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1. Introduction

Let C,x, be the space of nxn complex matrices of order n. For Ae C,_, let A", A,

xn 2

A", A®, A’ and A" denote the transpose, conjugate, conjugate transpose, secondary
transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate
secondary  transpose of A satisfies the following  properties such

as(4°) = A, (A+B)’ = A°+B°, (AB)" = B’A” . etc

Definition 1

A matrix Ae C_ is said to be normal if AA" = A"A.

nxn

Definition 2

A Matrix Ae C,, is said to be conjugate normal (con-normal) if AA" —AA

Definition 3

A matrix Ae C,, is said to be secondary normal (s-normal) if AA® = A°A.

nxn

Definition 4

A matrix Ae C,_ is said to be unitary if AA"=A"A=1.

nxn

Definition 5
A matrix Ae C,, is said to be s-unitary if AA’=A°A=1.

Definition 6 [2]

A matrix Ae C,, is said to be a conjugate secondary normal matrix (con-s-normal) if

AA’ = A°A where A° = A" . (D)



2. Properties of Con-s-Normal Matrices
Theorem 1

A matrix A is con-s-normal iff there exists an s-unitary matrix U such that UAU®is a

a b
direct sum of non-negative real numbers and of 2x2 matrices of the form:{ } where a
-b a

and b are non negative real numbers.

Proof

Let A be con-s-normal where A = P+Q where P=P° and Q = -Q°.
Then AA® = A5 A gives (P+Q) (ﬁs +§SJ:(P‘+QY)(F>+§) or (P+0)(P+0)=(P-0)(P+0)

and so: PI_3+QI_3-P§-Q§ = PI_J-QI_3+P§-Q§0rQI_3-P§. There exists a s-unitary U
such that USU®=Dis a secondary diagonal matrix with real, non-negative elements.
Therefore UQUU PU  =U PUU QU or WD=DW where W =-W* . LetU be chosen
so that D is such that d;> d, >0for i<jwhere d;is the i" secondary diagonal element of D.
W=(,), where 1, =-1then 1,d =d, 15, for j>i, and 3 possibilities may occur : if
dj =d, #0, then A is real; if dj =d, =0, A is arbitrary (through w=-w? still holds); and if
d; #d,, then 1, =0 for if #,= a+ib then (a+ib)d;=d;(a-ib) and a(d;- d,)=0 implies a=0
and b(d,. +d j):0 implies d, =-d; (which is not possible since the d; are real and
non-negative and d, #d,) or b=0 so 1,=0. So if UPU*=d |1, ®d,I,®..®d,I where @
denotes direct sum, then UQU* =T, ®T, ®...®T, where Q, =-Q; isreal and Q, =-Q; is

complex iff di = 0. For each real Q. there exists a real-s-orthogonal matrix V; so that VTV*

1

b
is direct sum of zero matrices and matrices of the form { O} where b is real [1]. If

Q, = -0, is complex, there exists a complex s-unitary matrix V, such that V,Q V,Q is a
direct sum of matrices of the form [3] so thatif V =V, ®V, ®...®V, then VUPU®V*® =D and
VUQ *U°® = F the direct sum. Therefore VUAU®V® = D+ F this is the desired form.

If A and B are two con-s-normal matrices such that AB=BA then A and B can be
simultaneously brought into the above secondary normal form under the sameuv (with a
generalization to a finite number) but not conversely; if A is con-s-normal , AA is s-normal in

the usual sense, but not conversely; and if A is con-s-normal and AA is real, there is a real
secondary orthogonal matrix which gives the above form. Among properties of con-s-normal
matrices not obtained but of subsequent use are the following:



(a) A is con-s-normal iff A= HU = UH® where H is s-hermitian and U is S-unitary.

