r}^{*}}\left(K_{1, n}\right)=u_{r_{r}^{*}}\left(K_{1, n}\right)=0$
(iii) $l_{R_{r}}\left(K_{1, n}\right)=u_{R_{r}}\left(K_{1, n}\right)=n-1$
(iv) $l_{R_{r}^{*}}\left(K_{1, n}\right)=u_{R_{r}^{*}}\left(K_{1, n}\right)=2$

Proof. From Ragavendra et al [11], $\operatorname{rmd}\left(K_{1, n}\right)=n-1$ and any $(n-1)$-element subset S of $V\left(K_{1, n}\right)$ containing only pendent vertices is a minimal r_{r} set.
(i) $\operatorname{rmd}\left(K_{1, n}\right)=n-1 \Rightarrow l_{r_{r}}\left(K_{1, n}\right)=n-1$ and there exists no minimal r_{r} set with cardinality greater than $n-1$ which imply $u_{r_{r}}\left(K_{1, n}\right)=n-1$.
(ii) Since any r_{r} set must contain minimum $n-1$ elements, both S and $\bar{S}=V-S$ cannot contain minimum $n-1$ elements. Hence there exists no r_{r}^{*} set for $K_{1, n}$ and therefore $l_{r_{r}^{*}}\left(K_{1, n}\right)=$ $u_{r_{r}^{*}}\left(K_{1, n}\right)=0$.
(iii) Any r_{r} set S contain minimum $n-1$ elements, imply $\bar{S}=V-S$ contain maximum 2 elements and hence \bar{S} is not an r_{r} set. Also any r_{r} set of $V\left(K_{1, n}\right)$ with greater cardinality cannot be minimal. Therefore any r_{r} set with $n-1$ elements is a minimal R_{r} set with minimum and maximum cardinality which imply $l_{R_{r}}\left(K_{1, n}\right)=u_{R_{r}}\left(K_{1, n}\right)=n-1$.
(iv) Since for R_{r}^{*} set, both S and \bar{S} should not contain $n-1$ pendent vertices, any 2-element subset of $V\left(K_{1, n}\right)$ containing only pendent vertices is a minimal R_{r}^{*} set with minimum and maximum cardinality. Therefore $l_{R_{r}^{*}}\left(K_{1, n}\right)=u_{R_{r}^{*}}\left(K_{1, n}\right)=2$.

Theorem 2.12. For a cycle $C_{n}, n>3$, (when $n=3, C_{n}=K_{n}$)
(i) $l_{r_{r}}\left(C_{n}\right)=u_{r_{r}}\left(C_{n}\right)=2$
(ii) $l_{r_{r}^{*}}\left(C_{n}\right)=u_{r_{r}^{*}}\left(C_{n}\right)=2$
(iii)

$$
l_{R_{r}}\left(C_{n}\right)=u_{R_{r}}\left(C_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is odd or } n=4 \\ n-2 & \text { if } n \text { is even and } n \neq 4\end{cases}
$$

(iv)

$$
l_{R_{r}^{*}}\left(C_{n}\right)=u_{R_{r}^{*}}\left(C_{n}\right)=\left\{\begin{array}{lll}
2 & \text { if } & n=4 \\
0 & \text { if } & n>4
\end{array}\right.
$$

Proof. From Ragavendra et al [11], $\operatorname{rmd}\left(C_{n}\right)=2$. Any 2-element subset S of $V\left(C_{n}\right)$ (non diagonal elements when n is even) is a minimal r_{r} set.
(i) $\operatorname{rmd}\left(C_{n}\right)=2 \Rightarrow l_{r_{r}}\left(C_{n}\right)=2$. Also any k-element subset of $V\left(C_{n}\right)$ for $k \geq 3$ contain 2-element subset which is an r_{r} set, which imply any 2-element subset of $V\left(C_{n}\right)$ is a minimal r_{r} set with maximum cardinality. Hence $u_{r_{r}}\left(C_{n}\right)=2$
(ii) Since an r_{r} set of C_{n} must contain minimum 2 elements, any S of $V\left(C_{n}\right)$ with both S and $\bar{S}=V-S$ containing minimum 2 elements (non diagonal elements when n is even) is an r_{r}^{*} set, out of which exactly 2 -element subset S is a minimal r_{r}^{*} set with minimum and maximum cardinality. Hence $l_{r_{r}^{*}}\left(C_{n}\right)=u_{r_{r}^{*}}\left(C_{n}\right)=2$
(iii) Consider the following cases.

