ON THE PARAMETRIC FACTORIZATION AND ANALYSIS OF A CUBIC ROOT MEAN FOURTH ORDER RUNGE – KUTTA FORMULA
 Agbeboh G.U.
 Mathematics Department Ambrose Alli University Ekpoma, Edo State, Nigeria.
 Abstract
 A special type of fourth order Runge-Kutta Formula (RKF) for the solution of Initial Value Problems (IVPs) in Ordinary Differential Equation, whose step functions are made to obey the usual characteristics of Runge-Kutta Method (RKM) is established. A rigorous derivation was carried out through the process of binomial and Taylor series expansion to obtain the values of the parameters. Solution of some ivps were obtained using the method and was tested for efficiency, convergence and stability The results show that the formula has minimal errors, is consistent, converges, stable and it compares favourably well with other RKMs with relatively smaller time.
Key words: parametric factorization, geometric approach, binomial expansion and cubic 4th order.
2010 Mathematical Subject Classification: Primary 65L20; Secondary 65L06
 E-mail: ujagbegoddu@yahoo.com

 1 INTRODUCTION
 Physical systems give rise to system of Ordinary Differential Equations (ODEs) with widely varying eigenvalues resulting precisely in the concept of singular initial value and stiffness problems in ordinary differential equations. This paper seeks to derive a new formula through the process of binomial and Taylor series expansion, implement the new method using some well known Initial Value Problems (IVPs) in ODEs and investigate its level of compliance with numerical solution in ODEs. The scheme developed here is also adaptable to mildly stiff ordinary differential equations. However, the focus here is on the solution of singular and non-stiff initial-value problems. Sometimes step size is restricted by stability rather than by accuracy; just as solutions to differential equations evolve with time, so do numerical approximations progress in small time steps. In each step, an error is made and it is important to keep these errors small. But the error caused in one time-step may have an effect on the accuracy of later steps. It may be more important to control the buildup of errors than to control the size of the errors themselves. According Butcher (2010), in numerical analysis the smallness of the individual errors is called accuracy and the ability to keep the effect of errors under control is called stability. In this paper, the new cubic Rung-Kutta algorithm is expected to solve singular ivps in ordinary differential equations.

 According to Lambert (1995), there are various one-step schemes in existence, as established in Jain (1983), Jackiewiez et al (1991), Butcher (1987), Agbeboh et al (2007) Fatunla (1986) Agbeboh and Ehiemua (2012), Agbeboh and Omokaro (2012) and Agbeboh (2013), but a method becomes useful only when it has properties like consistency, convergence and error inherent in it. Also, Ababneh, et al (2009), also acknowledged that a one-step method is said to be consistent, if the difference equation of the computation formula exactly approximates the differential equation it intends to solve. In this section, we establish the consistency, convergence and error properties of our new algorithm. It is important to recall that a first – order differential equation may possess an infinite number of solutions. For example, the function is, for any value of the constant C, a solution of the differential equation, where is a given constant. Lambert (1977), noted that we can pick out any particular solution by prescribing an initial condition,. For the above example, the particular solution satisfying this initial condition is easily found to be (1.1a) We say that the differential equation together with an initial condition constitute an initial value problem, (1.1b) The absolute stability property of a one-step numerical process is normally investigated by applying the test equation (1.2)

Where is a complex constant with negative real party the resultant equation is the first order differential equation , (1.3) The function is called the stability function which is either a polynomial or a rational function in . The parameters in the one-step method are sometimes chosen as to ensure that is an approximation to.
To get a clearer picture of our mission, let us examine some relevant definitions in line with the objective of this paper.
1.2 Definition of terms

 Definition 1: A one-step scheme is said to be absolutely stable at a point in the complex plane provided the stability function satisfies the following condition (1.4) and the corresponding region of absolute stability is (1.5)		 Definition 2: The numerical integration scheme is said to be A-stable provided that the region of absolute stability include the entire left hand of the complex plane.

 A-stability concept which was introduced by Dalhquist (1963) is a very desirable property for any numerical integration algorithm particularly if the IVP were to be stiff and highly oscillatory. As A-stability requirement is rather too stringent, weaker but less desirable stability criteria which accommodates higher orders has since been proposed. These include A()-stability introduce by Widlund (1967) stiff- Stability Gear (1967), and A(0)-stability Cryer (1973).

Definition 3: A numerical process is said to be A()-stable for x (0,) if its solution set tend to zero as n when this process is applied with fixed position into the test problem in (1.2) where in this case or, If its region of absolute stability is continuous at infinite wedge See Agbeboh and Omokaro (2010).

A numerical process is said to be A(0)-stable if it is A()-stable for all (some)

(0,/2),

such that o < < /2.

Definition 4: A numerical method is said to be stiffly stable if (i) Its region of absolute stability contains and (ii) It is accurate for all q when applied to the scalar test equation

 where , (1.6)
and a, b and c are positive constants. See Agbeboh and Omokaro (2010).

The reason for this definition is to represent eigenvalue with rapidly decaying terms in the transient solution by corresponding in.

	Since, we shall be dealing with one step method that may result in rational stability function, which can definitely be investigated as , then we need to examine L-stability property otherwise known as stiff A-stability proposed by Hall (1986) and shall comprise the behaviour of stability function as .

Definition 5: A one-step method is said to be L-stable if it is A-stable and, in addition when applied to the stable test equation is a complex constant with it yields

when (1.7)
The above definitions highlight the fact that this paper is mainly constructed to establish the stability of the new method as will be seen in section 4.

1.2.	Stabilizing condition: Generalizing, Lambert (1990) postulated as follows. “Let be the principal root, and be the spurious roots of the first characteristic polynomial

	 (1.8)

Let, then in the case when the spurious roots of P are distinct, the stabilizing condition requires that

			 (1.9)

			 (1.10)

A method is said to be stabilized if it satisfies the stabilizing condition and the strict root condition
This condition remains an instrument in establishing the stability of this scheme.
2. The Principles of Derivation for the New Method
 The procedure for obtaining the new Runge-Kutta method is basically the same with that of classical method except that the binomial expansion will be applied in combination with Taylor series expansion in a more rigorous manner to derive the k functions.
According to Fatunla (1988), “Runge-Kutta methods can be classified into three categories called an s-stage Runge-Kutta process given by:

 (2.1)

where
In tabular form the three types of Runge-Kutta methods are as shown below:
Table 1.1 Type of Runge-Kutta methods
	Type
	Status of Coefficients
	Number of Coefficients

	Explicit
	
 (i.e. A us lower triangle with zero diagonal elements)
	

	Semi-Explicit
	
 (i.e. A is lower triangular with non-zero diagonal elements)
	

	Implicit
	
(ie A is not a lower triangular matrix)
	

The numerical values of the unknown coefficients are obtained from a set of nonlinear equations, derived as follows:

Step 1 Obtain the Taylor Series expansion of at the point for j = 1 (1) s
Step 2: Insert these expansion in equation (1.3) in equation (1.2)

Step 3: Compare these coefficients in power of h for both the increment function of the Runge-Kutta method with the increment function for the Taylor expansion method specified in (3.1a) to (3.1c) in the next section.

