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Abstract

The dynamic nature of many asset price processes and the lack of perfect hedging assets can lead

to unstable hedge ratios over time, necessitating the re-estimation and rebalancing of cross-hedges.

Cross-hedging occurs when a porfolio or asset is hedged with a statistically related yet not identical

underlying derivative. Ordinary Least Squares regression is an oft applied method for estimating

constant minimum-variance hedge ratios to curb price volatility or manage a market-neutral por-

folio. However, constant estimates are often unsuitable under cross-hedging where the dependence

structure between the two assets change over time. Rather than traditional correlation-based

hedging, this paper focuses on cointegration-based cross-hedging with respect to the equilibrium

between asset prices. We apply and test the out-of-sample e�cacy of models that enable the coin-

tegrating vector, or hedge ratio between two nonstationary price series, to vary over time. Models

are estimated across daily data for selected equity, bond and commodity pairs. Rolling-window

regression, exponentially-weighted moving average and Dynamic Linear Models (Gaussian Linear

State-Space Models) are investigated. Results show that time-varying parameter models have su-

perior out-of-sample hedging performance compared to constant parameter methods. This �nding

is con�rmed through extensive Monte Carlo simulation. In practice, this reduction in basis risk

comes with incurred transaction costs from routine hedge reblancing.

Keywords: Market Neutral, Cointegration, Time-Varying Model, Dynamic Linear Model, Kalman

Filter, Hedging
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Introduction

Ordinary Least Squares (OLS) regression is an oft applied statistical method for estimating constant

minimum-variance hedge ratios to curb price volatility or manage a market-neutral portfolio. However,

the dynamic nature of many asset price processes and the lack of perfect hedging assets can lead to

unstable hedge ratios over time, necessitating the re-estimation and rebalancing of hedges. In practice,

linear hedging between two assets can be estimated based on the correlation across returns. Instead

of correlated returns, this paper extends another common practice of hedging with cointegrated prices

series. We apply and test the out-of-sample hedge e�ectiveness of statistical models that enable

the cointegrating vector, or hedge ratio, to vary over time across various �nancial instruments. We

investigate models with parameters that are allowed to adapt while absorbing new information (or

observations) in an on-line fashion, namely rolling window regression (RWR), exponentially weighted

moving average (EWMA) and Dynamic Linear Models (DLM - also known as Linear Gaussian State-

Space Models). The empirical analysis is conducted on daily data from the following instruments, with

hypothetical use-cases following:

Asset Class Instrument Hedge

Equities Apple Stock (AAPL) Powershares QQQ Trust (QQQ)

Bonds High-Yielding Bond Low-Yielding Bond

Commodities U.S. Gulf Coast Jet Fuel West Texas Intermediate Crude Oil Futures

Equities: A trader wishes to neutralize systematic risk to exploit the mean-reverting spread between

the stock and ETF

Bonds: A large bank hedges bond price volatility to capture the interest rate di�erential

Commodities: A commercial airline imperfectly hedges jet fuel price volatility by participating in

highly liquid WTI crude oil futures markets

The importance of e�ective hedging bears signi�cant relevance in portfolio and risk management.

When constructing portfolios to mitigate certain risks or isolate particular exposures, maintaining

market-neutrality is a challenging yet important objective. Hedging linear relationships can be viewed

as a regression problem, that is, we aim to minimize the variance of such a portfolio to maximize

the bene�ts of correlation between the pair. The practical value of hedging solutions has led to

deep literature on this subject. Traditionally, constant hedge ratios are estimated via ordinary least

squares (OLS) regression on returns, with the slope coe�cient equaling the hedge ratio (e.g. Ederington
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(1979); Anderson and Danthine (1980)). However, this procedure is only appropriate if the assumption

of constant variance in the distribution of asset returns holds true- an overwhelmingly large body

of literature shows that it does not. There is well established evidence of heteroskedasticity often

encountered in asset returns (Park & Bera (1987)). This non-constant variance leads to non-constant

covariation in multivariate settings such as that of hedge estimation, therefore an interest in extending

the traditional OLS hedging model to those which can account for time-varying variance and covariation

exists.

Triantafyllopoulos & Montana (2009) apply state-space modeling and Kalman �ltering in a real-time

statistical arbitrage framework to capture the cointegrated nature between two exchange traded funds.

