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Abstract
Stability properties of system of function differential equations are studied, perturbing Laipunov function , cone valued
perturbing Liapunov functions method and comparison methods are used , results of this properties are given.

Introduction

Stability properties of differential equations has been interested important from many authors ,
Lakshmikantham and Leela [4] discussed some different concepts of stability of system of ordinary
differential equations namely, eventually stability ,integrally stability ,totally stability, Lp stability,
partially stability, strongly stability, practically stability of the zero solution of systems of ordinary
differential equations, Liapunov function method [6] that extend to perturbing Liapunov
functional method in[] play essential role to determine stability properties.

Akpan et, al [1] discussed new concept namely ,¢, — equitable of the zero solution of systems
of ordinary differential equations using cone -valued Liapunov function method.Soliman [7]
extent perturbing Liapunov function to cone - perturbing Liapunov function method that lies
between perturbing Liapunov function and perturbing Liapunov function .

In [2], and [3] El-Shiekh et.al discussed and improved some concepts stability of [4] and discussed
new concepts mix between @— equitable and the previous kinds of stability [3-5],[8-11]

In this paper ,we discuss and improve the concept of Lp— equitability of the system of ordinary
differential equations with cone perturbing Liapunov function method and comparison technique.
Furthermore ,we prove that some results of of ¢ — Lp— equitability of the zero solution of the non
linear system of function differential equations with cone -valued Liapunov function method.Also
we discuss some results of @9 — Lp — equitability of the zero solution of ordinary differential
equations using a cone - perturbing Liapunov function method.

Let R™ be Euclidean n —dimensional real space with any convenient norm || || , and scalar
product (.,.) < |[.|lll.]| . let for some p > 0

5, = {x € R, llx]| < p}.
Consider the nonlinear system of ordinary differential equations
x'=f(tx), x(ty) = x,, (1.1)



where f € C[] X Sy, R"],] =[0,0)and [[X Sy, R™] denotes the space of continuous
mappings | XS,int d'R
Consider the differential equation
u' =gt u(to) = up (1.2)
where g € C[J X R, R",E be an ofgah—set i # R
The following definitions [1] will be needed in the sequel .
Definition 1.1. A proper subset K o f "Rs called a cone if
(DAKcK, 2=20. (i) K+KcK, (i DK=K, iy K°#0, (w)Kn(—K)=/{0}.
where K a n d° Henotes the closure and interior of K respectively , and d Kdenote
the boundary of K.
Definition 1.2.The set K* = {¢p € R™,(¢,x) = 0,x € K} is called the adjoint cone if it
satisfies the properties of the definition 1.1.
X€EOK i(hx) =0for someKd K, =K/{0}.
Definition 1.3. A function g: D — K ,D < R" is called quasimonotone relative to the cone
Kif,x€ED,y—x €EdKhenhere exis€Kis ultthat
(o, y —x) =0an dpo, g(y) —g(x)) > 0.
Definition 1.4. A function a(.) is said to belong to the class K i f @ [R*,R*] ,a(0) =
Oand(m is strictly monotone increasinginr

. On¢pg—Lp—equistability

Perturbing Liapunov function method was introduced in [ 2 ] to discuss ¢¢ — equistability
properities for ordinary differential equations . In this section , we will discuss ¢y — Lp —
e quista bdflthé zero solution of the non linear system of ordinary differential equations using
cone valued perturbing Liapunov functions method .

The following definitions will be needed in the sequel and related with [2] .

Definition2.1 . the zero solution of the system (1.1) is said to ¢, — equistable, if fore > 0,t, €
] there exists a positive function 6(ty, €) > 0 that is continuous in tysuch that for t > t,.

(Dg,x0) <6, implies (o, x(t, tg, X)) <E.

where x(t, ty, Xo) is the maximal solution of the system (1.1).

In case of uniformly ¢,-equistable , the § is independent of t,.

Definition2.2. The zero solution of the system (1.1) is said to be ¢ — L, — equistable
and P > 0, ifitis ¢, — equistable ,and for each € > 0, t, € ] there exists a positive function
0o = 6¢(tg, €) > 0 continuous in t, such that the inequality

[oe]

(o %0) < 8y, implies ( dbo, f x5, to, xo)[IPds) < e.

t0
In case of uniformly ¢, — Lp — equistable, the §,is independent of t,,.
Let for some p > 0

Sp = X € R, (¢, X) < p,Pg € Ko}



We define for V € C[J x S, K], the function D*V(t,x)by

1
D*V(t,x) = }llin}) sup (V(t+ h,x + hf(t, x)) — V(t,x)).

The following result will discuss the concept of ¢ — Lj, — equistable of (1.1)using
comparison principle method .

