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Abstract
The generalized Gaussian distribution is useful in analyzing data sets arising in Image processing,
Signal processing, Speech recognition, Statistical Quality Control, Industrial experimentation,
and Biological experiments. In this paper, a Doubly Truncated generalized Gaussian distribution
is introduced. The various distributional properties such as the distribution function, the four
moments, skewness, kurtosis, hazard function, survival function  are derived.
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Introduction

In the earlier papers, we developed and analyzed left truncated generalized Gaussian
distribution and right truncated generalized Gaussian distribution, assuming the variate under study
is truncated either left or right of the range. But in many practical situations arising at places like
industrial experiments, agricultural experiments, financial modeling, warranty studies the variate
under consideration may have a finite range. For example, in inventory modeling for deteriorating
item, life time of commaodity is random and may have a finite range. The lower bound may be zero
because there is no negative life time and the upper bound is constrained with a finite value since,
the product is perishable. Approximating the finite range with the infinite range will provide the
results inaccurate. So, to have an accurate analysis of the data set it is needed to consider a doubly
truncated distribution. Hence, in this paper, we develop and analyze a doubly truncated generalized

Gaussian distribution with the assumption that the range of the variate under study is having both




upper and lower bounds. The various distributional properties such as the probability density
function, the distribution function, the four moments, the skewness, the kurtosis, the hazard

function and survival function are derived.

Doubly Truncated Three Parameter Generalized Gaussian Distribution
A Continuous random variable X is said to have a three parameter generalized Gaussian distribution if its

probability density function (p.d.f) is of the form

f(x):%; A<x<B; A< u<B; a>0; £ >0

Consider that the range variable is finite say (A, B). Then the probability density function (p.d.f) of
the doubly truncated three parameter generalized Gaussian distribution is

f(x):w; A<X<B; A< u<B; a>0; p>0 (1)
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and 1—@(7’11} If Ais replaced by —ooor B is replaced by oo, the distribution is singly truncated
from below or above respectively.

Hence, the probability density function of doubly truncated three parameter generalized Gaussian
distribution is
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Distributional Properties

The various distributional properties of the doubly truncated three parameter generalized Gaussian
distribution are discussed in this section. Different shapes of the frequency curves for given values of the
parameter are shown in figure 1

u=10,0=8, =2, A=1, B=20 u=10, a=8, p=2, A=-5, B=20

u=10, 0=8, f=2,A=2, B=2 u=20, 0=8, p=2, A=8, B=35

Figure 1: The frequency curves of the doubly truncated three parameter generalized Gaussian
distribution.



The distribution function of X is given by
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The mean of the distribution is

B
X)=[x
A

J are incomplete gamma functions.
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On simplification, we get
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Let M be the median of the distribution, then we have
jﬁ ia v dx == (11)
e 1(5—/1) 1 |A-u 2
{ﬁ’ . Vﬂ, .
On simplification, we get
1 (M=uY Y
7,[#) s L|A-s
B\ «a Bl a 1
== for A<u<B (12)
1 (e f 1))
VAW 8l
1 (M=uY 1 (A-uY
G )
:% for u<A<B (13)
1




(14)

1 (M=-uY 1 |A=ul
y(ﬂ’(aﬂj ]”[waﬂj ,
== for A<B<u
1‘A—ﬂﬁ _ |1 [B-u
N5 o N5 o

The median M of the distribution can be obtained by solving the equations (12), (13) and (14).
For obtaining the mode of the distribution consider the probability density function of the distribution.
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Taking logarithms on both sides, we get

x— p”
(04

R ™

log f(x)=log(K,)-

Differentiating both sides w.r.to X, we get
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Solving equation (15), we get X = .
Thus, X = wis the unique solution which indicates this distribution is uni-model.
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This distribution reaches its maximum of the point X = u
The raw moments of the distribution are
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B

j+
p
1‘/*—#
Bl «a

S

(e e

(94

U R,

B

Similarly for A< B < u, the ™ non central moment i

S

7j+1 A—yr _yj+1‘B—yﬁ
//‘i{jahfj pla pla
r o\ l‘A—,uﬁ 1‘B—luﬁ
+]/ PN _7/ N
Bl «a Bl a
The central moments of this distribution
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Similarly for 1 < A< B, the ™ central moment is
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Similarly for A< B < u, the ™ central moment is
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The skewness of the distribution is
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Kurtosis of the distribution is
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The hazard rate  function of the  distribution is h(x):l_F(X)
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The survival rate function S(x) is S(x)=1-F(x)
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Conclusions

In this paper, we introduced a doubly truncated Generalized Gaussian Distribution (GGD).
Generalized Gaussian Distribution (GGD) got lot of applications in analyzing several data sets as
an alternative to the Gaussian distribution where the variable under study is lepty or platy or meso

kurtic and symmetric. A doubly truncated GGD includes GGD as limiting case where the



truncated point tends to infinite. The various distributional properties such as distribution
function, moments, hazard function, and survival function are derived. It is observed that the
hazard function is sometimes increasing and decreasing depending upon the truncation parameter.
It also includes a J-type distribution when the truncation point is greater than its location

parameter.
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