All of the unknown coefficients normally exceed the number of equations, so some can be chosen so as to attain some desired goal. Some of these goals, according to Fatunla (1988) are
to minimize a bound of local truncation error (c.f Ralston 1965, 1962b);
to maximize the attainable order of the scheme (king 1966) achieved this for the

 (2.3)
Thus, we have the approximation

 (2.4)
Equation (2.4) is the same as

(Average slope) (2.5)

This is the underlying principle of the Runge-Kutta method. In the above analysis the average slope are represented by ki which can be arithmetic mean,(Classical Runge-Kutta Method), geometric mean constructed by Evans and Sangui (1986) and developed by Agbeboh (2006) is being extended to cubic root mean in this paper .In general, we find the slope at and at several other points; take the average of these slopes, multiply by h, and add the result to yn. Thus, the Runge-Kutta method with v-shape can be written as

 (2.6)

 (2.7)
where the parameters ci, aji and wi are arbitrary.
From (2.5) we may interpret the increment function as the linear combination of the slopes at xn and other points between xn and xn+1. The expansion of (2.6) and (2.7) helps in obtaining specific values for the parameters; we expand yn+1 in powers of h such that it agrees with the Taylor series expansion to a specific number of terms.
Using the above principle, the new Rung-Kutta method as stated in section 3 was derived.
3. The Analysis of the Cubic Order Runge-Kutta Formula.
 According to Lambert (1995), and established in Agbeboh and Ehiemua (2012), Agbeboh and Omokaro (2012) and Agbeboh (2013), there are various one-step schemes in existence, but a method becomes useful only when it has properties like consistency, convergence and stability inherent in it. Also, Ababneh, Ahmed and Ismail (2009), also acknowledged that a one-step method is said to be consistent, if the difference equation of the computation formula exactly approximates the differential equation it intends to solve. In this section, the consistency, convergence and stability properties of our new algorithm carved out of the Kutta one- step method is established.
The stability properties of the method are analyzed by adopting the above definitions and the derivation below is used.

, (3.1a) , for j=i=2,3,4. (3.1b)

 (3.1c) (3.2) (3.3)
where 4th order accuracy is obtained by choosing a1 = ½, a2 = 0, a3 = ½, a4 = 0

 a5 = 0 and a6 = 1, the cubic order formula as given below is developed by setting.
To get the new formula, we set equation (3.3) as follows:

 (3.4)
 By replacing (3.4) with their root means parameters, equation (3.3) becoming.

 (3.5a)

Where , (3.5b)

by the same process of experimentation and using parameters leads to a low accuracy formula of order 4. We therefore, hold that these parameters will not be suitable for use in equation (3.4).
 It is our desire therefore, to find values for parameters ai, i = 1(1)6 that will cause higher accuracy of order 4. Equation (3.5) was derived using the process of binomial expansion, arising from the fact that (3.5) can be expanded to give

 (3.6)

 such that (3.7)

Using the binomial expansion of rational index

 (3.8)

where (3.9)
we can obtain the expansion of (3.7) in terms of x in (3.8) to get

 (3.10a)
and

 (3.10b)

Using Taylor series expansion for function of two variable, we adopt the expansion of y functions only and reduce all ki’s to, such that ki i = 1,2,3,4 will become functions of k1 and y only. Using equations (1.3) we have

 and (3.11) 	 (3.12)
In summary, the expansion of k2, k3, k4 and their powers are:

					 (3.13)

Similarly, by setting 					

					 (3.14)

 (3.15) 				 (3.16)

 (3.17) to obtain values for, we set, for, r = 1, 2 and 3. Such that (3.18) (3.19) (3.20)
Hence

 (3.21)

 (3.22) Using the same method of expanding we obtain, by setting and (3.23) (3.24) (3.25) Substituting equations (2.24)-(3.26) into

 , (3.26) where, (3.27)

We have , (3.28) Substituting equations (3.23) and (3.28) into equation (3.4), we have:

 (3.29)

we get (3.30) Comparing with the Taylor Series expansion given as We have the following equations:

 (3.32a) (3.32b) (3.32c) (3.32d) (3.32e) (3.32f) (3.32g) By setting A=1/2 and B=1, we obtain the following values for the parameters.

, , , , , (3.33) And the resulting cubic 4th order Runge-Kutta formula emerged as

 (3.34a) (3.34b) (3.35a) (3.35b) , (3.35c) (3.35d)
With the Butcher Array as shown in The table I
 Table 1 Butcher Array for the Cubic Root Mean 4th order RKF
	1
	0
	
	
	
	

	1
	0
	½
	
	
	

	1/12
	0
	-1/2
	7/12
	
	

	1/42
	0
	-1/6
	-1/6
	-1/14
	26/21

	
	½
	1/3
	1/3
	1/3
	1/3

4. Implementation of the Method on Some Initial Value Problems: We implement here, the above derived formula on some selected initial value problems in ordinary differential equations using an appropriate FORTRAN program and compare with some other well known Runge-Kutta Formulae. The results are as follow
(a). (ONE-THIRD RUNGE-KUTTA METHOD

 (b). MODIFIED KUTTA’S ALGORITHM

(c). CLASSICAL RUNGE-KUTTA METHOD

In order to compare the performance of formula (a) with those of (b) and (c), we solve the following examples.
Example 4.1

. Whose exact solution is . See table 4.1 below for the computed results.
Example 4.2

 , Whose exact solution is where c is any constant.
See table 4.2 below for the computed results.
Example 4.3

 , Whose exact solution is , where c is any constant. See table 4.3 below for the computed results.

Table 4.3: Numerical Results for example 4.3
	XN
	TSOL
	CRK4
	ERROR
	CUKA
	ERROR
	1/3RK4
	ERROR
	

	.1E+00
	0.1223E+01
	0.1223E+01
	0.3339E-07
	0.1224E+01
	0.5884E-03
	0.1223E+01
	0.6639E-05
	

	.2E+00
	0.1508E+01
	0.1508E+01
	0.1480E-05
	0.1510E+01
	0.1669E-02
	0.1508E+01
	0.2775E-04
	

	.3E+00
	0.1896E+01
	0.1896E+01
	0.1096E-04
	0.1900E+01
	0.3782E-02
	0.1896E+01
	0.9968E-04
	

	.4E+00
	0.2465E+01
	0.2465E+01
	0.6307E-04
	0.2473E+01
	0.8294E-02
	0.2465E+01
	0.3829E-03
	

	.5E+00
	0.3408E+01
	0.3408E+01
	0.4030E-03
	0.3427E+01
	0.1910E-01
	0.3408E+01
	0.1825E-02
	

	.6E+00
	0.5332E+01
	0.5328E+01
	0.3958E-02
	0.5379E+01
	0.4735E-01
	0.5318E+01
	0.1364E-01
	

	.7E+00
	0.1168E+02
	0.1155E+02
	0.1274E+00
	0.1164E+02
	0.3892E-01
	0.1138E+02
	0.2982E+00
	

	.8E+00
	-.6848E+02
	0.1922E+03
	0.2606E+03
	0.1142E+03
	0.1827E+03
	0.1233E+03
	0.2982E+00
	

	.9E+00
	-.8688E+01
	0.3120E+18
	0.3120E+18
	0.1225E+10
	0.1225E+10
	0.2582E+12
	0.2582E+12
	

	.1E+01
	-.4588E+01
	0.3278+261
	0.3278+261
	0.2376E+75
	0.2376E+75
	0.7454+123
	0.7454+123
	

 Table 4.2: Numerical Results for example 4.2
	XN
	TSOL
	CRK4
	ERROR
	MKA
	ERROR
	1/3RK4
	ERROR