Park & Jei (2006) and Bera et al (1997) studied the hedging e�ectiveness of corn and soybean futures

contracts on spot prices with bivariate GARCH models and found that the variance of hedge ratios

is inversely related to hedging e�ectiveness. Kroner & Sultan (1993) also estimate time-varying hedge

ratios for foreign exchange futures using a bivariate error correction model with a GARCH error

structure. The authors found that time-varying hedge ratios outperform the conventional models both

in-sample and out of sample. By applying various constant and time-varying hedge ratios to Indian

stock and commodity futures markets, Kumar et al. (2008) �nds further evidence of time-varying hedge

ratios reducing variance compared to constant hedge ratio models. Myers (1991) analyzes hedging in

futures markets and concludes that both simple and relatively complex models that take advantage of

all relevant conditioning information available to traders, e.g. time-varying parameter models lead to

better hedging compared to traditional OLS hedging.

While hedge ratios are traditionally constructed on asset returns due to their stationary nature, we as-

sess hedge ratios on prices under the local cointegration framework. Local cointegration, also de�ned as

time-varying or functional cointegration, has been explored in the literature, though not as thoroughly

as returns-based hedging. Park & Hahn (1999) model U.S. automobile demand using cointegration

with time-varying coe�cients, such that the coe�cient evolves smoothly over time and is estimated

nonparametrically. More recently, Bierens & Martins (2010) apply time-varying vector error correction

models to the purchasing power parity hypothesis of international prices and nominal exchange rates,

and �nd evidence of time-varying cointegration. The authors estimate the time-varying coe�cients us-

ing Chebyshev time polynomials. Xiao (2009) proposes a functional cointegration model, which allows

the cointegrating vector to vary stochastically through both kernel and local polynomial estimation.

Wagner (2010) applies cointegration in a state-space setting. The objective of this paper is to pro-

vide further evidence of the utility of time-varying models to manage �nancial risk by applying three

practical models that allow the cointegrating vector to vary over time under the local cointegration

framework. The �rst section brie�y discusses spurious regression and cointegration. The second sec-

tion of this paper provides detail on the three time-varying models of interest, namely rolling-window

3



regression, exponentially weighted moving average, and dynamic linear models. Section 3 summarizes

the empirical analysis and performance evaluation. In this section, daily, every other day, and weekly

(5 day) hedge rebalancing performance are evaluated with results documented for comparison between

dynamic models and against the traditional OLS. Results show that these methods can greatly reduce

the variance of the of the hedging model residuals, also known as basis risk. This performance improve-

ment, however, is only possible in a practice by incurring increased transaction costs due to portfolio

rebalancing. Section 4 contains extensive results from simulation studies to con�rm the robustness

of model estimates and hedge e�ectiveness of locally cointegrating prices. Lastly, we conclude with a

summary of the research and �ndings.

1 Overview of Cointegration

Cointegration, popularized by the work of Engle and Granger (1987), is a model-free phenomenon

which occurs when two (or more) stochastic processes are non-stationary, but some linear combination

of said processes is stationary. Let {y1, y2, ...yp} denote a set of p vectors, each with an equal number

of observations t1, t2,...tT . Then the set p is said to be cointegrated if each vector {y1, y2, ...yp} taken
individually is I(1), e.g. integrated of order 1; a non-stationary process that becomes stationary when

di�erenced once, while some linear combination of the series γ′p is I(0), or stationary for some non-zero

vector γ. Speci�cally, a set of series, all integrated of order n, (in our case integrated of order 1), are

said to be cointegrated if and only if some linear combination of the series, with non-zero weights, is

integrated of order less than n (Murray, 1994). For example, take the bivariate case where processes

yt and xt both follow non-stationary random walks.

yt ∼ I(1), xt ∼ I(1). (1.1)

If these series are cointegrated, there exists

zt = yt − γxt zt ∼ I(0), (1.2)

such that zt follows a stationary I(0) process. The γ parameter, known as the cointegrating vector,

can be estimated by γ̂ via least-squares spurious regression through the origin (note the lack of an

intercept term) of one random walk onto another:

yt = γ̂xt + zt. (1.3)

γ̂ =

∑t
i=1 xtyt∑t
i=1 x

2
t

(1.4)
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In application, yt, xt, and zt can all be tested for unit roots (or lack thereof in the case of zt if yt and

xt are actually cointegrated) using statistical tests for stationarity. The Engle-Granger Representation

Theorem states that xtand ytcointegrate if and only if there exists an error correction model (ECM)

for either xt, yt, or both. For example, let zt = yt− γ̂xt be a stationary relation between I(1) variables

as shown above. Then there exists a stationary ARMA model for zt. Assume for simplicity an AR(2),

zt = φ1zt−1 + φ2zt−2 + εt, φ(1) = 1− φ1 − φ2 > 0. (1.5)