Forif A= HU is apolar form of A, then USHU =K 1is such that A=HU=UK and if
AA° = ASA,then H? = (K s )2 and since this is an s-hermitian matrix with non-negative
roots, H = K> and A=HU = UH?® . The converse is immediate. This same result may be

seen as follows. If UAU® = F is the s-normal form in Theorem 1, F =D,V =VD, where

D, is real secondary diagonal and V is a direct sum of 1's block of the form
via b — —s — —5 — —

(a2 +b2)/2 { b } which are s-unitary. Therefore A= USDrU U'vU=U"vU U’D,U

-b a
which exhibits the polar form in another guise.
(b) A is both s-normal and con-s-normal iff A=HU =UH=UH® so H=H"* —H ' so that
H is real.
(¢) If A=HU =UH? is con-s-normal, then UH is con-s-normal iff HU> = U’H,that is

HU? 18 s-normal. For if UH is con-s-normal, UH =H’U so
that HU®> = UH’U = U’H;and if HU® = U’H , then HUU = UH’U = UUH

or H'U = UH.
(d) A matrix A is con-s-normal, iff A can be written A = PW = WP where P=P°and
w 18 s-unitary. If A 18 con-s-normal, form the above

A =U FU=U DUU’VU =PW =U VUU D,U=WP  where P=U DU
s-symmetric and W=UVU is s-unitary. Conversely, if

— —S —5—S§ s sTS—

A=PW=WP, AA =PWW P =A"A=P°W P.
Note that if B is con-s-normal, and if B=PU where P=P°® and U is s-unitary, it does
not necessarily follow that B :EP; but it possible to find on P; and U; such that
B=PU,=U,P, holds. This may be seen as follows. If B=PU is con-s-normal, Let V be
s-unitary such that VPV®=Dis secondary diagonal, real and non negative, so that
VBVS=VPVSVUV® = DW is con-s-normal from which DWW D=W*D® DW or since D
18 real, WD?=D*W and WD=DW since D is non-negative. Then

=S P =S =5 _— : : :

Bz(V DV)(V WV)ZPU =(V WV)(V DV) which is not necessarily equal to

Upz(VSWv) (\750\7) However, if D=rl,®nl,®..®rl,, r>r, for i>j, then

W=W, ®@W,®...®W, . Since each W; is s-unitary, it is con-s-normal and there exist s-unitary
X; so that X,W, X} =F,is in the real s-normal form of Theorem 1 if X=X ®X,®..®X,,
then XVBV®X?®=XDWX® = DXWX®=DF =FD where F=F,®F, ®..®F,.



So
e B R ——
B:(V x’ DX V)(V X°FX V)
=S5 —s =S =5 _— = —5
=(V' X Fxv)(V* X DX V)=PU, =U\ R and
=S=s == =S =
P =V X DXV=#V DV=Pand
U =VSXSFXV 2VSWV =U.
3. Products of s-Normal Matrices
If A, B and AB are s-normal matrices then BA is s-normal; a necessary and sufficient
condition that the product AB, of two s-normal matrices A and B be s-normal is that each

commute with the s-hermitian polar matrix of the other. First a generalization of this theorem
is obtained here and then an analog for the con-s-normal case is developed.

Theorem 2

Let A be an s-normal matrix. Then AB and BA are s-normal iff (ZSA) B= B(A ZS ) and

(ESB)A:A(BES) . (In a sense, the latter condition might be described as stating that each

matrix is s-normal relative to the other).