	.1E+00
	0.1111E+01
	0.1111E+01
	0.6211E-06
	0.1111E+01
	0.4154E-04
	0.1111E+01
	0.2932E-05

	.2E+00
	0.1250E+01
	0.1250E+01
	0.2008E-05
	0.1250E+01
	0.1247E-03
	0.1250E+01
	0.9354E-05

	.3E+00
	0.1429E+01
	0.1429E+01
	0.5242E-05
	0.1428E+01
	0.2968E-03
	0.1429E+01
	0.2399E-04

	.4E+00
	0.1667E+01
	0.1667E+01
	0.1341E-04
	0.1666E+01
	0.6758E-03
	0.1667E+01
	0.5992E-04

	.5E+00
	0.2000E+01
	0.2000E+01
	0.3674E-04
	0.1998E+01
	0.1593E-02
	0.2000E+01
	0.1587E-03

	.6E+00
	0.2500E+01
	0.2500E+01
	0.1171E-03
	0.2496E+01
	0.4155E-02
	0.2500E+01
	0.4811E-03

	.7E+00
	0.3333E+01
	0.3333E+01
	0.4892E-03
	0.3320E+01
	0.1310E-01
	0.3331E+01
	0.1857E-02

	.8E+00
	0.5000E+01
	0.4997E+01
	0.3372E-02
	0.4941E+01
	0.5886E-01
	0.4989E+01
	0.1116E-01

Table 4.3: Numerical Results for example 4.3
	XN
	TSOL
	CRK4
	ERROR
	CUKA
	ERROR
	1/3RK4
	ERROR

	.1E+00
	0.2235E+01
	0.2235E+01
	0.8351E-05
	0.2235E+01
	0.4692E-04
	0.2235E+01
	0.3237E-04

	.2E+00
	0.2569E+01
	0.2569E+01
	0.3417E-04
	0.2569E+01
	0.1899E-03
	0.2569E+01
	0.1315E-03

	,3E+00
	0.3076E+01
	0.3076E+01
	0.1266E-03
	0.3076E+01
	0.1899E-03
	0.3076E+01
	0.4765E-03

	.4E+00
	0.3936E+01
	0.3935E+01
	0.5646E-03
	0.3933E+01
	0.2880E-02
	0.3934E+01
	0.2019E-02

	.5E+00
	0.5693E+01
	0.5689E+01
	0.4074E-02
	0.5675E+01
	0.1820E-01
	0.5681E+01
	0.1297E-01

	.6E+00
	0.1124E+02
	0.1115E+02
	0.9555E-01
	0.1094E+02
	0.3038E+00
	0.1102E+02
	0.2284E+00

	.7E+00
	-.1454E+03
	0.1177E+03
	0.2632E+03
	0.7239E+02
	0.2178E+03
	0.8493E+02
	0.2304E+03

	.8E+00
	-.8868E+01
	0.1853E+15
	0.1853E+15
	0.2427E+08
	0.2427E+08
	0.4039E+10
	0.4039E+10

	.9E+00
	-.4352E+01
	0.7874+209
	0.7874+209
	0.3033E+59
	0.3033E+59
	0.1600+102
	0.1600+102

	.1E+01
	-.2784E+01

4. Stability Analysis of the Method
Our duty here is to investigate and establish the stability of the method by following Lambert (1973), where it was revealed that “in all computational methods, the use of a scheme for numerical solution of initial value problem (1.1) will generate errors at some stages of the computation due to inaccuracy inherent in the formula and the arithmetic operations adopted during computer implementation. The magnitude of the error determines the degree of accuracy and stability of the method”. Thus, it is important that the numerical solution approximates the exact solution and that the numerical solution tends to the exact solution as the step size tends to zero. Jain et al (2007) observed that if the step length used is too small, excessive computation time and round-off error will result. We should also consider the opposite case, and ask whether there is any upper bound on step length. Often there is such a bound and it is reached when the method becomes numerically unstable, that is the numerical solution produced, no longer corresponds qualitatively with the exact solution.
According to Lambert (1995), the traditional criterion for ensuring that a numerical method is stable is called “Absolute Stability”, and this analysis will therefore, be carried out to establish the absolute stability of our method by subjecting it to the linear test equation;

 (4.1) where is complex.
Butcher (1987) emphasized that all Runge-Kutta methods including the implicit ones, when applied to the test equation, reduce to an equation of the form;

 (4.2)

 where is called the stability polynomial function. Bearing this in mind we write, so that it produces a linear system for the computation of which will be solved for, and then inserted into our method to produce

 (4.3) Lambert (1973), says, the key issue for understanding the long term dynamics of Runge-Kutta methods near some fixed points, concerns the region where R (≤ 1; that is, the Stability region of the numerical method. The polynomial, for which R(is known as the Stability polynomial of the method, and this method is absolutely stable for a given , if all the roots of the polynomial function lie within the unit circle. The region containing all these points in the complex plane is said to be a region of absolute stability, if the method is stable for all

. (4.4) It is also possible according to Lambert (1995), that applying a method to the test equation (1.1) (where is a scalar) yields

 (4.5)

 Now defining we may then write (4.5) in the form

 and (4.6)
Where A is the matrix of coefficients.
Solving the first of these for Y and substituting in the second gives

 (4.7)

 where is the s x s unit matrix, the stability function is therefore given by

 (4.8)

However, in another approach, Dekker and Verwer (1984) gives an alternative form of, where it was observed that the solution for by Cramer’s rule is

 (4.9) where;

N=;D= (4.10) Hence

 (4.11)
Where,

 (4.12)
Lambert (1995), noticed that, irrespective of the values given to the parameters in matrix A after satisfying the order requirements, for a given P = 1, 2, 3, 4, all p-stage Runge-Kutta methods of order p have the same interval of absolute stability. These intervals are given in table 1 below, where Rp denote any p-stage Runge-Kutta method of order p.