This is equivalent to

(yt − γxt) = φ1(yt−1 − γxt−1) + φ2(yt−2 − γxt−2) + εt (1.6)

yt = γxt + φ1yt−1 − φ1γxt−1 + φ2yt−2 − φ2γxt−2 + εt, (1.7)

or

∆yt = γ∆xt + φ2γ∆xt−1 − φ2∆yt−1 − (1− φ1 − φ2){yt−1 − γxt−1}+ εt. (1.8)

Unlike hedging based on correlation, cointegration-based hedging provides a robust alternative. Cor-

related hedging requires assets to move in tandem while cointegration implies that two price series

cannot wander o� in opposite directions for very long without eventually reverting to a mean distance.

It does not necessarily require that on a daily basis the two prices have to move in synchrony - what

it implies is that there exists some long run equilibrium relationship between the two series.

1.1 Local Cointegration

The objective of this paper is to provide robust and practical evidence that minimum-variance hedging

based on prices can be improved by increasing the �exibility of our models. Speci�cally, by allowing

for time-varying covariance structure between nonstationary price series, we capture information that

lets one routinely update their knowledge of the underlying process. In this paper, we de�ne Local

Cointegration as cointegration that holds under a time-varying cointegrating vector, or simply,

zt+q = yt+q − γtxt+q zt+q,∼ I(0) yt+q ∼ I(1) xt+q ∼ I(1), (1.9)

where q denotes q-periods ahead. This can be be any number in theory, but we study and assess the

domain of q = {0, 1, 2, 5}. When q = 0, the cointegrating vector updates contemporaneously while

q > 0 holds a constant cointegrating vector γt for q periods before updating. Under such circumstances,

if the residual series zt is stationary, we de�ne the process as locally cointegrating. Even if tests for
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constant cointegration fail (or marginally pass), the multivariate process between two nonstationary

series may be cointegrated under short durations which the time-varying nature of γt captures - leading

to a stationary residual series. Though structurally and intuitively simple, this time-varying coe�cient

approach to price-based hedging has valuable practical implications for risk management and trading

as evidenced by our study.

2 Time-Varying Parameter Models

Under theoretical assumptions of covariance-stationarity or �xed long run equilibria, constant model

parameters can be estimated to determine whether or not a cointegrating relationship exists to imple-

ment a hedge. Particularly with �nancial time series, these relationships and therefore static model

parameter estimates are not constant. This introduces complexity to the estimation problem. To

estimate hedge performance of time-varying model parameters, Rolling Window Regression (RWR),

Exponentially Weighted Moving Average (EWMA) models and Dynamic Linear Models (DLM) are

investigated. In this section we provide an overview of the models and how the cointegration-based

hedges are constructed.

2.1 Rolling Window Regression

Often referred to as the �poor man's� time-varying parameter model, a rolling linear regression is

simply the moving-average counterpart to linear regression. For a window with n < T , the rolling

window linear regression (RWR) model may be expressed as (Zivot & Wang, 2003)

yt(n) = xt(n)γt(n) + zt(n), t = n, ..., T, (2.1)

Where yt(n) is an n× 1 vector of observations (asset prices) on the response, xt(n) is an n× k matrix

of explanatory variables (in our case, the n× 1 vector of hedging asset's price observation), γt(n) is a

k × 1 cointegrating vector (or hedge ratio) and zt(n) is the n × 1 vector of stationary error/residual

terms, e.g. the hedge basis. The n observations are the n most recent observations from time t−n+ 1

to time t, akin to an n-period moving average, but here we have an n period moving regression. The

parameters can be estimated (Zivot & Wang, 2003) such that

γ̂t(n) = [xt(n)′xt(n)]−1xt(n)′yt(n), (2.2)

σ̂2
t (n) =

1

n− k
ẑt(n)′ẑt(n) =

1

n− k
[yt(n)− xt(n)γ̂t(n)]′[yt(n)− xt(n)γ̂t(n)], (2.3)
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V AR→∞(γ̂t(n)) = σ̂2
t (n)[xt(n)′xt(n)]−1. (2.4)

2.2 Exponentially Weighted Moving Average

In terms of the traditional OLS model, the hedge ratio can be estimated as

γ̂ =
COV (xt, yt)

V AR(xt)
. (2.5)

We apply this approach to determining time-varying hedge ratios in an exponentially weighted setting

via EWMA. The unconditional covariance matrix of our two series represented can be estimated as