Theorem 2.1. Suppose that there exist two functions g; € C[J X R,R] and g, € C[J] X R,R]
with g, (t,0) = g,(t,0) = 0 are monotone non decreasing functions, and there exist two Liapunov
functions V; (t,x) € C[] X S}, K]and Vo {t,x) € C[] X Sy N Sgc, K] where V;(t,0) =V, (t,0) =
0,and S; = {x €R™; (o, x) <71 ,Po € Kp}. and Sgcdenotes the complement of S}, satisfying
the following conditions:

(Hy) Vi(tx) is locally Lipschitzian in x and
D* (o, V1(£,x)) < g1 (t Vi (£ %)) for (5,x) €] xS,
(Hz) V5 {t,x) is locally Lipschitzian in x and

b(ho,x) < (do, V2 {1, X)) < a(Py,X) (2.1
(o, Jy X5, to, X0)[I7ds) < (bo, Va ot X(to,0)) < a1 (o, J [1%(s, to, %0) IPds)  (2.2)
where, a,a;,b,b; €KX, for (tx) €]JxS;nS;C.

(H3) D*(do, Vi(t,x)) + D (o, V2 {t, X)) < g2(t, Vi(t,x) + V5 (£, %))
for (t,x) € ] x S5 N S5,
(H,) If the zero solution of the equation

u =g, (t,u), u(ty) = u,. (2.3)
is ¢ — equistable, and the zero solution of the equation
('0, = gZ(ti (,0), (,O(to) = Wy (24)

is uniformly ¢, — equistable. Then the zero solution of the system (1.1) is
¢y — Lp — equistable.

Proof. Since the zero solution of (2.4)is uniformly ¢, — equistable , given
0<e<p and(b)>0there exisyg=sdde)>0sulkthat Bt,

(b0, wp) < &, implies (o, r2(t, to, wp)) < by (€). (2.5)
where 1, (¢, ty, w,) is the maximal solution of the system (2.4).
From the condition (H,), there exists 6, = 6,(€) > 0 such that

a(8;) <2 (2.6)
From our assumption that the zero solution of the system (2.3) is ¢y — equistable, given
% and t, € R,, there exists §* = §*(ty,€) > 0s uktha t
. . 8
((po,“,o) < o) , Lmp li é(ﬁo,rl(t, to,uO)) < 70, f or = to (27)

where 7 (¢, to, Ug) is the maximal solution of the system (2.3).
From the conditions (H,), (2.1), (H3), (H,) and applying Theorem (2) of [6] ,it follows



the zero solution of the system (1.1) is ¢y —equistable.
To show that there exists 8§, = 8,(ty, €) > 0, such that

(do,%0) < 8, i mp Liehs, J, Ilx(s,to,x0)I"d 9 <e.
Suppose this is false , then there exists t; > t, > t,. such that for (¢, ) < 6.
(b0 J, 1% (s, to, x)IPd § = 85, (o, [,711%(s, to, %17 § = € (2.8)

t

8, < (¢o, | llx(s,to, x)lIPd 9 <€ for & [ty, t].
£

Let 5, =nand settitgx) mVi(t,x)+V,{t,x) for @alt,t,l
From the c o n d i {30 nwe obtain
D* (o, m(t, %)) < g,(t, m(t, x)).
We can choose m(ty, x(t1)) = Vi (t1, x(t1)) + Va o{t1, x(t1)) = wo.
Applying Theorem (8.1.1) of [5], we get
(o, m(t, %)) < (po, 72 (6, t, m(ty,x(t1))) for &lty,t,] (2.9)
Choosing uy, = V;(ty, x¢), From the condition (H;) and applying the comparison Theorem ,
we get

(o, V1(t, %)) < (o, 11 (t, to, Up) )
Lett =t; and fr @&m),we get
1)
(o, V1 (1, x(81)) < (o, 11 (t1, Lo, Up)) < ?0-
From the condition (H,), (2.6)a n €2.8), we obtain
1)
(90, V2 oft1, x(t1)) < a1 (o, ftt:”x(S, to, x0)lI"d 9 < a1(8,) < 70

So we get (¢o, wg) = (Po, V1(E1, X(t1)) + Vo of 1, X, x(t1)) < 8.
Then from (2.5) and (2.9), we get

(¢0,m(t, xt)) < (¢0'r2(t' tllw(tl)) < bl(e)- (210)
From the condition(H;), (2.8) and (2.10) att = t,
bi(e) = b1(¢0,f 2||x(s, to, x)|I7d 9 < (o, Va oft2, x(t2)) < (o, m(t2, X(t2)) < by (e).
to

This is a contradiction, therefore it must be

((j)o,f lx(s, to, x)IIFd 9 <e. providhmd t(pyxy) < 8.
t

o

Then the zero solution of the system (1.1)is ¢y —Lp—equistable

. On Integrally ¢y-equistable

In this section , we discuss the concept of Integrally ¢, - equistable of the zero solution of non
linear system of ordinary diffrential equations using cone valued perturbing liapunow functions
method and comparison principle method .
consider the non linear system of differential equation(1.1) and the perturbed system



x'=f(t,x)+ R(t,x), x(ty) = xg, 3.1
where f,R € C [] X S, R"],] = [0, ] and C[] X S;, R™] denotes the space of continuous mapping
J X S, into R™. Consider the scalar differetail equation (2.3) , (2.4) and the perturbing equations
u' = gi(t.w) + @.(8), u(ty) = ug (3.2)
o' = g,(t.w) + ,(t), w(ty) = wg (3.3)
where g,,9, € C[J] X R,R], @1, ¢, € C [],R] respectively.
The following definitions [4] will be needed in the sequal.