Table 4.5: INTERVAL OF ABSOLUTE STABILITY FOR ORDER P, FOR P4)
	Method
	Emerging RKF Polynomial for

	Interval of absolute stability

	R1
	1+µ
	(-2, 0)

	R2
	1+ µ+
	(-2, 0)

	R3
	1+ µ+
	(-2.51, 0)

	R4
	1+ µ+
	(-2.78, 0)

TABLE 2 (We now analyze the stability of equation (2.36), the new method with a view to establishing its region of absolute stability. To show that the method is stable, we subject it to the test equation ; (4.13)

 (4.14) Using Binomial Expansion

 (4.15)

 (4.16) If ; and substituting above;

 (4.17) (4.18)
 This is the stability polynomial function.
A care look will reveal that this is the same with the classical Runge-Kutta stability polynomial function (R3) as indicated in the table 4.5 above. Therefore, the method is absolutely stable
 y
 [image:]x
Conclusion
A careful look at the above numerical results, reveals that our method has relatively low error level and compares favourably well with the results from other existing formulas that we have considered. Lambert (1973) solving example 4.1 with the classical 4th order method stops at step length 3 for which the method was consistent with the theoretical results. The other two examples also show high degree of accuracy as can be seen in the above tables of results. Thus we predict that these parameters (3.33) result in equation (3.34) to have an accuracy of order 4 as proposed.
From the above diagram it is evident that the new scheme is A-stable with all the eigenvalues inside the complex plane as stated in definitions 1and 2. Therefore, from the numerical results we conclude as follows that:
 (i) the predicted errors give good estimate for the error values;
 (ii) the value of the magnitude error function tends to a constant in some cases as in
 example 4.3. This needs to be further investigated.

 REFERENCES
Ababneh, O. Y. Ahmad R. and Ismail E. S. (2009) E. S. “New Multi-Step Runge-Kutta Method.” AppliedMathematical Science. 3(45),2255-2262.
Agbeboh G.U.(2006): “Comparison of Some One-Step Integrators for Solving Singular Initial Value Problems (ivps).” Ph.D. Dissertation (Unpublished), AMBROSE Alli University Ekpoma.
Agbeboh G. U. (2013): “On the stability Analysis of a Geometric 4th Order Runge Kutta Formula”. IISTE Journal of Mathematical Modeling (ISSN 2224-5804(print) ISSN2225-05229(Online) Vol.3, No. 4, 2013) WWW.iiste.org The International Institute for Science, Technology and Education (IISTE)
Agbeboh G.U., Aashikpelokhai U.S.U. and Aigbedion. I. (2007): “Implementation of a New 4thorder Runge- Kutta Formula for Solving Initial Value Problems (i.v.ps).” (International Journal ofPhysical Sciences. 2(4) pp.089-098). Available Online at http:/www.academicjournals.org/IJPS.ISSN1992- 19950 Academic Journals).
Agbeboh G. U. and Ehiemua (2012): “A New One-Fourth Kutta Method For Solving Initial Value Problems In Ordinary Differential Equations.” (Nigeria Annals Natural Sciences, Volume 12(1 2012) (pp 001-011)
Agbeboh G.U. & Omonkaro B. (2010): “On the Solution of Initial Value Problems in Ordinary Differential Equations Using A New Third Order Inverse Runge-Kutta Method.” (International Journal of Physical Sciences 5(4) pp 299-307). Available Online athttp:/www.academicjournals.org/IJPS. ISSN1992- 19950 Academic Journals).
Blum, E.K. (1962): “A Modification of the R-K Fourth Method,” Mathematics of Computation 16, 176-187.
Butcher J.C. (1987): “The Numerical Analysis of Ordinary Differential Equation. Runge- Kutta and general Linear methods.” A Wiley Inter. Science Publications Printed and bound in Great Britain.
Butcher J.C. (2010): “Accuracy and Stability: Finding a good numerical method for ordinary differential equations (University of Benin conference 28 May2010).Accuracy and stability
Conte, S.D. and Reeves, R.F. (1956): “A Kutta Third-order Procedure for Solving DE Requiring Minimum Storage,” Journal of the ACM 3, 22-25.
Cryer, C.W. (1973): “A new class of highly stable Method” BIT 13, 153-159.
Dahlquist, C. (1963): “A special stability problem for linear multi-step methods”. BIT 3, 27-43.
Dekker K and Verwer J. G. (1984): “Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations.” North Holland Amsterdam.
 Fatunla. S. O. (1988): “Numerical Methods for Initial Value Problems in Ordinary Differential Equations.” (Computer Science and Scientific Computing) Academic press INC 1250 Sixth Avenue, San Diago CA92101.
Fyfe, D.J. (1966): “Economical Evaluation of R-K Formulas,” Mathematics of Computation 20, 392-298.
Gear C. W. (1967) “The numerical integration of ordinary differential equations Maths. Comp., 21, 146-156.
Gill, S. (1951): “A processing for the step by step integration of Differential Equations in Automatic Digital Computing machine” Proceeding Cambridge Philosophical Society 47, 95-108.
Hall George (1986): “Equilibrium State of Runge-Kutta Scheme.”. AIM transactions on Mathematical software vol. 12 No. 3 pages 183-192.
Jain M.K. (1983): “Numerical Solution of Differential Equations” (second edition) Published by Wiley Eastern Limited New Delhi.
Jackiewicz, Z, Renaut R and Feldstein A (1991): “Two Step Runge-Kutta methods” SIAM Journal of Numerical Analysis vol. 28 No. 4 pp 1165-1182.
King,R. (1966): “Runge Kutta Methods with constrained minimum error bounds,” Maths. Comp., 20, 386-391.
Lambert, J.D. (1973): “Computation Methods in ordinary Differential Equations” John Wiley New York.
Lambert J.D. (1977): “The initial value problem for ordinary differential equation in The state of the art in Numerical Analysis, (Ed. D.A.H Jacobs), Academic Press, 	London, 11. 451-500
Lambert J.D. (1995): “Numerical methods for Ordinary Differential Systems; The initial value Problem.” John Wiley & Sons New York.
Lawson, J.D. (1966): “An Order Five R-K Process with Extended Region of Absolute Stability.” SIAM Journal on Numerical Analysis 3, 593-597.
Lawson, J.D. (1967a): “Generalized R-K Processes for Stable System with Large Lipschitz Constants.” SIAM Journal on Numerical Analysis 4, 372-380.
Ralston, A. (1962b): “Runge-Kutta Methods with Minimum Error bounds”, Math. Comput. Vol. 16, pp. 431-437.
Ralston, A. (1965): “A First Course in Numerical Analysis.” New York. McGraw-Hill.
Sangui, B.B. and Evans D.J. (1986): “A New 4th Order Runge-Kutta Method for Initial Value Problems.” Journal of Computational Mathematics II Proceedings of the Second International Conference on Numerical Analysis and Application 27-31, January 1986, Benin City, Nigeria.
Widlund O. B.(1967): “ A note on unconditionally stable linear multistep methods” BIT 7, 65-70.
1

image2.wmf
(x)e

x

y

l

=

image45.wmf
||1;2,3,...

Sppk

<"=

oleObject49.bin

image46.wmf
(

)

(

)

0

,0

k

i

i

PsaiS

=

=

å

oleObject50.bin

image47.wmf
(

)

(

)

(

)

.