Σ̂ =
1

T − 1

T∑
t=1

(yt − ȳ)(xt − x̄), (2.6)

where Σ̂ denotes the covariance matrix of xt and yt. Time-variation in the covariance matrix is intro-

duced by weighting more recent observations heavily relative to past observations through exponential

smoothing,

Σ̂t = (1− λ)(yt − ȳ)(xt − x̄) + λΣ̂t−1, (2.7)

Σ̂t =

[
σ̂2
y σ̂xy

σ̂xy σ̂2
x

]
where 0 < λ < 1is the weight parameter, σ̂2

y, σ̂
2
x and σ̂xy are the variance of y, x, and their covariance

estimates at time t, respectively. The larger λ, the more weight is given to previous observations and

less to the most recent observation. Financial risk institution RiskMetricsTM implements EWMA

with λ = 0.94, as we shall in our hedge performance testing. To initialize the EWMA the estimate

of the entire sample covariance matrix Σ̂1 = Σ̂ is used. For a given λ and an initial estimate Σ̂1, Σ̂t

can be computed recursively. Under the assumption that the joint distribution of the observed asset

prices xt and yt, is multivariate normal with mean zero and covariance matrix Σt, where the mean µt

is a function of parameter Θ, then λ and Θ can be estimated jointly via Maximum Likelihood because

the log-likelihood function of the data is

lnL(Θ, λ) ∝ −1

2

T∑
t=1

|Σt| −
1

2

T∑
t=1

(yt − ȳ)(xt − x̄)′Σ−1t (yt − ȳ)(xt − x̄), (2.8)

which can be evaluated recursively by substituting Σ̂t for Σt (Tsay, 2010).
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2.3 Dynamic Linear Models & The Kalman Filter

Dynamic Linear Models (Kalman ,1960 and Anderson & Moore, 1979) follow a Bayesian estimation

philosophy for estimating time-varying parameters. This method, theorized quite some time ago,

has gained recent popularity dude to advances in technology and computing power. Recent treat-

ments of Dynamic Linear Models and Kalman Filtering (Kalman, 1960) were developed in 2001 (see

Durbin & Koopman, 2001). The idea is that an observation yt at time t depends on an underlying

state vector (hedge ratio) γt and the independent variable Xt. We treat γt as a random state rather

than a constant coe�cient as done in simple linear regression, and this state can vary over time.

Under the Kalman Filter, this is a Gaussian Process where the joint distribution of all parameters

(...γt−2, γt−1, γt, γt+1,γt+2..., γt−2, γt−1, y, yt+1, yt+2, ...) is multivariate normal. The Gaussian assump-

tion can be relaxed under extensions of the Kalman Filter such as the Particle Filter. We refer the

reader to Bishop (2006) and Kitagawa & Gersch (1996) for further treatment of �ltering methods.

Modi�ed from Tsay's (2010) treatment of state-space models and the Kalman Filter, the linear Gaus-

sian state-space DLM can be written as a hierarchical model given by

yt = αt + γtxt + zt, zt ∼ N(0, Pε), (2.9)

αt = Rα+ wt wt ∼ N(0, Qw), (2.10)

γt = Tγt−1 + ut, ut ∼ N(0, Qu), (2.11)

such that zt, wt and ut are two independent Gaussian white noise series, and are independent of both

E(yt), E(αt) and E(γt) at time t > 0, respectively. The estimation of the parameters that specify a

Dynamic Linear Model is quite involved. Taken from Shumway & Sto�er (2000), here we use Maximum

Likelihood Estimation (MLE), where θ denotes the parameter set. The likelihood is computed using

innovations ε1, ε2, ..., εn de�ned by

zt = yt − E(yt|yt−1) = yt − αt − γtXt−1
t , (2.12)

with covariance matrix Σt = var(zt). Ignoring the constant, we can write the log likelihood function

to be maximized, LY (θ) as

−lnLY (θ) =
1

2

n∑
t=1

log|Σt(θ)|+
1

2

n∑
t=1

zt(θ)
′Σt(θ)

−1z(θ). (2.13)
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Solving this function is not a trivial task, hence various recursive and algorithmic approaches have

been presented (Gupta and Mehra,1974). For deeper detail, we refer the reader to Shumway & Sto�er

(2000).

DLM parameters can be estimated with the Kalman Filter, a forwards-backwards recursive algorithm.

Essentially, the Kalman Filter is the continuous-state-space analogue of the Hidden Markov Model,

which deals with a discrete state-space. For extensive treatment of the Kalman Filter algorithm there

is deep literature on the subject, one referral is Kitagawa & Gersch (1996). The following is a high

level treatment of the Kalman Filter algorithm, taken from West & Harrison (1997).