Definition 3.1. The zero solution of the system (1.1) is said to be integrally ¢,-equistable if for
every a = 0 and t, € J, there exists a positive function f = f(t,, @) which in continuous in t,, for
each @« an d€BK, such that for ¢y € K5 every solution x(t,t,,x,) of pertubing differential
equation (3.1), the inequality

(o, x(t,tg,%0)) <B, t 2t
holds , provided that (b, xy) < @, and every T> 0,

to+ T
(¢o;f sup<dlR(s,0)[ld 9 < a.

to
Definition 3.2. .The zero solution of (3.2) is said to be integrally ¢,-equistable if , for every
a; = 0and ¢t €], there exists a positive function ; = B, (ty, @) which in continuous in t,, for each
a, an dqfE X, such that for ¢, € K; every solution u(t, ty,uy) of perturbing differential equation
(2.3), the inequality

(do, u(t, o, up)) < P1, t =ty
holds , provided that (b, uy) < @, , and for every T> 0,

to+ T
0| wd3sa

In the case of uniformly integrally ¢,-equistable , the ; is independent of t;.
We define for a cone valued Liapunov function V(t,x) € C[J X S;, K] is Lipschitzian in x,
The function

D*V(t,x)3, = lim s u %(V(t +h,x + h(f(t,x) +R(t,x))) — V(¢ x)).

The following result is related with that of [5].
Theorem 3.1. let the function g,(t, w) be nonincreasig in w for each t € R*, and

the assumptions (H,), (H,) — (2.1) a n dH;) be satisfied .
If the zero solution of (2.3) is integrally ¢,-equistable , and the zero solution of (2.4) is uniformly
integrally ¢y-equistable .
Then the zeo solution of (1.1) is integrally ¢,-equistable .

Proof . Since the zero solution of (2.4) is integrally ¢, — equistable , given ¢y =0 andy&
0 there exisg=Pfty,a;)s ukthat B t, such that for any ¢, € K; ad for any solution
u(t, ty, uy) of the perturbed system (3.2) satisfies the inequality

((l’o» u(t, to, uo)) < Bo (3.4

holds provided that (¢, ug) < @4, and for every T> 0,



to+ T
(o f 01()d 9 < ay.

0
From our assumption that the zero solution of the system (2.3)isuniformly intggrally ¢

equistable, given a, = 0, there exists B; = f1(a;) s uletha tevery solution w(t, ty, wy) of the
perturbed equation (3.3) satisfies the inequality

(@0, w(t, to, o)) < By (3.5)
holds provided that (¢, wy) < a5, and for every T> 0,

to+ T
o[ 9d9<a,

0

Suppose that there exists « > 0 s ulctha t

az = a(a) + By (3.6)
sinceb(u) > 0as w o then we can f(tgpadsfikthat
b(B) > py(az) (3.7)

To prove that the zero solution of (1.1) is integrally ¢, — equistable . it must be for every

a = 0 and t, € ], there exists a positive function f = f(t,, @) which in continuous in t,
for each @ a n d €BK, such that for ¢, € K every solution x(¢, t, , xy) of pertubing
differential equation (3.1), the inequality

(o, x(t, to,%0)) < B, t =t
holds , provided that (b, xy) < @, and every T> 0,

to+ T
o [ sup<dRGDIE3 <

to
Suppose this is false , then there exists t, > t; > t,. such that

(¢0,X(t1, tO’xO)) =a , (¢0,X(t2, tO’xO) ) = .8 (38)
a < (¢o, x(t, to,x0)) <B for  €fty,t,l

Let &, =a,and settitge) mVi(t,x)+V,,(t,x) for &lt,t,]
Since V;(t,x) an d Yt x) are Lipschitizian in x for constants M and K respectively . then
D* (o, V1(t,x))31 + D (¢, Vo of £, X))31 <

D* (o, Vi (t, X)) 1.1 + D¥(do, V2 ot x))11 + N(do, R (¢, X)).

where N = M + K, From the condition (H5), we obtain
D (¢po, m(t,x)) < go(t, m(t,x)) + N(¢bo, R(t, x)).
We can choose m(ty, x(t;)) = Vi (t1, x(t1)) + Vo oft1, x(t1)) = wo.
Applying Theorem (8.1.1) of [5], we get
(o, m(t, %)) < (¢po, 12 (6, 81, m(t1,x(81))) for &lty,ta], (3.9)

where 1, (t, t;, m(ty, x(tl)) is the maximal solution of the perturbed system (3.3) where
@,(t) = N Rt, x).To prove that



(Po, 2 (t, t1, wo)) < Pr(az).