,

2

,

1

,

1

,

,

,

ks

S

s

i

b

s

i

a

s

i

Y

L

=

-

+

+

oleObject51.bin

image48.wmf
(

)

S

S

k

P

S

s

i

y

i

p

k

j

....

..........

12

,

....

,

3

,

2

0

,

0

=

=

=

å

=

oleObject52.bin

image49.wmf
(

)

(

)

S

S

S

s

j

jy

S

s

j

y

j

q

k

j

j

q

k

j

,

,

2

,

1

0

,

,

1

0

0

L

=

=

=

-

=

=

å

å

oleObject53.bin

oleObject2.bin

image50.wmf
,2,3,.

SpIpk

<=

L

oleObject54.bin

image51.wmf
1112111

21

11

11

0

0

ss

T

sssss

sss

aaaa

a

AC

b

aaa

aa

+

+

++

æö

ç÷

ç÷

æö

ç÷

=

ç÷

ç÷

èø

ç÷

ç÷

èø

K

M

M

L

oleObject55.bin

image52.wmf
11

,,

,

1(1),1(1)

0,1(1)

sisij

ssij

rj

ij

acrsabjs

aaaijs

++

++

====

===

oleObject56.bin

image53.wmf
 ji

ij

a

>³

oleObject57.bin

image54.wmf
(

)

1/2

Ss

+

oleObject58.bin

image3.wmf
yy

l

¢

=

image55.wmf
 0i

ij

a

>³

oleObject59.bin

image56.wmf
(

)

3/2

Ss

+

oleObject60.bin

image57.wmf
 i

ij

aj

¹>

oleObject61.bin

image58.wmf
(

)

1

Ss

+

oleObject62.bin

image59.wmf
{

}

j1ij

c,aa

oleObject63.bin

oleObject3.bin

image60.wmf
i

k

oleObject64.bin

image61.wmf
(,)

nn

xy

oleObject65.bin

image62.wmf
(

)

nn

x,y,

RK

h

f

oleObject66.bin

image63.wmf
(

)

nn

x,y,

T

h

f

oleObject67.bin

image64.wmf
{

}

j,ij,

c,a1(1)

J

bls

=

oleObject68.bin

image4.wmf
l

image65.wmf
(,(,).

2)

2

nnn

n

h

h

yxfxy

y

+

=

oleObject69.bin

image66.wmf
1

(,(,)

22

nnnnnn

hh

yyhfxyfxy

+

=+++

oleObject70.bin

image67.wmf
1

nn

yyh

+

=+

oleObject71.bin

image68.wmf
n

x

oleObject72.bin

image69.wmf
1

1

,,0,1,2,3,......

i

ininijji

j

khfxchyakcir

=

=

æö

=++==

ç÷

èø

å

oleObject73.bin

oleObject4.bin

image70.wmf
1

1

r

nnij

t

yywk

+

+

=

å

oleObject74.bin

image71.wmf
1

(,;)

nnnn

yyhxyh

f

+

-=

oleObject75.bin

image72.wmf
11223344

1

(,;)

R

nnjj

j

xyhckckckckck

f

=

==+++

å

oleObject76.bin

image73.wmf
1

1

(,),(,)

R

ijnjii

J

kfxykfxahyhbk

=

==++

å

oleObject77.bin

image74.wmf
1

2,3,...

ji

jji

i

abjR

=

=

="=

å

oleObject78.bin

image5.wmf
(a)

y

h

=

image75.wmf
1211321324415263

(,),(),(()),(())

nnnnn

kfxykfyhakkfyhakaakkfyhakakak

==+=++=+++

oleObject79.bin

image76.wmf
11234

1

(22)

6

nn

yyhkkkk

+

=++++

oleObject80.bin

image77.wmf
23456

(),(a)

aaAaaB

+=++=

oleObject81.bin

image78.wmf
112233223344

1

,

233

nn

ckckckckckck

h

yy

+

++++

æö

=+

ç÷

èø

oleObject82.bin

image79.wmf
1

1

1

3

1

1

0

,,3

2

R

R

nni

i

i

h

yykR

s

a

a

s

-

++

=

=

=

æö

ç÷

=+"==

ç÷

ç÷

èø

å

Õ

oleObject83.bin

oleObject5.bin

image80.wmf
1

12

1

1,2,...

R

iii

i

kkki

-

++

=

"=

å

oleObject84.bin

image81.wmf
i

a

oleObject85.bin

image82.wmf
(

)

33

1123234

2

nn

h

yykkkkkk

+

=++

oleObject86.bin

image83.wmf
11

33

12

()(1)

iii

kkkfx

++

=+

oleObject87.bin

image84.wmf
1

3

n

=

oleObject88.bin

image6.wmf
(xa)

(x)e.

y

l

h

-

=

image85.wmf
234

510

(1)1...

2981243

n

xxxx

x

+=+-+-+

oleObject89.bin

image86.wmf
123

1,1

iii

kkk

xi

f

+++

=-"=

oleObject90.bin

image87.wmf
23

112233112233112233

3

112233

333

(c1)(c1)(c1)

115

(c)1...

3981

kckckkckckkckck

kckck

fff

=+-+-

oleObject91.bin

image88.wmf
23

223344223344223344

3

223344

333

(c1)(c1)(c1)

115

(c)1...

3981

kckckkckckkckck

kckck

fff

=+-+-

oleObject92.bin

image89.wmf
1

k

oleObject93.bin

oleObject6.bin

image90.wmf
"

oleObject94.bin

image91.wmf
1

(,)()

nnn

kfxyfy

==

oleObject95.bin

image92.wmf
(

)

n

n

r

r

y

x

f

y

k

ha

x

h

r

k

,

2

!

1

0

1

1

2

å

¥

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

¶

¶

=

oleObject96.bin

image93.wmf
So that evaluating in terms of y only we

 have

oleObject97.bin

image94.wmf
234

2223334445

222111111111

(0())

2!3!4!

y

hhh

ckckhakfakfyakfyakfyh

=+++++

oleObject98.bin

image7.wmf
(x,y),y(a)

yf

h

¢

==

image95.wmf
23

22334

221111111

(())

26

yyyyyy

hh

kckhakfakfakfOh

=++++

oleObject99.bin

image96.wmf
12

()

Aaa

=+

oleObject100.bin

image97.wmf
(

)

(

)

å

¥

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

+

¶

¶

=

0

1

3

1

2

3

,

2

!

1

r

n

n

r

y

x

f

y

k

a

k

a

h

x

h

r

k

oleObject101.bin

image98.wmf
{

}

32233

222223

333111311313111

(2)

226

yyyyyyyyyy

hhAhA

ckckhAkfhaakfaaAaakffkfkf

=++++++

oleObject102.bin

image99.wmf
(

)

(

)

n

n

r

r

y

x

f

y

k

a

k

a

k

a

h

x

h

r

k

,

!