The �Generation Step�

Without loss of generality, suppose αt = 0. At time t, calculate a �prior� mean and variance for the

quantities at time t. The expectation of γt at time t is bt so the expectation of γt at time t − 1 is

bt|t−1 = Ttbt−1. The value of the state vector is not observable, but at any time there exists a mean

vector and covariance matrix for it. The variance of γt at time t is St, so the variance of γt at time

t− 1 is St|t−1 = TtSt−1T
′
t +Qt. At time t− 1 the expectation of Yt is

Ft = xtbt|t−1, (2.14)

the variance of yt is

Dt = xtSt|t−1x
′
t + Pt, (2.15)

and the covariance of γt and Yt is

Ct = St|t−1x
′
t. (2.16)

So, at time t− 1,

E

(
γt

yt

)
=

(
bt|t−1

Ft

)
, (2.17)

and

V ar

(
γt

yt

)
=

(
St|t−1 Ct

C ′t Dt

)
. (2.18)
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The �Observation Step�

At time t, yt is observed. Beliefs about γt are updated. Under the Gaussian assumption, then this is

done by applying Baye's rule. The updated mean for γt is

bt = bt|t−1 + CtD
−1
t (yt − Ft), (2.19)

and the updated variance matrix for γt is

St = St|t−1 − CtD−1t C ′t. (2.20)

Note that the variance matrices Pt and Qt are known/given. Although they have t subscripts, P,Q, x,

and T would often remain constant.

Updating

When some new data is observed, �rst a generation step then an observation step is carried out to

update the state vector.

Forecasting

A generation step on its own gives a one-step-ahead forecast. Forecasts can be generated further into

the future by a sequence of generation steps without observation steps. For example, suppose the data

at time t is observed. One-step-ahead forecasts can be found.

E

(
γt+1

yt+1

)
=

(
Tbt

xTbt

)
, (2.21)

and

V ar

(
γt+1

yt+1

)
=

(
St+1|t Ct+1

C ′t+1 Dt+1

)
. (2.22)

Then the two-step ahead forecasts can be calculated, and so on.

E

(
γt+1

yt+1

)
=

(
T 0

xT 0

)(
Tbt

xTbt

)
=

(
TTbt

xTTbt

)
, (2.23)
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and

V ar

(
γt+2

yt+2

)
=

(
T 0

xT 0

)(
St+1|t Ct+1

C ′t+1 Dt+1

)(
T ′ T ′x′

0 0

)
. (2.24)

Alternative derivations of the Kalman Filter algorithm can be found extensively in the literature

(Tsay 2010, Bishop 2006, Kitagawa & Gersch 1996, are just a few that we refer to). By implementing

DLM, functional coe�cients will enable the modeling of dynamic systems. By estimating a functional

cointegrating vector, the relationship between two non-stationary series can be considered dynamic,

and an optimal hedge can be generated when traditional models are not suitable.

3 Empirical Analysis & Testing Hedge E�ectiveness

In this section, we discuss the applications of time-varying hedges and the data1 on which it will

be tested upon. Out-of sample testing is done on 3 pairs of assets from di�erent markets. The

equity market pair consists of the NASDAQ index tracking exchange-traded fund (QQQ) and Apple,

Inc. stock (AAPL). With AAPL being a constituent of the QQQ itself, the two equity assets bear

considerable correlation in their return series. For �xed income markets, exchange traded funds iShares

iBoxx High Yield Corporate Bd (HYG) and iShares Core US Aggregate Bond (AGG) are used. A trader

aiming to capture the nominal yield di�erential between the two bond portfolios, or more generally

high-yield and investment-grade bonds, could go long HYG and hedge the market risk with AGG.

From the commodities space we model the hedge ratio between West Texas Intermediate Crude Oil

Front-Month Futures and U.S. Gulf Coast Jet Fuel Spot prices. WTI Crude futures, being one of the

most liquid energy markets globally, provides ease of hedging against �uctuating Jet Fuel prices, and

other petroleum-based products that may not have liquid futures markets, given that these products

exhibit structural dependency.

A �Fast� Rolling-Window Regression (RWR) is implemented with a window size of n = 2. As such,

the hedge ratio is e�ectively the slope between the two most recent observations. Empirically, this

small window size outperforms longer window sizes. The Exponentially Weighted Moving Average

model will hold a decay parameter λ = .94, which is the industry standard set byRiskMetricsTM .