Proof

If AB and BA are s-normal, Let U be a unitary matrix such that UAU' =Dis

secondary diagonal. dﬁi id_jz_;zofor i < j, and let UBﬁS:Blz(b,.). From

)

—s—s —=S—S . —S5— =S . .
ABB A =B A ABit follows that DB,Bi D = B DDB,; by equating secondary diagonal

elements it follows that Zdigibijl_)ij :Zdjajbjil_)j,-for i=1,2...n. Similarly from
j=1

j=1

BAA'B = A B BAfollows BDDB =DBi B, pand >.d,db,by =Y didbb, . Let i=1 in
j=1 j=1
each of these equations So that Zdl Elbljl_h,- =Zdj E,-bﬂl_z,-l and
j=1 j=1

>'d, db,bi; =Y did bjib, from which follows
j=1 j=l

n n

Y(ddi-d,d;)b,b, =Y (d,d;~dd\)d,b,
J=1 Jj=1

so that > (didi—d,d;) (b, b, +b,b,)=0.

j=1



Let d,d, =d,d, =...=d,d, >d,.,d,,,,then bl_].Ej+bﬂlZ =0 for j=Il+1,1+2,..n since
dld_l—djd_jis zero or positive and is latter for j>lL So b;=0 and b, =0 for
Jj=l+11+2,..n For i=2,....[ in turn it follows that b;=0 and b;=0. For i=1,2,....] and for
J=l+11+2...n. Let UAU’ =D= 1D, ®rD, ®..®r,D; where the r; are real r; > rj fori < j
and the D; are s-unitary Then by repeating the above process it follows that

UBU =B,=C,®C,®...®C, is conformable to D.

—=S

C; (i;ﬁi)(D.};)Ciand

1

It follows from the given conditions that ;;DI.C_Z’;-g 51.;; =

— —s

C rD,Dy,C; =1D,CiC Dy, or that DCC, =C,CD,and DCC, =C/CD, if r; > 0. If
rs=0, D, is arbitrary insofar as D 1is concerned and so may be chosen so that
D,C; Cs = Cs C,Dgin which case D; may not be secondary diagonal. But whether or not
this is done, it follows that DBIEfz EfBID and that BIDES :5SDBI so that
A(BES):(ESB)A and B(AZS) = (ZSA)B. The converse is immediate. It may be noted

that if the roots of A are all distinct in absolute value, B must be s-normal. The following
further clarifies the situation.

Theorem 3
Let A = LW = WL be the polar form of the s-normal matrix A. Then AB and BA are
s-normal iff B = NW~ where N is s-normal and LN = NL.

Proof
In the proof of the above theorem, let C;= H,U,= UK, be polar forms of the C;. Then

Ui HU,=K, so that U; C,C;U,=C;C orU; C,C; =CiC,U;. Also, from the
above D,C,C; =C: C,D,.
LetR =D;U; then RC,C; =DiU:C,Ci =DiCiC,U; =C,Ci DiU; =C,Ci R, where
R; is s-unitary (if r; = 0, Ds may be chosen —Us, as described above). So RH’=H’R, and
since H; has positive or zero roots, RH.,=HR and so Hiﬁf =R H,. Then
A=U DU=U DUU D,U= LW =WLand
B=UBU=U"(C,®C,®..®C,)U
=U (HU,®H,U,®..® H,C,)U
:US(HIEfE@HZE;?FZ@...@HSEiFS)U

= NWC™*



where N=U~ (ij @HZE:E @...@Hsﬁi)U (which is s-normal since the s-hermitian H;

and s-unitary R: commute) and W =U (51 ®D:®...® Ds )U. It is evident that LN = NL.

Conversely, if A = LW = WL and B=N WS as described, then AB=WLN WS which is

obviously s-normal as is BA=N W' WL = NL.

—S

It is easy seen that B= NW  is s-normal iff NW' =W N. if B= NW' = (HR)W s
con-s-normal; then B=H (RWS ) = (RWS ) H® =RHW' (form property (a)) so
—S s —S s —S —S
W' HS= HW' or WH=H'W and W(BB ):(B B)W.

If A is s-normal and B is con-s-normal then AB is s-normal, it does not necessarily

follow that BA is s-normal though it can occur. For example, if B=HU=UH® is

con-s-normal and if A=U" then AB=U UH’and BA=HUU® = H are both s-normal. But
the following is an example in which AB is s-normal but not BA. Let B = HU =UH® be

con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular.