1

0

3

6

2

5

1

4

4

å

¥

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

+

+

¶

¶

=

oleObject103.bin

oleObject7.bin

image100.wmf
{

}

22

222

4441115611

(

2

yyyy

hB

ckckhBkfhaaaAkfkf

=++++

oleObject104.bin

image101.wmf
(

)

{

}

3

33222

13611561561

2

2

yyyy

h

haaakfaaaAaaaABkff

+++++

oleObject105.bin

image102.wmf
33

3

1

)

6

yyy

hB

kf

+

oleObject106.bin

image103.wmf
1

3

12

()

iii

kkk

++

oleObject107.bin

image104.wmf
1

1

r

i

i

i

k

+

=

Õ

oleObject108.bin

image8.wmf
y y

l

¢

=

image105.wmf
[

]

2

33232242233

12311113111131

33

435

13111111

()()()

2

(2)()()

26

yyyyy

yyyyyy

h

kkkkhaAkfhaaaAKfaAkfhaakf

hh

aaaAaAaAkffaAkf

=++++++++

+++++

oleObject109.bin

image106.wmf
123

2226622622227

1111131111

32633227

131131113111111

2()[2()()]()

2[()()](2)()()()

yyyy

yyyy

kkkkhaAkfhaaaAaAKfhaAkf

haaaAaaaAkfhaaaAaAaAaAaAkff

=+++++++++

éù

++++++++++

ëû

oleObject110.bin

image107.wmf
1

3

338

1

()

3

yyy

h

aAkf

++

oleObject111.bin

image108.wmf
123

1

33399229222210

1111131111

3

323933311

131131111

32210

13111111

3

3()3[()]()

2

[36()()()]()

2

3

(2)()2()()

2

yyyy

yyyy

yyy

kkkkhaAkfhaaaAaAKfhaAkf

h

haaaAaaaAaAkfaAkf

haaaAaAaAaAaAkff

=+++++++++

+++++++

éù

+++++++

ëû

oleObject112.bin

image109.wmf
123

123123123

3

333

1

115

1(1)(1)(1)

3981

r

i

i

i

kkkkkkkkk

k

fff

+

=

=+---+-

Õ

oleObject113.bin

oleObject8.bin

image110.wmf
(

)

{

}

22

2222

11

3

1231113111

13()(){}

396

yyyy

hkhk

h

kkkaAkfaaaAaAfaAf

=++++-+++

oleObject114.bin

image111.wmf
(

)

(

)

{

}

323

3322

11

11311111

{}3(2)32()

1818

yyyyyy

hkhk

aAfaaaAaAaAaAaAff

++++++-++

oleObject115.bin

image112.wmf
(

)

3

233

13113131

{2718()5()}

81

y

h

aaaAaaaAaAf

+-++++

oleObject116.bin

image113.wmf
234

,1,2,3

nnn

kkkn

"=

å

oleObject117.bin

image114.wmf
12

Aaa

=+

oleObject118.bin

oleObject9.bin

image115.wmf
456

Baaa

=++

oleObject119.bin

image116.wmf
[

]

33232

23411113151611

()()

yy

kkkkhaABkfhaaaaaAaABaAkf

=+++++++++

oleObject120.bin

image117.wmf
11

23

22243335

11

()()

26

yyyyy

hh

aABkfaABkf

++++++

oleObject121.bin

image118.wmf
32333

136111561311

()()()

y

haaaaaaAaaaABaaaAkf

éù

+++++++

ëû

oleObject122.bin

image119.wmf
11

2222

3

1311156

4

1

2

1156

(2)()()

2

()2()

yyy

aaaAaAaAaaaABaA

h

kff

BaABaaaA

éù

+++++++

+

êú

++++

êú

ëû

oleObject123.bin

image9.wmf
(

)

n1 n

 y, h

yr

mml

+

==

image120.wmf
234

222662262

111131561111

2()2(())()

yy

kkkkhaABkfhaaaaaAaAaABaABkf

éù

=++++++++++++

ëû

oleObject124.bin

image121.wmf
1

22227

1

()

yy

haABkf

+++

oleObject125.bin

image122.wmf
1361156131

363

1

2

1311315611

()()()

2

()(()

y

aaaaAaaaABaaaA

hkf

aaaABaaaaaAaAaAB

++++++

éù

+

êú

++++++++

ëû

oleObject126.bin

image123.wmf
1

22222

15615611131

37

1

222

111

2()()()(2)

()()()

yyy

aaaABaaaABaABaAaaaA

hkff

aAaAaABaAB

éù

+++++++++

+

êú

+++++++

êú

ëû

oleObject127.bin

image124.wmf
3

3338

11

()

3

yyy

h

aABkf

+++

oleObject128.bin

oleObject10.bin

image125.wmf
234

333992292

111131561111

3()3()()

yy

kkkkhaABkfhaaaaaAaAaABaABkf

éù

=++++++++++++

ëû

oleObject129.bin

image126.wmf
1

2

22210

1

3

()

2

yy

h

aABkf

+++

oleObject130.bin

image127.wmf
2

393

136115613113

1

11315611

3(()()())

6()(()

y

aaaaAaaaAaaaAaa

hkf

aABaaaaaAaABaA

éù

++++++

+

êú

++++++++

ëû

oleObject131.bin

image128.wmf
1

22222

3

15615611131

10

1

222

111

2()()()(2)

3

2

()2()()

yyy

aaaABaaaABaABaAaaaA

h

kff

aAaAaABaAB

éù

+++++++++

+

êú

+++++++

êú

ëû

oleObject132.bin

image129.wmf
3

33311

11

()

3

yyy

h

aABkf

+++

oleObject133.bin

image10.wmf
(

)

n1 n

 zy, z h

y

ml

+

==

image130.wmf
123

3

1

115

1(1)(1)(1)

3981

r

i

i

i

kDDD

+

=

=+---+-

Õ

oleObject134.bin

image131.wmf
123

3

kkk

D

f

=

oleObject135.bin

image132.wmf
1

2

2

1315611

2222

3

23411

2

1

3(())

kkk1()()

396

()

yyyy

aaaaaAaAaAB

hhh

aABffaABkf

aAB

+++++

éù

=+++++++

êú

-++

ëû

oleObject136.bin

image133.wmf
2

3

136115613113

3

3

113156111

27(()()())

81

18()(())5()

y

aaaaAaaaAaaaABaa

h

f

aABaaaaaAaAaABaAB

éù

++++++

+

êú

-++++++++++

êú

ëû

oleObject137.bin

image134.wmf
1

22222

3

15615611131

1

222

111

3(2()()()(2)

18

()2()()

yyy

aaaABaaaABaABaAaaaA

h

kff

aAaAaABaAB

éù

+++++++++

+

êú

++-++++

êú

ëû

oleObject138.bin

oleObject11.bin

image135.wmf
3

3332

11

()

18

yyy

h

aABkf

+++

oleObject139.bin

image136.wmf
1

2

nn

h

yy

+

=+

oleObject140.bin

image137.wmf
2

1

3

1

1

r

i

ii

i

ck

+

=

å

Õ

oleObject141.bin

image138.wmf
33

1123234

()