It must be shown that
to+ T

(Po, wo) < az , (o, fto P2(s)d 3 < ay
Choosing uy = V;(ty, xo), since V; (t, x) is a Lipschitizian in x for a constant M > Othen
ll$olllIV1(to, xo) 1l < Ml Il
($o,uo) = (o, V1 (t0,%0)) < M(pg,x0) < M a= a;. (3.10)
Also we get

D* (o, V1 (t,x))31 < D¥ (o, Vi (t, %)) 1.1 + M(cbo, R(¢, X)).
From the condition (H;) we get

(Do V1(t,0)) < (Po1(Ltoug))  for  &lty,ty]
where 7, (¢, to, Ug) is the maximal solution of (3.2) and define ¢4 (t) = M Kt, x).
Integrating it ,we get
L o) d s= [T MIR(s, )lld s< M [ "s wpy< dIRGs, 0)lld s
which leads to
( 'y fttOO+ To(s)d s }k_ M ( ghftto(’+ Ts u < AIR (s, 0)ld 9 <Ma=aqa (3.11)
from (3.4),(3.10) and (3.11) att=1t; ,we get
(o, V1 (1, x(t1)) < (o, 11(t1, Lo, Uo)) < Bo-
From the condition (2.1) and (3.7) ,we obtain
(D0, Va2 o t1, x(t1)) < a1 (o, x(t1)) < a(a).
From (3.6) , we get
(o, wo) = (Po, Vi(t1, x(t1)) + Vo o1, %, x(t1)) < (3.12)
Since ¢, (t) = N Kt, x), then integrating both sides

to+ T to+ T o+ T
f @,(s)d s= f N||R(t,s)||d s< N f s u < AIR(E, X)|ld s
t t 0

0 0

which leads to

( 'y fttoo-'- Tgoz(s) ds %_ N( (ja,ftt()°+ Ts u < AIR (s, x)|ld s) <N a= a, (3.13)
Then from (3.5),(3.12) and (3.13), we get
(Po, m(t, %)) < (o, 12 (¢, ty, w(t1)) < Pr(az). (3.14)
From the condition(2.1), (3.7) and (3.14) at t = t, ,we have
b(B) = b((l’o,x(tz)) < (o, Va o2, x(£2)) < (o, m(t2, x(t2)) < fr1(az) < b(B).
That is a contradiction, therefore it must be

((I)O,X(t, tO 'XO)) < .8 ’ t 2 tO
Then the zero solution of the system (1.1) is integrallyp, —equistable

4. Eventually equistable



In this section , we discuss the notion of eventually-equistable of the zero solution of non linear
system (1.1) using perturbing liapunow functions method and comparison principle method .
The following definition will be needed in the sequel and related with that [3]

Definition 4.1. the zero solution of the system (1.1) is said to eventually uniformly equistable

if, for € > 0 ,there exists a positive function 6(¢) >0 an d = 7(€) such that the inequality
Ixoll <8, implies || x(t tg,X0)ll <€ , t=ty=1(€)
where x(t, ty, Xo) is any solution of the system (1.1).

Theorem 4.1. Suppose that there exist two functions g4, g, € C[J X R*,R] with g,(t,0) =
g>(t,0) = 0, and two Liapunov functions V;(t,x) € C[] X S, R“]and Vot x) € C[] XS, N
ST(]:, R“] where V;(t,0) = V; {t,0) = 0,and S, = {x € R"; [[x]| <7n}. and S,? denotes the
complement of S, satisfying the following conditions
(hy) Vi(t x) is locally Lipschitzian in x and

D*Vi(tx) < g (t,Vi(tx) for (tx) €]xS,.
(hz) V3 (t,x) is locally Lipschitzian in X, and
b(llxI) = V2 {t,x) < a(llxI})

for0 <r <|lx|]| <p and=t8(r).whe r e (H) is a continuous monotone decreasing
inr,foB<r<p where abeX. for (tx) €JxS, NSy
(hz ) D*Vi(t,x) + DV, o{t, %) < g,(t, Vi (t,%X) + V, .{t, %)) for (t,x)) €] X S, N SS.
(h,) If the zero solution of (2.3)is uniformly equistable, and the zero solution of (2.4)
Is eventually uniformly equistable , then the zero solution of the system (1.1) is
uniformly eventually equistable.

