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Abstract

Numerical range and pseudospectra of a matrix play a crucial role
in different area and have several applications. The numerical range of
a matrix A is determined by the behavior of the pseudospectra Λϵ(A)
in the limit ϵ → ∞. In this paper, we give some properties of the
pseudospectra of a matrix. We estimate ∥f(A)∥ where f(A) is the
Cauchy’s integral formula for matrices. Some results concerning par-
ticular quantities which are important in the study of time-dependent
dynamical systems are proposed, too.
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1 Introduction

Pseudospectra were introduced by H. J. Landau (1975), who used the term
ϵ-spectrum [9]. In 1979 J. M. Varah published a paper entitled “ On the sep-
aration of two matrices, ” in which he defined the 2-norm ϵ- pseudospectrum
using the smallest singular value σmin(A − λI), giving it the name ϵ- spec-
trum and the notation Sϵ(A), see [?]. Also pseudospectra were investigated
in several papers by L. N. Trefethen in the 1990s, [3, 10, 11, 12, 13, 14, ?]. In
recent years, the study of pseudospectra has been very active,wq numerous
contributions related to pseudospctra were made by various people, includ-
ing J. S. Baggett [1], A. Böttcher [2], T. A. Driscoll [3], M. Embree [?], N.
Higham [6], S. C. Reddy [10], L. Reichel [11].
It is known [12], [?] that, the ϵ-pseudospectrum of a normal matrix A (A is
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a normal matrix if and only if AA∗ = A∗A where A∗ is the conjugate trans-
pose of A) is consisted of circles of radius ϵ about each eigenvalue of A. For a
nonnormal matrix, ϵ-pseudospectrum takes different shapes in the complex
plane. In [13], the pseudospectra of thirteen highly nonnormal matrices are
shown. In this paper, we characterize the pseudospectra of a matrix using
the conjugate transpose of the ϵ-pseudo-eigenvector. We estimate ∥f(A)∥
where f(A) is the Cauchy’s integral formula for matrices. Here Cn and Cn×n

stand for complex n−vectors and n × n matrices respectively. ⟨x, y⟩ = x∗y
is the inner product of the vectors x and y.

2 Pseudospectra of a matrix

Four definitions of pseudospectra are given in [14], [?]. The first deals with
the perturbation, the second is related to the resolvent, the third is given
with the use of a normalized ϵ-pseudo-eigenvectors and ϵ-pseudo-eigenvalues,
finally the fourth use the smallest singular value. Other definitions are pre-
sented in [8].

Definition 2.1. Let A ∈ Cn×n and ϵ ≥ 0 be arbitrary. The ϵ-pseudospectrum
Λϵ(A) of A is the set of z ∈ C such that

z ∈ Λ(A+ E) (1)

for some E ∈ Cn×n with ∥E∥ ≤ ϵ.
Λ(A+ E) denotes the spectrum of the matrix (A+ E).

The 0-pseudospectrum of A is just the spectrum of A i.e., Λ0(A) = Λ(A).

Definition 2.2. The ϵ-pseudospectrum Λϵ(A) of A is the set of z ∈ C such
that

∥(zI −A)−1∥ ≥ ϵ−1. (2)

I is the identity matrix and (zI −A)−1 is the resolvent of A at z.

Definition 2.3. The ϵ-pseudospectrum Λϵ(A) of A is the set of z ∈ C such
that

∥(zI −A)v∥ ≤ ϵ (3)

for some v ∈ Cn with ∥v∥ = 1.
z is an ϵ-pseudo-eigenvalue of A, and v is a corresponding ϵ-pseudo-eigenvector.

Definition 2.4. ( Assuming that the norm is ∥ · ∥2)
The ϵ-pseudospectrum Λϵ(A) of A is the set of z ∈ C such that

σmin(zI −A) ≤ ϵ. (4)

σmin(zI −A) denotes the smallest singular value of the matrix (zI −A).
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For the equivalence of these definitions, see [14].

Theorem 2.5. Let A ∈ Cn×n and ϵ ≥ 0 be arbitrary. The ϵ-pseudospectrum
Λϵ(A) of A is the set of z ∈ C such that

∥u∗(zI −A)∥ ≤ ϵ (5)

for some u ∈ Cn with ∥u∥ = 1.
u∗ is the conjugate transpose of u.