2

nn

h

yykkkkkk

+

-=+

oleObject142.bin

image139.wmf
2

1

(22)

6

h

haABfy

=+++

oleObject143.bin

image11.wmf
(

)

r

m

image140.wmf
33

1315611

2222

11

22

11

3(22())

(22)

1812

()()

yy

aaaaaAaAaAB

hh

fyaABkf

aAaAB

+++++

éù

++++

êú

-+-++

ëû

oleObject144.bin

image141.wmf
3

2

136115613113

4

113156111131

33

11

27(()()()2)

18()(()()()

162

5()()

y

aaaaAaaaAaaaABaa

h

aABaaaaaAaAaABaAaaaAf

aAaAB

éù

++++++

êú

+-++++++++++

êú

êú

éù

+++++

êú

ëû

ëû

oleObject145.bin

image142.wmf
22222

4

15615611

1

22222

131111111

3(2()()()

36

2((2)()))2()()()()

yyy

aaaABaaaABaABaA

h

kff

aaaAaAaAaAaAaABaAB

éù

+++++++

+

êú

éù

++++-+++++++

êú

ëû

ëû

oleObject146.bin

image143.wmf
4

3332

11

(22)

36

yyy

h

aABkf

+++

oleObject147.bin

image144.wmf
33444

22233

11111111

1

(3.31)

26624624

nnyyyyyyyyyyy

hhhhh

yyhkhkfkfkfkfkffkf

+

-=++++++

oleObject148.bin

oleObject12.bin

image145.wmf
11

,:1

hkhk

='=

oleObject149.bin

image146.wmf
1

(22)3

aAB

++=

oleObject150.bin

image147.wmf
22

131561111

3(22())()()3

aaaaaAaAaABaAaAB

+++++-+-++=

oleObject151.bin

image148.wmf
222

1

222

aAB

++=

oleObject152.bin

image149.wmf
233

13611561311311

27()()()25()()

aaaaAaaaAaaaABaaaAaAB

éùéù

+++++++++++

ëûëû

oleObject153.bin

image12.wmf

m

image150.wmf
[

]

113156111131

27

18()(())()()

4

aABaaaaaAaAaABaAaaaA

-++++++++++=

oleObject154.bin

image151.wmf
22222

1561561113111

22222

1111

32()()()2((2)())

2()()()()6

aaaABaaaABaABaAaaaAaAaA

aAaAaABaAB

éù

+++++++++++

ëû

--+++++++=

oleObject155.bin

image152.wmf
333

1

3

22

2

aAB

++=

oleObject156.bin

image153.wmf
'

,,1,2,...6

is

ai

"=

oleObject157.bin

image154.wmf
1

1

2

a

=

oleObject158.bin

oleObject13.bin

image155.wmf
2

1

2

a

=-

oleObject159.bin

image156.wmf
3

7

12

a

=

oleObject160.bin

image157.wmf
4

1

6

a

=-

oleObject161.bin

image158.wmf
5

1

14

a

=-

oleObject162.bin

image159.wmf
6

26

21

a

=

oleObject163.bin

image13.wmf
 (z)

m

oleObject164.bin

image160.wmf
2

1

3

1

1

r

i

ii

i

ck

+

=

å

Õ

oleObject165.bin

image161.wmf
11

33

1123234

()()

2

nn

h

yykkkkkk

+

éù

-=+

êú

ëû

oleObject166.bin

image162.wmf
121

1

,,

2

nn

kykyhk

æö

==+

ç÷

èø

oleObject167.bin

image163.wmf
21

1

,

2

n

kyhk

æö

=+

ç÷

èø

oleObject168.bin

image164.wmf
312

(67)

12

n

h

kykk

æö

=+-+

ç÷

èø

oleObject14.bin

oleObject169.bin

image165.wmf
4123

(7352)

42

n

h

kykkk

æö

=+--+

ç÷

èø

oleObject170.bin

image166.wmf
(

)

1122334

3

nn

h

yykkkkkk

+

-=++

oleObject171.bin

image167.wmf
(

)

(

)

121312

,,,,9

22216

nnnnn

hhhh

kfykfxykkfxykk

==++=++-+

æöæö

ç÷ç÷

èøèø

oleObject172.bin

image168.wmf
(

)

4123

,3522

24

nn

h

kfxhykkk

æö

=++-++

ç÷

èø

oleObject173.bin

image169.wmf
(

)

n1n122334

h

kkkkkk

4

y

y

+

-=+++

image14.wmf

 e

m

oleObject174.bin

image170.wmf
(

)

1n

 fy,

k

=

oleObject175.bin

image171.wmf
2n1

2

f (y),

3

khk

=+

oleObject176.bin

image172.wmf
3n12

165788

kf(yh(kk)),

29

879

3

=+-+

oleObject177.bin

image173.wmf
4n

3

12

369545

kf(yh(kk

2631763

908

))

9669

k

=-

-

+

oleObject178.bin

image174.wmf
(

)

11234

22

6

nn

h

yykkkk

+

-=+++

oleObject15.bin

oleObject179.bin

image175.wmf
(

)

121

,,,

22

nnn

hh

kfykfxyk

æö

==++

ç÷

èø

oleObject180.bin

image176.wmf
(

)

3243

,,,,

22

nnnn

hh

kfxykkfxhyhk

æö

=++=++

ç÷

èø

oleObject181.bin

image177.wmf
2

1,(0)1,0x

yyy

¢

=+=££

oleObject182.bin

image178.wmf
(x)tan(x)

4

y

p

=+

oleObject183.bin

image179.wmf
2

,(0)1,0x1

yyy

¢

==££

image15.wmf
m

oleObject184.bin

image180.wmf
1

()

yx

xc

-

=

-

oleObject185.bin

image181.wmf
2

y,(0)2,0x1

yyy

¢

=-=££

oleObject186.bin

image182.wmf
2

()

(2)

x

yx

e

-

=

-+

oleObject187.bin

image183.wmf
(

)

;;Re0

yyC

lll

¢

=Î<

oleObject188.bin

image184.wmf
l

oleObject16.bin

oleObject189.bin

image185.wmf
(

)

1

n

yRh

l

+

=

oleObject190.bin

image186.wmf
(

)

Rh

l

oleObject191.bin

image187.wmf
1,2,3,4

i

ki

"=

oleObject192.bin

image188.wmf
(

)

1

n

n

n

y

Ry

y

m

+

=

oleObject193.bin

image189.wmf
()

hR

mlm

=Î

image16.wmf
(

)

i

y

m

oleObject194.bin

image190.wmf
n

y

oleObject195.bin

image191.wmf
1

1

1

s

inijj

j

s

nnii

i

YyaY

yybY

m

m

=

+

=

ìü

=+

ïï

ïï

íý

ïï

=+

ïï

îþ

å

å

oleObject196.bin

image192.wmf
12

,:[,,...,]:[1,1,....,1];

sTT

s

YeRbyYYYYande

Î==

oleObject197.bin

image193.wmf

oleObject198.bin

image194.wmf
,

n

YyeAY

m

=+

oleObject17.bin

oleObject199.bin

image195.wmf
1

.