Proof. Since the zero solution of (2.4) is eventually uniformly equistable,
givenb(e) >0 there e x i s;t=st,€c) > 0an &, = 6,(e) > 0 such that

wy < 8y, implies w(t, ty, wy) < b(e) , t =ty = 11(€) 4.1)

where w(t, ty, wg) is any solution of the system (2.4).
Since a(u) »was w o for @k ,itispossible to choose §; = §;(€) > 0 such that

a(s,) <2 4.2)

From our assumption that the zero solution of the system (2.3) is uniformly equistable ,
Given % , there exists 8" = 8"(e) > 0s ukthat

up < 6%,  implies u(t, ty,uy) < % (4.3)
where u(t, ty, uy) is any solution of the system (2.3).
Choosing uy, = V;(tg, x0),s i n ¢ gtVx) is a Lipschitizian function for a contant M
Then there exists §, = §,(€) > 0 s ulcthat

Ixll <68, impliedtoWe) <Mlxpll <M § <6

max|[t, (€), T, (€)].



To prove theorem, it must be shown that Set
§ =min(6,,8,) ,and supfwgls€d, de fimeey= 9(6(6)) and le(t) =
[xoll <& implies || x(t, to, x)ll <€ , t =ty =1(e)
Suppose that is false, then there exists t, > t; > t,. such that
llx(E)ll = 81, lx(e)ll = € (4.4)
S <|lx(@®ll<e fotelt,t,]
Let §; = n,and setting m(t,x) = V;(t,x) + V, {t,x) for te€E [ty,t,].
From the condition (h3), we obtain
D*m(t, x) < G,(t, m(t,x)).

we can choose m(ty, x(t1)) = Vi(ty, x(t1)) + Vo {tq, x(¢1)) = wo.
Applying Theorem (8.1.1) of [5], we get

m(t, x) < ry(t ty, m(ty, x(¢1))) (4.5)
where r,(t, t;, m(ty, x(t;))) is the maximal solution of (2.4)
Choosing uy = V;(tg, x¢), From the condition (h;) and applying the comparison Theorem,
we get

Vi(t x) < rq(t, to,up) for  t € [ty tq]. (4.6)

Lett =t; and from (4.3) , we get

)
Vi (ty, x(t1)) < 1ty to, up) < 70-
From the condition (h,) ,(4.2) and (4.4)

Va ot x(t)) < a(llx(t)I) < a(8,) <22
So we get
wo = Vi(ty, x(t1)) + V5 n(tle(tl)) < 8.
Then from (4.1)and (4.5) , we get
m(t, x) < r1,(tt;, w(ty)) < b(e). 4.7)

From (h;) ,(4.4) and (4.7) att = t,

b(e) = b(llx(t)l < Vo tz, x(t2)) < m(ty, x(t2)) < b(e).
This is a contradiction, therefore it must be

|| x(t, to, x0)|| <€ , t=ty=1(€)

Provided that ||x,|| < & , Then the zero solution of the system (1.1) is uniformly
eventually equistable .

. Eventuallygpo—equistable
In this section , we discuss the notion of eventually ¢ -equistable of the zero solution of
non linear system (1.1) using cone valued perturbing liapunow functions method and comparison
principle method .
The following definition is somewhat new and related with that [3]



Definition 4.1. the zero solution of the system (1.1) is said to eventually uniformly ¢ —
equistable if , for € > 0 there exists a positive function §(¢) >0 an d = 7(€) such that
he inequality

(bo,x0) <8, implies (bg,x(t,ty,X0)) <€ , t=ty=1(€)

where x(t, ty, Xo) is the maximal solution of the system (1.1).

Theorem 5.1. let the assumptions (H,), (H,) — (2.1) a n §H3) be satisfied for
0<r<(¢ox)<p and=>to(r).whe r e () is a continuous monotone decreasing
in r folhr<r<p where a,b€X. ifthe zero solution of (2.3) is uniformly ¢,-equistable ,
and the zero solution of (2.4) is uniformly eventually ¢,-equistable .
Then the zeo solution of (1.1) is uniformly eventually ¢,-equistable .

Proof. Since the zero solution of (2.4) is eventually uniformly ¢, — equistable, given
b(e) >0 there exisitsst,€c) >0an &, =5,(¢) >0 such that

(o, wg) < 8, implies (¢, m(tty, wg)) <b(e) , t=ty=14(€) (5.1)
where 1, (t, ty, wg) is the maximal solution of the system (2.4).