Proof. Let z ∈ Λϵ(A) and let v be its corresponding left eigenvector of the

matrix (A+E) with ∥E∥ ≤ ϵ. Thus v∗(A+E) = zv∗, then
v∗

∥v∥
(zI −A) =

v∗

∥v∥
E. Hence ∥u∗(zI −A)∥ ≤ ϵ with u =

v∗

∥v∥
and ∥u∥ = 1.

Now let ∥u∗(zI − A)∥ ≤ ϵ, then there exist η with 0 < η ≤ ϵ and ϕ ∈ Cn

where ∥ϕ∥ = 1, such that u∗(zI −A) = ηϕ∗. Choosing E = ηuϕ∗, it follows
E ∈ Cn×n, ∥E∥ = ∥ηuϕ∗∥ ≤ η∥u∥∥ϕ∗∥ ≤ η ≤ ϵ and u∗E = u∗(zI − A).
Hence z ∈ Λϵ(A).

Here we give some useful functional properties of the pseudospectra of a
matrix. The first one can be found in [14].

Properties 2.6. Let A ∈ Cn×n, F = (fij) ∈ Cn×n then

1. Λϵ1(A) ⊆ Λϵ2(A), 0 ≤ ϵ1 ≤ ϵ2.

2. If |fij | ≤ 1 then Λϵ(A+ F ) ⊆ Λn+ϵ(A).

3. Λϵ1(A) + Λϵ2(A) ⊆ Λ2ϵ1+2ϵ2(2A).

In the third property a sum of sets has the usual meaning
Λϵ1(A) + Λϵ2(A) = {z : z = z1 + z2, z1 ∈ Λϵ1(A), z2 ∈ Λϵ2(A)}.

Proof. 1. Let z ∈ Λϵ1(A), there exists E ∈ Cn×n where ∥E∥ ≤ ϵ1 such that
z ∈ Λ(A+E). Since ϵ1 ≤ ϵ2, it follows z ∈ Λ(A+E) where ∥E∥ ≤ ϵ2. Hence
z ∈ Λϵ2(A).
2. Let z ∈ Λϵ(A + F ), then z ∈ Λ(A + F + E) where ∥E∥ ≤ ϵ. We have
∥F + E∥ ≤ ϵ+ ∥F∥, then ∥F + E∥ ≤ n+ ϵ hence z ∈ Λn+ϵ(A).
3. Let z ∈ Λϵ1(A) + Λϵ2(A), then z = z1 + z2 with z1 ∈ Λϵ1(A) and
z2 ∈ Λϵ2(A). Assume that u1 is the normalized ϵ-pseudo-eigenvector of A
corresponding to z1, so (A + E1)u1 = z1u1, ∥E1∥ ≤ ϵ1 and (A + E2)u1 =
z2u1 + w2, ∥E2∥ ≤ ϵ2, w2 ∈ Cn. Thus zu1 = z1u1 + z2u1, then zu1 =
(2A+E1+E2−w2u

∗
1)u1. On the other hand, ∥E1+E2−w2u

∗
1∥ ≤ ϵ1+ϵ2+∥w2∥

with ∥w2∥ = ∥(A+E2)u1 − z2u1∥ ≤ ∥(z2 −A)u1∥+ ∥E2∥ ≤ ∥(z1 −A)u1∥+
|z1−z2|+ϵ2. Hence ∥w2∥ ≤ ϵ1+ϵ2+ |z1−z2|, therefore, ∥E1+E2−w2u

∗
1∥ ≤

2ϵ1 + 2ϵ2 + |z1 − z2|. Taking z1 = z2 it follows z ∈ Λ2ϵ1+2ϵ2(2A).
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To prove the third property, we can also use u2 the normalized ϵ-pseudo-
eigenvector of A corresponding to z2 instead of u1. In the general case, this
property becomes

n∑
i=1

Λϵi(A) ⊆ Λnϵi+
∑n

k=1,k ̸=i 2ϵk
(nA). (6)

To prove (6), we use ui the normalized ϵ-pseudo-eigenvector of A correspond-
ing to zi and we follow the same steps as it is shown in the above proof i.e.,
we give the upper bounds of ∥wk∥ where k ∈ {1, 2, . . . , n}, k ̸= i.
It is shown in [14], [?] that, if a matrix A is normal, then Λϵ(A) = Λ(A)+∆ϵ

where ∆ϵ is the closed disk of radius ϵ about the origin. Hence

Λϵ(γI) = D(γ, ϵ), γ ∈ C.