As mentioned, the initial observation variance for the Dynamic Linear Model (DLM) is estimated

using Maximum-Likelihood based optimization and the state variance is set to 1. The out-of sample

testing is based on three scenarios: daily rebalancing, rebalancing every 2 days, and rebalancing every

5 days (or business week). No contemporaneous information is used to estimate hedge ratios to satisfy

1AAPL & QQQ daily prices were collected from Yahoo! Finance, dating from 4/1/2005 to 4/1/2015. HYG & AGG
daily prices were also taken from Yahoo! Finance, dating from 4/11/2007 to 4/1/2015. WTI Crude Oil Front Month
Futures prices were taken from Quandl, Inc. and the Wiki Continuous Futures Database. U.S. Gulf Coast Jet Fuel spot
prices are sourced from the U.S. Department of Energy. The two energy price series consist of daily data dating from
4/1/2005 to 4/1/2015.
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out-of-sample requirements such that the general model follows the equation

yt+k = γ̂txt+k + zt+k. (3.1)

The hedge ratio γ̂ is estimated recursively, using only data up to but not including the current value for

the one-step ahead test, e.g. k = {1}. Similarly, the estimated γ̂ uses data k = {1, 2} when rebalancing
every two days. Weekly rebalancing is emulated by estimating γ̂ using k = {1, 2, 3, 4, 5} such that the

hedge ratio estimate is carried forward throughout the 5 day period before re-estimating and repeating.

Why not rebalance daily and minimize the basis variance? Simply because of the practical costs of

trading incurred with daily rebalancing. Rebalancing every 2 days would hypothetically increase the

basis risk, though cost of hedging would be cut in half. Rebalancing weekly would further reduce costs

of hedging. For these out-of-sample tests, the statistics for performance evaluation are the Root Mean

Squared Error and Mean Absolute Deviation,

RMSE =

√√√√ 1

n
(

n∑
i=1

ŷt − yt)2, (3.2)

MAD =
1

n

n∑
i=1

|ŷt − yt|, (3.3)

Where ŷt is the model �tted value at time t. We omit the �rst 500 observations from the out-of-sample

analysis as a burn-in phase for the models, namely EWMA and DLM which estimate recursively. The

remaining 8 years of daily observations are used for testing hedge e�ectiveness. Hedging e�ectiveness

under the classic OLS / Spurious Regression framework is shown in Table 1. With AAPL trading

in the $100's, HYG trading in the $50's and Jet Fuel trading in the $2's, in-sample deviation statis-

tics are roughly 10% across the board. Tables 2 to 4 show hedge e�ectiveness for the pairs under

a time-varying framework. The hedge ratios of AAPL/QQQ and HYG/AGG are characterized by

heavy drift, suggesting that the dependence structure changes considerably over time. Jet Fuel/WTI,

however, has a relatively stable time-varying hedge ratio, implying that the relationship between the

two petroleum derivatives is structural and that the relationship could be modeled with a static model

reliably (evidence that the two series are truly cointegrated).

A peculiar bene�t of cointegration-based hedging with price series is that the RMSE and MAD can

be interpreted in dollar terms which lets us attach a hard value to the basis risk. All three models

vastly outperform even the in-sample performance of the static OLS model, while the simple RWR

performs surprisingly well and DLM outperforms under all rebalancing schemes. The resulting residual

zt based on time-varying models are all highly stationary, with ADF tests rejecting the null hypothesis

of a unit-root in all cases (k = 0, 1, 2, 5) across all models.
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Table 1: Constant Estimates (OLS), in-sample RMSE/MAD

Pair OLS Equation RMSE MAD

AAPL & QQQ AAPL = −36.56 + 1.459QQQ 10.95 9.10

HYG & AGG HYG = −43.09 + 1.584AGG 5.82 4.913

Jet Fuel & WTI Jet = 0.017 + 0.029WTI 0.21 0.16

Table 2: AAPL & QQQ

RMSE k = 1 k = 2 k = 5

RWR 0.83 0.98 1.37

EWMA 2.16 2.23 2.41

DLM 0.74 0.94 1.34

MAD k = 1 k = 2 k = 5

RWR 0.52 0.61 0.85

EWMA 1.51 1.55 1.68

DLM 0.46 0.57 0.81

Table 3: HYG & AGG

RMSE k = 1 k = 2 k = 5

RWR 0.49 0.57 0.77

EWMA 1.08 1.11 1.19

DLM 0.44 0.54 0.75

MAD k = 1 k = 2 k = 5

RWR 0.34 0.40 0.54

EWMA 0.86 0.88 0.95

DLM 0.31 0.37 0.52

Table 4: Jet Fuel & WTI Futures

RMSE k = 1 k = 2 k = 5

RWR 0.06 0.08 0.08

EWMA 0.10 0.10 0.11

DLM 0.06 0.08 0.08

MAD k = 1 k = 2 k = 5

RWR 0.03 0.04 0.04

EWMA 0.06 0.06 0.07

DLM 0.03 0.03 0.04

4 Simulation

To con�rm the robustness of our out-of-sample performance, we re�t and evaluate the RMSE and MAD