Since a(u) > oas w o for @X,itispossible to choose §; = §;(€) > 0 such that

a(s,) <2 (5.2)
From our assumption that the zero solution of the system (2.3) is uniformly ¢, — equistable ,

Given % , there exists 8* = 8"(e) > 0s ukthat

(Po,up) <6, implies (g, 71 (L, tg, up)) < % (5.3)
where 7 (t, tg, up) is the maximal solution of the system (2.3).
Choosing uy, = V;(ty, x0),s i n ¢ gtVx) is a Lipschitizian function for a contant M Then
there exists 6, = §,(e) > 0 s uktha t

(o, X0) <68z, imp Li(ehs,Vi(to,x0)) <M (¢po,x0) <M § <6
Set 8 = min(8,,6,) ,and suppose(dy,Xy) < &, define t,(€) = 9(8(6)) and let t(e) =
max [t (€), T2 (€)].
To prove the zeo solution of (1.1) is uniformly eventually ¢y-equistable ,it must be shown that

(g, x0) <8, implies (¢g, x(t, tg,x0)) <€ , t=ty=1(€)
Suppose that is false, then there exists t, > t; > t,. such that
(o, x(t1)) =6, , (Po,x(t;) =€ (5.4)

81 < (¢, x(t, tg,x0)) <€  f o€ |[ty,t,]
Let 8; = n,and setting m(t,x) = V;(t,x) +V,{t, x)  for tE€ [t;,t;].

From the condition (H3) , we obtain
D*(ho, m(t, x)) < g2(t, m(t,x)).
Choose m(ty, x(t;)) = Vi (ty, x(t1)) + V, t1, x(t1)) = wo.
Applying Theorem (8.1.1) of [5], we get
(o, m(t, X)) < (o, r2(t, t1, m(ty, x(¢1))) (5.5)
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Choosing uy = V;(tg, x¢), From the condition (H;) and applying the comparison
Theorem 1.4.1 of [3], we get

(¢0, V1(t,x)) < (¢, 11(t, tg,up) ) for  t€ [ty ty]. (5.6)
Lett = t; and from (5.3) , we get

1)
(o, V. (t1, x(£2))) = (0,11 (b1, £, 1)) < =
From the condition (H,) ,(5.2) and (5.4)

d
(o, V2 o2, %(£2))) < a( po, x(t1)) < a(8y) <=
So we get

(¢o, o) = (¢0,V1(t1,x(t1))) + (¢o, V2 n(t1'x(t1))) < 8.
Then from (5.1)and (5.5) , we get
(¢0, m(t,X)) < (o, 12 (4 ty, w(t,))) < b(e). (5.7)
From (H;) ,(5.4)and (5.7) att = t,
b(e) = b(do, x(t2)) < (o, V2 L2, x(t2))

< (¢o, m(tz, x(t2))

< b(e).
This is a contradiction, therefore it must be

(o, x(t, tg, x0)) <€ , t=ty,=1(€)

Provided that (¢pg, x¢) < 6 , Then the zero solution of the system (1.1) is uniformly
eventually ¢, — equistable .
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Abstract

 Stability properties of system of function differential  equations are studied, perturbing Laipunov function , cone valued perturbing  Liapunov functions method and comparison  methods are used , results of this properties are given.



1. Introduction

  Stability  properties of differential equations has been interested important  from  many authors , Lakshmikantham and Leela [4] discussed some different  concepts of stability of system of ordinary differential  equations  namely, eventually stability ,integrally stability ,totally stability, Lp stability, partially stability, strongly stability, practically stability of  the zero solution of systems of ordinary differential  equations, Liapunov function  method  [6]  that extend  to  perturbing  Liapunov functional  method  in[]  play essential role to determine stability properties. 

    Akpan et, al  [1] discussed new concept namely ,φ0 – equitable of  the zero solution of systems of ordinary differential  equations using cone -valued Liapunov function method.Soliman [7] extent  perturbing Liapunov function to  cone - perturbing Liapunov function method that lies between perturbing Liapunov function and perturbing  Liapunov  function .

 In [2], and [3]  El-Shiekh et.al discussed and improved  some concepts stability of [4] and discussed new concepts  mix between  φ0 – equitable  and the previous  kinds of stability [3-5],[8-11] 

     In this paper ,we discuss and improve the concept of  LP – equitability of the system of ordinary  differential equations  with cone perturbing  Liapunov function method and comparison technique. Furthermore ,we prove that some results of of  φ0 − LP – equitability  of the zero solution of the non linear system of function  differential  equations with cone -valued Liapunov function method.Also we discuss some results of φ0 − LP − equitability of the zero solution of ordinary differential equations using a cone - perturbing Liapunov function method.

      Let  be Euclidean n –dimensional real  space with any convenient norm  , and scalar product  . let for some 



Consider the nonlinear system of ordinary differential equations 

		(1.1)

where  denotes the space of continuous mappings. 

     Consider  the differential equation 

		(1.2)

where  

         The following definitions [1] will be needed in the sequel .

     Definition 1.1. A proper  subset  is called a cone if

 

      where  denotes  the closure and interior of K respectively , and  denote 

the boundary of  

     Definition 1.2.The set   is called the adjoint cone if it 

 satisfies the properties of the definition 1.1. 