T

nn

yybY

m

+

=+

oleObject200.bin

image196.wmf
1

1

1(),

T

nn

yybIAe

mm

-

+

éù

=+-

ëû

oleObject201.bin

image197.wmf
I

oleObject202.bin

image198.wmf
(

)

1

1()

T

RbIAe

mmm

-

=+-

oleObject203.bin

image199.wmf
(

)

R

m

image17.wmf
(

)

1

lm

<

oleObject204.bin

image200.wmf
1

n

y

+

oleObject205.bin

image201.wmf
1

n

N

y

D

+

=

oleObject206.bin

image202.wmf
det

T

n

yIAeb

mm

éù

-+

ëû

oleObject207.bin

oleObject208.bin

image203.wmf
[

]

det

IA

m

-

oleObject209.bin

oleObject18.bin

image204.wmf
(

)

1

nn

N

yRy

D

m

+

==

oleObject210.bin

image205.wmf
(

)

[

]

1

det

det

T

n

n

IAeb

y

R

yIA

mm

m

m

+

éù

-+

ëû

==

-

oleObject211.bin

image206.wmf
£

oleObject212.bin

image207.wmf
h

ml

=

oleObject213.bin

image208.wmf
24

s

£³

oleObject214.bin

image18.wmf
(

)

R {:|y|1}

mlm

=<

oleObject215.bin

image209.wmf
222222

1234

117713

,1,11

22241230

kykyhkyhhkyhhh

llllllllll

æöæöæö

==+=++=+++

ç÷ç÷ç÷

èøèøèø

oleObject216.bin

image210.wmf
11

33

1123234

()()

2

nn

h

yykkkkkk

+

éù

-=+

êú

ëû

oleObject217.bin

image211.wmf
22332233

13717235

112

224488144

h

yhhhhhh

lllllll

æö

éù

æöæö

=+++++++

ç÷

ç÷ç÷

êú

èøèø

ëû

èø

oleObject218.bin

image212.wmf
11

33

22332233

13717235

112

224488144

hy

hhhhhh

l

llllll

éù

æöæö

êú

=+++++++

ç÷ç÷

èøèø

êú

ëû

oleObject219.bin

image213.wmf
1

3

22332233

1371513

11

24483721296

hhhhhh

llllll

æö

+++=++-

ç÷

èø

oleObject19.bin

oleObject220.bin

image214.wmf
1

3

22332233

17235219121

121

81443721296

hhhhhh

llllll

æö

+++=+++

ç÷

èø

oleObject221.bin

image215.wmf
h

ml

=

oleObject222.bin

image216.wmf
23

1

2

2312

nn

yy

y

mmm

m

+

æö

-

=+++

ç÷

èø

oleObject223.bin

image217.wmf
34

1

1

1

2624

n

n

y

y

mm

mm

+

=++++

oleObject224.bin

image218.emf
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-3

-2

-1

0

1

2

3

image19.wmf
a

oleObject20.bin

image20.wmf
a

oleObject21.bin

image21.wmf
Î

oleObject22.bin

image22.wmf
2

p

oleObject23.bin

image23.wmf
{

}

n

y

oleObject24.bin

image24.wmf
¥

oleObject25.bin

image25.wmf

oleObject26.bin

image26.wmf
(

)

(

)

(

)

(

)

{

}

 and s : 0, argz

szc

laaa

Î=Î=-<

oleObject27.bin

image27.wmf
W{h,arg}.

qq

a

lapa

==-<-<

oleObject28.bin

image28.wmf
a

oleObject29.bin

image29.wmf
a

oleObject30.bin

image30.wmf
Î

oleObject31.bin

image31.wmf
p

oleObject32.bin

oleObject33.bin

oleObject34.bin

image32.wmf
1

R

oleObject35.bin

image33.wmf
2

R

oleObject36.bin

image34.wmf
2

R

Î

oleObject37.bin

image35.wmf
(

)

{

}

1c

R h|Rh a

ll

=<-

image1.wmf
(x,y)

yf

¢

=

oleObject38.bin

image36.wmf
(

)

(

)

2j

R {h| a Rh b,..c|hc}

c

llml

=-££££

oleObject39.bin

image37.wmf
y

l

oleObject40.bin

image38.wmf
1

R

oleObject41.bin

image39.wmf
Re

l

®¥

oleObject42.bin

oleObject43.bin

oleObject1.bin

image40.wmf
y,

y

ll

¢

=

oleObject44.bin

image41.wmf
Re 0,

l

<

oleObject45.bin

image42.wmf
(

)

n1n

 Rh y,

y

l

+

=

oleObject46.bin

image43.wmf
Re(h)0 as Re h

ll

®®¥

oleObject47.bin

image44.wmf
S

oleObject48.bin

1

ON THE PARAMETRIC FACTORIZATION AND ANALYSIS OF A CUBIC ROOT MEAN FOURTH

ORDER RUNGE

–

KUTT

A

FORMULA

Agbeboh G.U.

Mathematics Department Ambrose Alli University Ekpoma, Edo State, Nigeria.

Abstract

A

special type of fourth order Runge

-

Kutta

F

ormula

(RKF)

for the solution of Initial

Value Problems (IVPs)

in Ordinary Differential Equation,

whose step functions are made

to obey

the

usual characteristics of

Runge

-

Kutta Method (

RKM

)

is established

.

A

rigorous derivation

was carried out

through the process

of

binomial

and

Taylor series

expansion to obtai

n the

values

of the parameters.

Solution of some ivps were obtained

using the method and was

tested for efficiency,

convergence and stability

The results

show

that the formula has minimal errors, is consistent

,

converges

, stable

and

it

compares favourably well w

ith other RKMs

with relatively smaller time.

Key words:

parametric

factorization, geometric approach, binomial expansion and

cubic 4

th

order

.

2010 Mathematical Subject Classification: Primary 65L20; Secondary 65L06

E

-

mail: ujagbegoddu@yahoo.com

1

I

NTRODUCTION

Physical

systems give rise to system of O

rdinary

D

ifferential

E

quations

(ODEs)

with

widely varying eigenvalues resulting precisely

in

the concept of singular

initial value and

stiffness

problems in ordinary differential equati

ons. This

paper seeks to derive

a new

formula

through the process of binomial and

Taylor series expansion,

implement

the

ne

w method using some well known I

nitial

V

alue

P

roblems (

IVP

s) in

ODEs

and

investigate its level of compliance with numerical solution in ODEs

.

The scheme

developed here is

also

adaptable to mildly stiff ordinary differential equation

s

.

However,

the focus here is on

the solution of

singular and

non

-

stiff initial

-

value

problems

.

S

ometimes step

size is restricted by stability rather than by accuracy

;

j

ust as

solutions to differential equations evolve with time, so do numerical approximations