Let A= H'is s-hermitian (So s-normal) and not con-s-normal (since H'is not real). Then

AB=H'HU=U is s-normal if BA were also s-normal, then by the above theorem
(4°a)B=B(44") and (B'B)a=a(BB’). But (B'BJA=(H)H' and
A(BES ):(E_l)(H 2)and if these were equal, ( H ‘Y)2 = H? would follow which means that

H>= (H “)zz(ﬁs )2 so that H* real. But this is not possible for if H —VDV' where D is
secondary diagonal with positive real elements (since H is non singular), then
H>=VD*V =V DV® if H® is real so that V'VD’> =DV so V°VD=DV°Vso
VDV’ =VDV® = H is real which contradicts the above assumption.
Theorem 4

If A and B are con-s-normal and if AB is s-normal then BA is s-normal.
Proof

Let U be a s-unitary matrix such that UAU® = F is the s-normal from described in

Theorem 1 and where FF = FF =i ,® 1 I,®...@ 1’1, which is real s-diagonal with

r?>r'>..>r? >0 There r”may be either the squares of secondary diagonal elements of F or



a b
they may arise when matrices of the form { } are squared. Assume that any of the latter
a

whose rl.2 are equal are arranged first in a given block followed by any secondary diagonal

elements whose square is the same r”.

Let UBU = B, which is con-s-normal and then UAU SUBU =F B,is s-normal Let vV

be the s-unitary matrix.

| Y2 Wi
i1/2 172

Then the following matrix relation holds, independent of a and b:

a bl=s |a-bi 0
1% Vv =
-b a 0 a+bi
Let F=F® F,®.®F, where the direct sum is conformable to that of F F given
above (i.e, FIES =71 )and consider F, = G, @G, ®..®G, ®rl where each G; is 2x2 as
described above and I is an identity matrix of proper size. Let W,=V@V ®.. @V &I be
conformable to F;; define W; for each F; in like manner and letW = W, ©W, ®..OW, .If
r,=0,W, =1.Then WF W' =D is complex secondary diagonal, where if d; is the "
L din. Then

i+1

secondary diagonal element d, di >d
W(UAUS)WSW(ﬁBﬁS)WS z(WFWS)(WBIV_VS) =DB, is s-normal for B,=WB W (or
B =W B, W). Since Biis con-s-normal, BB =B'B S0 that

W BWW' BsW =W BSWW*B.W or that B,B-WW*=WW*B} B, Now VV° is a matrix

0
of the form
I

i ) ) ) )
}. So that WW?* is a direct sum of matrices of this form and one’s.

5 — — —
Let B,=(b)and consider(WW®) B,B:(WW*)= BSB.. Let BB =(c,),
B) B = ( fy) cyand  f; are  identifiable with the by, both matrices being

s-hermitian. Consider two cases:
a) If dﬁl :d}.z,- for all j (where d; is the 7" secondary diagonal element of D), then
D=KD, where D, is s-unitary diagonal. Since WFBIWS = DB, =KD,B,= D, (KB,)is
s-normal, then  D.(D,B,K)D,= B,D = WBF W' is  snormal, as is

B F=UBU UAU® so BAis s-normal.



b) If ddi#dd; for some j, let ddi=d,ds..=ddi forl<i<n(so that
dydi>d, dm).

Suppose F, =G, @G, D1, where I;is the 2x2 matrix (The general case will be seen

to follow from this example). From (W )S B, B> (wws): BSB: and the fact that

Wi=V @V @I; it follows that C;i1=f22,C2=f11, Cs;=fas, Caa=f33 Css=fs5, Ces=fss (and
Ci= Jia- Cu= S, etc) there equalities supply the following relation (where the summation is

over i=1 to n).
C=Xbib, =Xbub, = f:
b :sz,.b, =Ybb = f:
Coo=Ebyby, =5b,bis = fo;
Cy =X by bsi =Y b, bis = f;
C.. =Y b, bsi =Y b.bis = f.;
= Zbobei = Thbio = fig:
DB; is s-normal so that the following relations also hold:

dd Ybb,

dd, >b,b =%ddb,b_;
d,.xbyb, =¥ddb;b ;

d d4,2b41b =¥ddb,b ;

dsd . Ybyb_ =¥dd bsb

ded . Sbyb =Yddbeb. ;

debb ¥

i 7l

Since dﬁl Idzgz on combining the first 2 relation in each of these
sets, d,d, (Lbyby +byby ) =d,d, (Zbyb, +3b b, )= Sd,d, (byby+b,b, ) 50
that3(d,d -dd)(b,b, +b,b,,)=0 did =d,d, for j=1,2..6 but for j beyond 6,
dyd,=d;d,>0 or bb, +b,b, =0 or b, =0 and b, =0 for i=7,8....n similarly, b;=0 and
bi4=0 for i>6 the third relation in each set give b;5=0 and b;s=0 for i>6.

On adding all 6 relation in the first set,

6 - n — 6 -
Z b 21 27 b Z b Z Z Ub
J=1 == ij=
and on canceling the first summations on each side
6 n — n 6 —
> $bb, =53 bb,



But the right side is zero from the above, so the left side is 0 and so b;=0 for i=1,2...6
and j>6.

From this it is evident that this procedure may be repeated and that if
D=rD;®rD,;® ... ® D, Where the D; are s-unitary and the r; non—negative real, as above,
then B,=C;®C,®...®C, Conformable to D then rD;C; is s-normal so

Df ( DCir, }D,- = C,r.D, is s-normal so B,D is s-normal. So B;F and so ﬁBﬁSUAU Sand BA.
Theorem 5

If A and B are con-s-normal then AB is s-normal iff A AB=BAA and
ABB’ =B BA (ie, iff each is s-normal relative to the other).
Proof

If AB is s-normal, from the above BSDB2 = BZDBS so that fSFB1 =B F F’or
A’ AB=BAA .

Similarly DB, is s-normal, DBZB_zsﬁzgi BDB2 s0 DBzgi zgiBzD or
FB, Ef = I_BTBIF or ABB =B BA. the converse is directly verifiable.
Theorem 6

Let A and B be con-s-normal, if AB is s-normal, then A=LW=WL’ (with L s-hermitian
and W s-unitary) and B=N Ws . Where N is s-normal and I’ N = NI ; and conversely.
Proof

As above, let UAU® =F =W’ DW = v_vsDr wv_vsDuwwhere D, and D, are the
s-hermitian and s-unitary polar matrices of D) and UBU® = B :VT/SBZW =W (C®..0C,)W.
As in the proof of Theorem 3 if follows that for all i, DC, Els = EISCIDI and
E,S CiEis = E,S Ciﬁf with U; as defined there, so that when R, = DU ,S (where D, here,
=r1D; ® D> ® ... ® 1Dy as earlier) thenC, = HU, = H. R: D: with HR, = RH, .

Then since, WD,=D,W, UAU’ =W D wW D w=D. [WSDMWJ and

A

(ESDrUj(ESV_vSDuWEJ =LX
=s=s 0 V(15 T\ L v
Z(U w Dquj(U D,U):XL

with L=U"D,U s-hermitianand X =U°w’D,wU s-unitary.



Also, UBU® =’ [Hll_elsﬁl ©H,R'D, ©.0HRD, jW:le

2
) - - - . I N e ~
Where N, = w [HIR1 ®H,R,®..® HkRka is s-normal and Y=w (D1®D2 @...@Dk)w
is s-unitary; then B:USNIYUz(USNﬁ)(USYU) =NX".

Where N = USNIE is snormal and X’ =USYU =UW’ HMWU. Also
I’N=NL' sinceD,N,=N,D,,D,N =N D, 50 (UTUS)(ENUS) =(ENUS)(EZUS)SO
L*N=NL’.