    Definition 1.3. A function  is called quasimonotone relative to the cone 



    Definition 1.4. A function  is said to belong to the class  



2. On 

   Perturbing Liapunov function method was introduced in [ 2 ] to discuss  0 – equistability properities for ordinary differential equations . In this section , we will discuss   of  the zero solution of the non linear system of ordinary differential equations using cone valued perturbing  Liapunov functions method .

 The following definitions will be needed in the sequel and related with [2] .

   Definition2.1 . the zero solution of the system (1.1) is said to  , if for there exists a positive function  that is continuous in such that for 

  .

here  is the maximal solution of the system (1.1).

 In case of uniformly o-equistable , the  is independent of to.

   Definition2.2. The zero solution of the system (1.1) is said to be  

, if it is  ,and for each there exists a positive function  continuous in  such that the inequality 



In case of uniformly 

Let for some 



We define for 



      The following result  will discuss the concept of  using comparison principle method .

     Theorem 2.1. Suppose that there exist two functions  and 

with  are monotone non decreasing functions, and there exist two Liapunov functions where  and denotes the complement of , satisfying 

the following conditions:

      is locally Lipschitzian in and 



    is locally Lipschitzian in   and 

		(2.1)	

where , .

   



   If the zero solution of the equation 

		(2.3)

is equistable, and the zero solution of the equation

		(2.4)

is uniformly equistable. Then the zero solution of the system (1.1) is

 

    Proof. Since the zero solution of (2.4)is uniformly  , given 

		(2.5)

where  is the maximal solution of the system (2.4).

From the condition , there exists   such that 

		(2.6)

From our assumption that the zero solution of the system (2.3) is  equistable, given

  and , there exists 

		(2.7)

where  is the maximal solution of the system (2.3). 

From the conditions   and applying Theorem (2) of [6] ,it follows

 the zero solution of the system (1.1) is equistable.

To show that  there exists , such that

, .

Suppose this is false  , then there exists such that for .

                     (2.8)



Let   

From  ,  we obtain

.

We can choose 

Applying Theorem (8.1.1) of [5], we get 

		(2.9)

Choosing ,  From the condition  and applying the comparison Theorem , 

we get  



Let ,we get



From the condition  , we obtain 

..

So we get .  

Then from (2.5) and (2.9),  we get 

	(2.10)

From the condition, (2.8)  and (2.10) at 



This is a contradiction, therefore it must be 



Then the zero solution of the system (1.1) is .



3. On Integrally -equistable 

        In this section , we discuss the concept of Integrally o - equistable of the zero solution of non linear system of ordinary diffrential equations using cone valued  perturbing liapunow functions

method and comparison principle method .

consider the non linear system of differential equation(1.1) and the perturbed system 

                     

where  and  denotes the space of continuous mapping into .  Consider the scalar differetail equation (2.3) , (2.4)  and the perturbing equations 

 	 	(3.2)

	     	(3.3)                   

        where ,  respectively.

The following definitions [4] will be needed in the sequal.

     Definition 3.1. The zero solution of the system (1.1) is said to be integrally -equistable if  for every  and  , there exists a positive function  which in continuous in , for each , such that for  every solution  of pertubing differential equation (3.1), the inequality 

                                  

holds , provided that  , and every T,



      Definition 3.2. .The zero solution of (3.2) is said to be integrally -equistable if , for every  and  , there exists a positive function  which in continuous in , for each , such that for  every solution  of perturbing differential equation (2.3), the inequality 

                                  

holds , provided that  , and for every T,



In the case of uniformly integrally -equistable , the   is independent of .

We define for a cone valued  Liapunov function  is Lipschitzian in , 

The function     



     The following result is related with that of [5].

       Theorem 3.1.  let the function  be nonincreasig in   for each , and 

 the assumptions  be satisfied .

If the zero solution  of (2.3) is integrally -equistable , and the zero solution of (2.4) is uniformly  integrally -equistable .

Then the zeo solution of (1.1)  is integrally -equistable .

    Proof . Since the zero solution of (2.4) is integrally  , given   such that for any  ad for any solution of  the perturbed system (3.2) satisfies the inequality 

		(3.4)

holds provided that  and for every T,



   From our assumption that the zero solution of the system (2.3) is  equistable, given , there exists  every solution  of the perturbed equation (3.3) satisfies the inequality 
		(3.5)

holds provided that  and for every T,



Suppose that there exists 

		(3.6)

 since 

		(3.7)

To  prove that the zero solution  of  (1.1) is integrally   equistable  . it must be for every 

  and  , there exists a positive function  which in continuous in , 

for each , such that for  every solution  of pertubing 

differential equation (3.1), the inequality 



holds , provided that  , and every T,



Suppose this is false  , then there exists such that 








Let   

Since   are Lipschitizian in x for constants M and  K respectively . then 



.

where ,  From the condition we obtain

.