statistics based on simulated sample distributions of the statistics. For each pair of securities, 10,000

bootstrapped samples were tested. Results were unanimously positive, con�rming the reliability of the
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out-of-sample RMSE and MAD statistics reported in Section 3. Since time series data is subject to

potential short-memory / autoregressive characteristics, we take a Stationary Block Bootstrap (Politis

& Romano, 1994) approach. Traditional Monte Carlo bootstrapped simulation relies on the assumption

that observations are independently and identically distributed, thus the data could be randomly

sampled with replacement. Block Bootstrap is more appropriate for time series since the observations

are split into blocks of a selected length, with the blocks rather than individual observations resampled.

Stationary Block Bootstrap extends the Block Bootstrap in that rather than �xing the block length,

it is allowed to vary such that the block length is random and generated from a geometric distribution

with some mean number of observations per block - the speci�ed mean block length for this study is

5. The process undertaken runs over the following steps, for each asset pair:

1. Transform price series pair to logged returns (for stationarity and removing long-memory).

2. Apply Stationary Block Bootstrap and generate a replicate, resampled with replacement, with an

equal number of daily observations as original data (10 years).

3. Transform the multivariate series back to normalized price series, with initial value of 1 by taking

cumulative products.

4. Re-scale price series to original values by multiplying series by price at time period 1.

5. Evaluate 1-day, 2-day, and 5-day out-of-sample RMSE and MAD statistics for each replicate, for

all three models: RWR, EWMA, DLM.

6. Repeat steps 2 through 5 10,000 times.

Out of sample performance from Section 3 matches bootstrapped mean and median statistics closely,

with the bootstrapped estimates being slightly more conservative. The bootstrapped statistics have

the bene�t of letting us observe the full sampling distribution of hedge e�ectiveness under simulated

environments, and robustness of applying time-varying hedge models can be con�rmed. Note that

these �gures can be interpreted in dollar terms. Though RWR performs second best, it is by far

the slowest with respect to computation - taking nearly 10 times longer than EWMA, the fastest

simulation. DLM computation takes about 3 times as long as EWMA. When speed is a necessity,

the slight under performance of EWMA may be overlooked for its ease of computation2. Simulation

results can be found in section 6, with histograms in the Appendix A.

5 Conclusion

Time-varying cointegration models for hedging provide unique insights and practical bene�ts in markets

where cross-hedges are needed. We test and �nd that Dynamic Linear Models prove to be the best

performing modeling scheme in terms of stationarity in the residuals, root mean squared error and

2Computations and Simulations were done in the R Statistical Language.
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mean absolute deviation metrics. Rolling Window Regression and Exponentially Weighted Moving

Average methods also performed well, with all three models vastly outperforming the static hedge

benchmark out-of-sample. EWMA method, though under performed on a relative basis, has the

fastest computation time. By treating price series as locally cointegrating, the application of relatively

simple yet robust models enable the practitioner to meaningfully reduce basis risk, improving the

practice of cross-hedging when traditional hedging derivatives are not available or not applicable.
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6 Simulation Results

Table 5: AAPL & QQQ

(a) RWR

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.03 0.34 0.64 1.00 1.21 21.84

1-Day MAD 0.02 0.21 0.37 0.55 0.68 11.48

2-Day RMSE 0.03 0.39 0.75 1.19 1.43 25.76

2-Day MAD 0.02 0.25 0.44 0.66 0.80 13.56

5-Day RMSE 0.05 0.54 1.02 1.61 1.94 36.42

5-Day MAD 0.03 0.34 0.61 0.90 1.12 19.70

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.06 0.89 1.64 2.63 3.13 60.30

1-Day MAD 0.04 0.62 1.11 1.67 2.03 30.14

2-Day RMSE 0.06 0.92 1.67 2.71 3.22 62.12

2-Day MAD 0.05 0.64 1.15 1.72 2.09 31.04

5-Day RMSE 0.07 0.99 1.82 2.92 3.47 67.27

5-Day MAD 0.05 0.69 1.24 1.86 2.25 33.64

(b) EWMA

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.03 0.31 0.57 0.92 1.09 34.80