The converse is immediate.

4. Products of Con-s-Normal Matrices

It is possible if A is s-normal and B con-s-normal that AB is con-s-normal. For
example, any con-s-normal matrix C=HU= UH® is such a product with A=H and B=U. Or if
C=HU=UH® and A=H, then AC=H’U=HUH"= U(HS)2 is con-s-normal. The following
theorems clarify this matter.

Theorem 7
If A is s-normal and B 1is con-s-normal then AB is con-s-normal iff
ABB® = BB’ A and BAA® = AS AB(orBAA® = A® AB).
(If one were to define N is s-normal with respect to M’ to mean
NN'M =MN’Nand Q is con-s-normal with respect to P to mean PQQS =0° QP the

above theorem would say that if A is s-normal and B is con-s-normal then AB is con-s-normal

iff (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with

respect to 1_3).
Proof

If the latter condition hold, then; ( AB)(E)S = ABES ZS = BES AZS and
(AB)’ (AB)=B*A*A B=BBAA which are equal.

Conversely, let AB be con-s-normal and let UAU® =D = dl,®d,l, ®..®d I, where

dl.c_ii >djc_ij, i>].



Let UBU® =B =(bij),
if (AB)(AB) = ABB'A’ = AB’B A’ =(AB)' (AB)
= B°A*AB=B°AA°B,
wen(0a0® (v UB U )UA'D") - (vBU) (U AU Tau 0BT
—S§—s —_ =5
Sothat DB,B, D = B DDB, .
Equating secondary diagonal elements on each side of this relation, we get

> ddbby = >.ddbby ,i=12,..nor
j=1 j=1

=d2g2=...dlgl>dl+lgl+lthen b,=0 for i=1,2...1 and j=I+11+2..n

since B; is con-s-normal, Zbijl_),-j :Zb ﬁl_) i for i=12,..non adding the first [ of these
=

j=1

equation and canceling, b,=0 for i=l+1l+2..nand j=L2,..,[. In this manner if

D= 1D ®rD,®..@rD with r>r

i i+l

and D; s-unitary, then B =C®C,®..0C

conformable to D.

Since £DD;irCi =r’CS=CSr*=CrD.Di 1. for all i, DD BS = B°DD"  and so
=S =S —§ — —§ (— . —§— —s s& =S s s =, =S
UDDUU BBU=U B'UU>DD U or AAB=BA"Aor AAB=BA"A or A”AB = BAA .

—$—S$ — =S — = — = =5 [ = — —S

Also, D(BlBlD ):BIDDBl =DDB =D(DB1B1)SO that C,Ci (nDi)= (1D;) C,C;

for i = L,2...t. (if r, = O, this is still true and D, may be chosen to be identity matrix).
—5 —§ —=5_ =S G g T TS —S—S§ S =S o —— —§

Therefore BB D =D BB and UBU UBU UAU =UAU UBUUBU so

B*BA =A BB or AB'B=B’BA.

Corollary 1

Let A be s-normal, B con-s-normal; if AB is con-s-normal, then BZ 1S con-s-normal,

and conversely.



Proof

r~u?’

From the above, UAU UBU® = DB’ is con-s-normal, and if D= D.D, D, real

and D, s-unitary, then since

D,=D,° HM(DBIS )D_uz DBSD, = BSD.D, = B’D is con-s-normal,

asare UBU*UAU® and BA . Reversing the steps proves the converse.

If A is s-normal and B is con-s-normal, BA is con-s-normal iff AB is con-s-normal,
iff (BS E)A = A(BES) and (AS Z)E = E(AZS) Therefore if A is s-normal B is
con-s-normal BA is con-s-normal iff (BSE)Z = Z(BES) and (ZSA)E = E(ZAS)that is

replace A by A in the proceeding or (ESB)A:A(EBS): A(ESB) and

(ZSA)E = E(ZAS), thus exhibiting the fact that when AB is con-s-normal, BA is not
necessarily so.
Theorem 8

If A=LW=WLis s-normal and B = KV = VK® is con-s-normal (where L and K are

s-hermitian and W and v are s-unitary) then AB is con-s-normal iff LK = KL, LV = VL and
WK = KW .