We can choose 

Applying Theorem (8.1.1) of [5], we get 

	,	(3.9)

where  is the maximal solution of  the perturbed system (3.3) where 

.To prove that

.

It must be shown that

,

Choosing, since   is a Lipschitizian in x for a constant then 



		(3.10)

Also we get

.

From the condition  we get  



where  is the maximal solution of (3.2) and define .

Integrating it ,we get

 

which leads to

		(3.11)

    ,we get 



From the condition    and (3.7) ,we obtain

.

From (3.6) , we get

		(3.12)

Since , then integrating both sides  



which leads to 	

		(3.13)

Then from  (3.5) , (3.12) and (3.13) ,  we get 

		(3.14)

From the condition, (3.7)  and (3.14) at  ,we have



That is a contradiction, therefore it must be 

                                  

Then the zero solution of the system (1.1) is integrally.



4. Eventually equistable 

   In this section , we discuss the notion  of eventually-equistable of the zero solution of non linear system (1.1) using perturbing liapunow functions method and comparison principle method .

The following definition will be needed in the sequel  and related with that [3]

     Definition 4.1.  the zero solution of the system (1.1)  is said to eventually uniformly equistable 

if ,   for there exists a positive function  such that  the inequality



here  is any solution of the system (1.1).

      Theorem 4.1. Suppose that there exist two functions  with , and two Liapunov functions  where  and denotes the 

complement of , satisfying the following conditions 

    is locally Lipschitzian in  and 	



   is locally Lipschitzian in , and 

	

for  is a continuous monotone decreasing

 in  where    .

 .

  If the zero solution of (2.3)is  uniformly  equistable, and the zero solution of (2.4)

Is eventually uniformly equistable , then the zero solution of the system (1.1) is u

        Proof. Since the zero solution of (2.4) is  eventually uniformly equistable, 

given  such that 

		(4.1)

where  is any  solution of the system (2.4). 

 Since   , it is possible to choose   such that

		(4.2)

From our assumption that the zero solution of the system (2.3) is uniformly  equistable ,

Given   , there exists 

		(4.3)

where  is any  solution of the system (2.3). 

Choosing  is a Lipschitizian function for a contant M 

Then there exists 



.

To prove theorem, it must be shown  that  Set 



Suppose that is false, then there exists such that 

		(4.4)



Let 

From  the condition  ,  we obtain

.

we can choose 

Applying Theorem (8.1.1) of [5], we get 

			(4.5)

where   is the maximal solution of (2.4)

 Choosing , From the condition   and applying the comparison Theorem, 

we get  

		(4.6)	

Let  , we get



From the condition  ()  ,(4.2) and (4.4)

.

So we get 

.

Then from (4.1)and  (4.5)  , we get

		(4.7)

From () ,(4.4) and (4.7) at 

.

This is a contradiction, therefore it must be 



Provided that , Then the zero solution of the system (1.1) is  uniformly 

eventually 



5. Eventually

     In this section , we discuss the notion  of eventually -equistable of the zero solution of 

non linear system (1.1) using cone valued perturbing liapunow functions method and comparison principle method .

          The following definition is somewhat new  and related with that [3]

    Definition 4.1.  the zero solution of the system (1.1)  is said to  if  ,   for there exists a positive function  such that  

he inequality



here  is the maximal  solution of the system (1.1).

      Theorem 5.1. let the assumptions  be satisfied for

  is a continuous monotone decreasing

 in  where    f the zero solution  of (2.3) is uniformly  -equistable , and the zero solution of (2.4) is uniformly  eventually -equistable .

Then the zeo solution of (1.1)  is uniformly  eventually -equistable .

       Proof. Since the zero solution of (2.4) is  eventually uniformly equistable, given

  such that 

		(5.1)

where  is the maximal  solution of the system (2.4). 

 Since   , it is possible to choose   such that

			(5.2)

From our assumption that the zero solution of the system (2.3) is uniformly  equistable ,

Given   , there exists 

		(5.3)

where  is the maximal  solution of the system (2.3). 

Choosing  is a Lipschitizian function for a contant M Then 

there exists 



Set .

To prove the zeo solution of (1.1)  is uniformly  eventually -equistable ,it must be shown  that  



Suppose that is false, then there exists such that 

		(5.4)



Let 

From  the condition  ,  we obtain

.

Choose 

Applying Theorem (8.1.1) of [5], we get 

		(5.5)

Choosing , From the condition   and applying the comparison 

Theorem 1.4.1  of [3] , we get  

		(5.6)

Let  , we get



From the condition  ()  ,(5.2) and (5.4)



So we get 

.

Then from (5.1)and  (5.5)  , we get

		(5.7)

From () ,(5.4) and (5.7) at 



                             

                                                                                .

This is a contradiction, therefore it must be 



Provided that , Then the zero solution of the system (1.1) is  uniformly 

eventually 
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