D(γ, ϵ) is the closed disk of radius ϵ and center γ.

Proposition 2.7. Let A ∈ Cn×n and ϵ ≥ 0 be arbitrary. Then there exist
α ∈ C and rϵ > 0, such that

Λϵ(A) ⊆ Λrϵ(αI). (7)

I is the identity matrix of dimension n.

Proof. Let zk ∈ ∂Λϵ(A), k ∈ {1, 2, . . . ,m}, where ∂Λϵ(A) is the boundary of
Λϵ(A). Choosing α to be the barycenter of {(zk, 1) with k ∈ {1, 2, . . . ,m}}
and rϵ = supzk∈∂Λϵ(A) |α− zk|. Since αI is a normal matrix, then it is suffi-

cient to prove that Λϵ(A) ⊆ D(α, rϵ) where D(α, rϵ) is the closed disk of ra-
dius rϵ and center α. If z ∈ Λϵ(A), then |α−z| ≤ rϵ. Hence z ∈ D(α, rϵ).

The points of Λϵ(A) lie in the interior and on the boundary of the closed
disk D(α, rϵ).

Theorem 2.8. D(α, rϵ) is the smallest closed disk which contains Λϵ(A).

Proof. Since α is the barycenter, then it is unique. Now suppose that, there
exists another smallest closed disk D′(α, r′ϵ) which contains Λϵ(A), therefore,
r′ϵ < rϵ. There exists at least one point zk on the boundary of Λϵ(A) such
that |α− zk| = rϵ. On the other hand, |α− zk| < r′ϵ (by the supposition on
D′(α, r′ϵ) ), it follows rϵ < r′ϵ contradiction. Hence D(α, rϵ) is the smallest
closed disk which contains Λϵ(A).

Let f(A) be defined by the operator analogue of the Cauchy integral
formula, sometimes called a Dunford-Taylor integral :

f(A) =
1

2πi

∮
Γ
f(z)(zI −A)−1dz.

Here A ∈ Cn×n and Γ consists of a finite number of simple, closed curves Γk

with interiors Ωk such that
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1. f(z) is analytic on Γk and Ωk.

2. Each eigenvalue λi is contained in some Ωk.

We refer reader to [?] for more details.

Theorem 2.9. Let f be analytic on Λϵ(A) for some ϵ > 0. Then

∥f(A)∥ ≤ rϵ
ϵ

sup
z∈Λϵ(A)

|f(z)|. (8)

Proof. Pick Γ to be the boundary of D(α, rϵ)

∥f(A)∥ = ∥ 1

2πi

∫
∂D(α,rϵ)

f(z)(zI −A)−1dz∥

≤ 1

2π

∫
∂D(α,rϵ)

|f(z)|∥(zI −A)−1∥|dz|

=
1

2πϵ

∫
∂D(α,rϵ)

|f(z)||dz|

≤ 1

2πϵ
sup

z∈Λϵ(A)
|f(z)|

∫
∂D(α,rϵ)

|dz|

≤ rϵ
ϵ

sup
z∈Λϵ(A)

|f(z)|.

Definition 2.10. the ϵ-pseudospectral abscissa is the supremum of the real
parts of z ∈ Λϵ(A) i.e.,

αϵ(A) = sup
z∈Λϵ(A)

Re z. (9)

Theorem 2.11. For any matrix A ∈ Cn×n and ϵ > 0,

∥etA∥ ≤ rϵ
ϵ
etαϵ(A). (10)

Proof. Applying the Cauchy integral formula to etz, so

∥etA∥ = ∥ 1

2πi

∫
∂D(α,rϵ)

etz(z −A)−1dz∥

≤ 1

2π

∫
∂D(α,rϵ)

|etz|∥(z −A)−1∥|dz|

=
1

2πϵ

∫
∂D(α,rϵ)

|etz||dz|

≤ 1

2πϵ
sup

z∈Λϵ(A)
|etz|

∫
∂D(α,rϵ)

|dz|

≤ rϵ
ϵ

sup
z∈Λϵ(A)

etRe z

≤ rϵ
ϵ
etαϵ(A).
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Definition 2.12. The ϵ-pseudospectral radius is the supremum of magni-
tudes of points in Λϵ(A) i.e.,