Proof
If the three relations in the theorem hold, then AB = LWKV = LKWV, and
AB = WLKV = WKLV =WKVL) =WVK* [} :WV(LK)S is con-s-normal since LK is

s-hermitian and WV is s-unitary.
Conversely, Let A = U’ DU = (ﬁsDrU)(ﬁsDuU) = LW and
5= U'BU) = (ESKIU)(ESVIE) = KV =VK*
where K, and V, are s-hermitian and s-unitary and direct sums conformable to B and D. A

direct check shows that LK = KL and LV = VL’ also WK = ESDMKIU =U SKIDMU =KW

since D,B,Bi = BB\ D, implies DK, =K,D,.

A sufficient condition for the simultaneous reduction of A and B is given by the
following:



Theorem 9

If A is s-normal, B is con-s-normal and AB = BA®, then WAVVS =D and
WBW = F, the s-normal form of Theorem 1, where Wis an s-unitary matrix; also AB is

con-s-normal.

Proof
Let UAU' =D secondary diagonal and UBU® = B, which is con-s-normal. Then
AB = BA® implies DB, =UAU UBU® =UBU*UA’U® = B,D*=B,D.

Let D=CI,®CL,®...OCl,. Where the C; are complex and C,#C, for
i# jand B,=C @C,®..@C, let V, be s-unitary such that V,C,V,® = F, the real s-normal
form of Theorem 1, and let V =V, @V, ®..®V,.

Then VUAU' V' =D, VUBU'V® =F=a direct sum of the F,.
Also, AB = BA® implies B*A°= AB® and so
ABB'A = ABBA = BA°AB=(AB)' (AB).

It is also possible for the product of two s-normal matrices A and B to be con-s-normal
if Q= HU =UH?® is con-s-normal and if A=U and B = H this is so or if KV=VK?® is
con-s-normal and if A=UK=KU is s-normal with K s-hermitian and v and U s-unitary, for
B=V,AB=(UK)V =K (UV) = (UV)K® con-s-normal. But if in the first example, U’H is
not s-normal then HU is not con-s-normal so that BA is not necessarily con-s-normal though
AB is. When A alone is s-normal an analog of Theorem 2 can be obtained which states the
following: if A is s-normal, then AB and AB’ are con-s-normal iff
ABB' = B’BA, BB A=AB°B and BAA = ASAB. (The proof is not included here
because of its similarity to that above) when B is con-s-normal, two of these conditions merge
into one in Theorem 7.

It is possible for the product of two con-s-normal matrices to be con-s-normal but no
such simple analogous necessary and sufficient conditions as exhibited above are available.

This may be seen as follows two non-real complex commutative matrices P=P°® and

Q = Q° can form a con-s-normal (and non-real s-symmetric) matrix PQ which need not be

- - 2i 0
s-normal. Then two s-symmetric matrices X :{ } Y:{ } are such that XY=Z is

I -l 0 2

real, s-normal and con-s-normal (s-symmetric).



Finally if U and V are two complex s-unitary matrices of the same order, they can be
chosen so UV is non-real that is complex, s-normal and con-s-normal. If A=P® X ®U and
B=0®Y®V AB = PQ®XY®UV where A and B are con-s-normal as in AB

(s-symmetric). A simple inspection of these matrices shows that relations on the order of
(BSE)A = A(BES):(BES)A and (ASZ)E = (AZS )E = E(AZS) do not necessarily hold;

these are sufficient, however, to guarantee that AB is con-s-normal (as direct verification
from the definition).
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