1-Day MAD 0.02 0.19 0.33 0.50 0.60 16.91

2-Day RMSE 0.03 0.38 0.70 1.13 1.34 37.42

2-Day MAD 0.02 0.23 0.41 0.61 0.74 17.86

5-Day RMSE 0.04 0.54 0.99 1.56 1.87 42.32

5-Day MAD 0.03 0.33 0.58 0.87 1.05 20.36

(c) DLM
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Table 6: HYG & AGG

(a) RWR

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.30 0.59 0.71 0.75 0.87 2.54

1-Day MAD 0.18 0.36 0.44 0.45 0.53 1.35

2-Day RMSE 0.36 0.70 0.84 0.88 1.02 3.05

2-Day MAD 0.21 0.43 0.52 0.54 0.63 1.61

5-Day RMSE 0.48 0.94 1.013 1.18 1.37 4.32

5-Day MAD 0.28 0.59 0.71 0.74 0.86 2.30

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.68 1.48 1.80 1.88 2.19 6.71

1-Day MAD 0.47 1.08 1.31 1.37 1.60 4.82

2-Day RMSE 0.70 1.52 1.85 1.93 2.25 6.90

2-Day MAD 0.48 1.11 1.35 1.41 1.64 4.96

5-Day RMSE 0.75 1.64 1.99 2.09 2.43 7.47

5-Day MAD 0.52 1.20 1.45 1.52 1.77 5.36

(b) EWMA

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.22 0.54 0.66 0.68 0.80 2.32

1-Day MAD 0.13 0.33 0.39 0.41 0.47 1.21

2-Day RMSE 0.27 0.66 0.80 0.83 0.96 2.80

2-Day MAD 0.16 0.39 0.48 0.49 0.57 1.47

5-Day RMSE 0.38 0.91 1.10 1.15 1.34 4.02

5-Day MAD 0.23 0.56 0.68 0.71 0.83 2.10

(c) DLM
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Table 7: Jet Fuel & WTI Futures

(a) RWR

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0015 0.0182 0.0300 0.0421 0.0504 1.7520

1-Day MAD 0.0006 0.0093 0.0155 0.0216 0.0263 0.6343

2-Day RMSE 0.0017 0.0213 0.0351 0.0492 0.0591 1.9760

2-Day MAD 0.0008 0.0109 0.0181 0.0253 0.0308 0.7380

5-Day RMSE 0.0023 0.0281 .0465 0.0653 0.0784 2.7520

5-Day MAD 0.0011 0.0147 0.0245 0.0342 0.0418 1.0700

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0036 0.0426 0.0695 0.0977 0.1177 3.304

1-Day MAD 0.0025 0.0267 0.0446 0.0620 0.0754 1.874

2-Day RMSE 0.0037 0.0437 0.0714 0.1005 0.1210 3.387

2-Day MAD 0.0025 0.0274 0.0459 0.0637 0.0775 1.925

5-Day RMSE 0.0040 0.0470 0.0769 0.1081 0.1300 3.625

5-Day MAD 0.0027 0.0295 0.0494 0.0686 0.0835 2.072

(b) EWMA

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0013 0.0165 0.0272 0.0381 0.0456 1.5880

1-Day MAD 0.0005 0.0082 0.0137 0.0191 0.0233 0.5557

2-Day RMSE 0.0016 0.0199 0.0328 0.0461 0.0554 1.5870

2-Day MAD 0.0007 0.0100 0.0167 0.0233 0.0284 0.6400

5-Day RMSE 0.0023 0.0272 .0450 0.0633 0.0762 2.7410

5-Day MAD 0.0010 0.0140 0.0234 0.0327 0.0399 1.0150

(c) DLM
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Appendix A: Simulated RMSE / MAD Distributions

Figure 1: AAPL & QQQ : RWR
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Figure 2: APPL & QQQ: EWMA
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Figure 3: AAPL & QQQ: DLM
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Figure 4: HYG & AGG: RWR

25



Figure 5: HYG & AGG: EWMA
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Figure 6: HYG & AGG: DLM
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Figure 7: Jet Fuel & WTI Futures: RWR
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Figure 8: Jet Fuel & WTI Futures: EWMA
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Figure 9: Jet Fuel & WTI Futures: DLM
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Appendix B: Time-Varying Coe�cient Estimates

Figure 10: AAPL & QQQ
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Figure 11: HYG & AGG

32



Figure 12: Jet Fuel & WTI Futures
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