ρϵ(A) = sup
z∈Λϵ(A)

|z|. (11)

Theorem 2.13. For any matrix A ∈ Cn×n and ϵ > 0,

∥Ak∥ ≤ rϵ
ϵ
ρϵ(A)

k. (12)

Proof. Applying the Cauchy integral bound to zk, so

∥Ak∥ = ∥ 1

2πi

∫
∂D(α,rϵ)

zk(z −A)−1dz∥

≤ 1

2π

∫
∂D(α,rϵ)

|zk|∥(z −A)−1∥|dz|

=
1

2πϵ

∫
∂D(α,rϵ)

|zk||dz|

≤ 1

2πϵ
sup

z∈Λϵ(A)
|zk|

∫
∂D(α,rϵ)

|dz|

≤ rϵ
ϵ
ρϵ(A)

k.

Corollary 2.14. Let f be analytic on Λϵ(A) for some ϵ > 0. If A is a
normal matrix, then

1. ∥f(A)∥ ≤ supz∈Λϵ(A) |f(z)|.

2. ∥etA∥ ≤ etαϵ(A).

3. ∥Ak∥ ≤ ρϵ(A)
k.

Proof. If A is a normal matrix, then rϵ = ϵ.

3 Numerical range

The numerical range W (.) is a set of complex numbers associated with a
given matrix A ∈ Cn×n:

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. (13)

Let A ∈ Cn×n, B ∈ Cn×n, it is shown in [7] that

W (A+B) ⊂ W (A) +W (B).

The following proposition shows that W (A) is as robust as one could desire.
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Proposition 3.1. Given ϵ ≥ 0, let A ∈ Cn×n and E ∈ Cn×n such that
∥E∥ ≤ ϵ, then

W (A+ E) ⊆ W (A) + ∆ϵ

where ∆ϵ is the closed disk of radius ϵ about 0.

Proof. We have W (A+ E) ⊆ W (A) +W (E), assume that z ∈ W (E), then
z = x∗Ex where ∥x∥ = 1, thus |z| ≤ ϵ. Hence W (A+E) ⊆ W (A)+∆ϵ.

Let the numerical positive abscissa of a matrix A be defined by

ω+(A) = sup
z∈W (A)

Re z. (14)

In the Hilbert space case, see [?], the numerical positive abscissa is given by
the formula

ω+(A) = supλwhereλ ∈ Λ

(
A+A∗

2

)
. (15)

Λ

(
A+A∗

2

)
denotes the spectrum of

(
A+A∗

2

)
.

Let the numerical negative abscissa of a matrix A be defined by

ω−(A) = inf λwhereλ ∈ Λ

(
A+A∗

2

)
. (16)

Proposition 3.2. For any matrix A ∈ Cn×n,

ω+(A∗A) ≤ ∥A∥2. (17)

Proof. ω+(A∗A) = sup∥x∥=1Re ⟨x,A∗Ax⟩ ≤ sup∥x∥=1 | ⟨x,A∗Ax⟩ | ≤
sup∥x∥=1 | ⟨Ax,Ax⟩ | ≤ ∥A∥2.

Theorem 3.3. Let A ∈ Cn×n, z ∈ C then

ω+(zI −A) = Re z − ω−(A)

Proof. Let z ∈ C, we assume that ω+(zI−A) = ω0, so ω0 = supλ where λ ∈

Λ

(
zI −A+ zI −A∗

2

)
. Then (Rez − ω0) = inf λ where λ ∈ Λ

(
A+A∗

2

)
,

we have ω+(zI − A) = ω0 implies ω−(A) = Rez − ω0. Hence the desired
result is obtained.

Conclusion: The ϵ-pseudospectrum of a matrix is a subset of C that
can be used to learn something else about the matrix and it can also give
information that the spectrum alone cannot give. In general the spectrum
is sensitive to perturbation, whereas the numerical range is not.
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