Case i When n is odd or $n=4$
Every k-element subset of $V\left(C_{n}\right)$ for $k \geq 2$ is an r_{r} set and every singleton subset $\left\{v_{i}\right\}$ of $V\left(C_{n}\right)$ is not an r_{r} set, which imply a subset S of $V\left(C_{n}\right)$ is an R_{r} set, only if $\bar{S}=V-S$ is a singleton subset, that is S contain minimum $n-1$ elements. Therefore $l_{R_{r}}\left(C_{n}\right)=u_{R_{r}}\left(C_{n}\right)=n-1$.
Case ii When n is even and $n \neq 4$
Since any two diagonally opposite vertices of $V\left(C_{n}\right)$ is a non r_{r} set, choose S of $V\left(C_{n}\right)$ such that $\bar{S}=V-S$ contain two diagonally opposite vertices of $V\left(C_{n}\right)$. Then S is minimal R_{r} set with minimum and maximum cardinality $n-2$. Therefore $l_{R_{r}}\left(C_{n}\right)=u_{R_{r}}\left(C_{n}\right)=n-2$.
(iv) Consider the following cases.

Case i When $n=4$
$S=\left\{v_{1}, v_{3}\right\}$ and $\bar{S}=V-S=\left\{v_{2}, v_{4}\right\}$ are not r_{r} sets which imply S is an R_{r}^{*} set and hence $l_{R_{r}^{*}}\left(C_{n}\right)=u_{R_{r}^{*}}\left(C_{n}\right)=2$.
Case ii When $n>4$
For any subset S of $V\left(C_{n}\right)$, either S or $V-S$ contain atleast two elements (non diagonal elements when n is even) which imply either S or $V-S$ is always an r_{r} set. Therefore there exists no R_{r}^{*} set for C_{n} and hence $l_{R_{r}^{*}}\left(C_{n}\right)=u_{R_{r}^{*}}\left(C_{n}\right)=0$.

Acknowledgment: Authors are very much thankful to the Management and the Principal of Dr. Ambedkar Institute of Technology, Bangalore for their constant support and encouragement during the preparation of this paper.

References

[1] Buckley F and Harary F, Distance in Graphs, Addison-Wesley,(1990).
[2] F. Harary, R.A. Meltar, On the metric dimension of a graph, Ars. Combinatoria 2 (1976), 191-195.
[3] F. Harary, Graph theory, Narosa Publishing House, New Delhi, 1969.
[4] Hartsfield Gerhard and Ringel, Pearls in Graph Theory, Academic Press, USA, 1994.
[5] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, \# DS6,(2009),1-219.
[6] Samir Khuller, Balaji Raghavachari, Azriel Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70(1996)217-229.
[7] A. Sebo, E. Tannier, On Metric generators of graphs, Math. Opr. Res. 29(2004), 383-393.
[8] Peter J. Slater, Dominating and references in a grap, J. Math, Phys.Sci. 22 (1988), 445-455.
[9] B. Sooryanarayana, on the metric dimension of graph, Indian journal of Pure and Appl. Math. 29
[10] B. Sooryanarayana and Shanmukha, A note on the metric dimension, Far. East. J. Appl. Math. 3 (2001), 331-339.
[11] A. Raghavendra, B. Sooryanarayana, C. Hegde Rational metric dimension of graphs, Communication in Optimization theorey, 2014, ISSN: 2051-2953.
[12] Joe Ryan, Exclusive sum labeling of graphs: A survey, AKEC International Journal of Graphs.Combinatorics.,Vol 6, No. 1, (2009) 113-126.

