PRODUCTS OF CONJUGATE SECONDARY NORMAL MATRICES

Dr.B.K.N.Muthugobal *, R.Surendar **, R.Raja***

* Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam.
 **Guest Lecturer in Mathematics, Govt. Arts College (Autonomous), Kumbakonam.
 ***P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam.
 Tamil Nadu, India.

Email: <u>bkn.math@gmail.com</u>

Abstract:

In this paper, the properties of the products of conjugate secondary normal (con-s-normal) matrices are developed, their relation, in a sense, to s-normal matrices is considered and further results concerning s-normal products are obtained.

AMS classification: 15A21, 15A09, 15457

Keywords: Conjugate secondary transpose, Secondary normal, Secondary orthogonal, Secondary unitary, conjugate normal and con-*s*-normal.

1. Introduction

Let C_{nxn} be the space of nxn complex matrices of order n. For $A \in C_{nxn}$, let A^{T} , \overline{A} , A^{*} , A^{s} , A^{θ} and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such $\operatorname{as}(A^{\theta})^{\theta} = A, (A+B)^{\theta} = A^{\theta} + B^{\theta}, (AB)^{\theta} = B^{\theta}A^{\theta}$. etc

Definition 1

A matrix $A \in C_{n \times n}$ is said to be normal if $AA^* = A^*A$.

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $AA^* = A^*A$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $AA^{\theta} = A^{\theta}A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $AA^* = A^*A = I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be *s*-unitary if $AA^{\theta} = A^{\theta}A = I$.

Definition 6 [2]

A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-s-normal) if $AA^{\theta} = \overline{A^{\theta}A}$ where $A^{\theta} = \overline{A}^{s}$(1)

2. Properties of Con-s-Normal Matrices

Theorem 1

A matrix *A* is con-s-normal iff there exists an s-unitary matrix *U* such that UAU^{S} is a direct sum of non-negative real numbers and of 2x2 matrices of the form: $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ where a and b are non negative real numbers.

Proof

Let A be con-s-normal where A = P+Q where $P = P^{S}$ and $Q = -Q^{S}$. Then $A\overline{A}^{S} = A^{S}\overline{A}$ gives $(P+Q)\left(\overline{P}^{S}+\overline{Q}^{S}\right) = \left(P^{S}+Q^{S}\right)\left(\overline{P}+\overline{Q}\right)$ or $(P+Q)\left(\overline{P}+\overline{Q}\right) = (P-Q)\left(\overline{P}+\overline{Q}\right)$ and so: $P\overline{P} + Q\overline{P} - P\overline{Q} - Q\overline{Q} = P\overline{P} - Q\overline{P} + P\overline{Q} - Q\overline{Q}$ or $Q\overline{P} - P\overline{Q}$. There exists a s-unitary U such that $USU^{s} = D$ is a secondary diagonal matrix with real, non-negative elements. Therefore $UQU^{s}\overline{U} \ \overline{P} \ \overline{U}^{s} = U PU^{s}\overline{U} \ \overline{Q}\overline{U}^{s}$ or $WD = D\overline{W}$ where $W = -W^{s}$. Let U be chosen so that D is such that $d_i \ge d_i \ge 0$ for i < j where d_i is the i^{th} secondary diagonal element of D. $W = (t_{ij})$, where $t_{ji} = -t_{ij}$ then $t_{ij} d_j = d_i \overline{t_{ij}}$, for j > i, and 3 possibilities may occur : if $d_j = d_i \neq 0$, then t_{ij} is real; if $d_j = d_i = 0$, t_{ij} is arbitrary (through $W = -W^s$ still holds); and if $d_j \neq d_i$, then $t_{ij} = 0$ for if $t_{ij} = a + ib$ then $(a+ib)d_j = d_i(a-ib)$ and $a(d_j - d_i) = 0$ implies a=0and $b(d_i + d_i) = 0$ implies $d_i = -d_i$ (which is not possible since the d_i are real and non-negative and $d_j \neq d_i$) or b=0 so $t_{ij}=0$. So if $UPU^s = d_1I_1 \oplus d_2I_2 \oplus ... \oplus d_kI_k$ where \oplus denotes direct sum, then $UQU^{s} = T_1 \oplus T_2 \oplus ... \oplus T_k$ where $Q_i = -Q_i^{s}$ is real and $Q_K = -Q_K^{s}$ is complex iff $d_k = 0$. For each real Q_i there exists a real-s-orthogonal matrix V_i so that $V_i T_i V_i^s$ is direct sum of zero matrices and matrices of the form $\begin{vmatrix} 0 & b \\ -b & 0 \end{vmatrix}$ where b is real [1]. If $Q_{K} = -Q_{K}^{s}$ is complex, there exists a complex s-unitary matrix V_{k} such that $V_{k}Q_{k}V_{k}Q$ is a direct sum of matrices of the form [3] so that if $V = V_1 \oplus V_2 \oplus ... \oplus V_k$ then $VUPU^S V^S = D$ and $VUO^{s}U^{s} = F$ the direct sum. Therefore $VUAU^{s}V^{s} = D + F$ this is the desired form.

If A and B are two con-s-normal matrices such that $A\overline{B} = B\overline{A}$ then A and B can be simultaneously brought into the above secondary normal form under the same U (with a generalization to a finite number) but not conversely; if A is con-s-normal, $A\overline{A}$ is s-normal in the usual sense, but not conversely; and if A is con-s-normal and $A\overline{A}$ is real, there is a real secondary orthogonal matrix which gives the above form. Among properties of con-s-normal matrices not obtained but of subsequent use are the following: (a) A is con-s-normal iff $A = HU = UH^{s}$ where H is s-hermitian and U is s-unitary.

For if A = HU is a polar form of A, then $\overline{U}^{s}HU = K$ is such that A = HU = UK and if $A\overline{A}^{s} = A^{s}A$, then $H^{2} = (K^{s})^{2}$ and since this is an s-hermitian matrix with non-negative roots, $H = K^{s}$ and $A = HU = UH^{s}$. The converse is immediate. This same result may be seen as follows. If $UAU^{s} = F$ is the s-normal form in **Theorem 1**, $F = D_{r}V = VD_{r}$ where D_{r} is real secondary diagonal and V is a direct sum of 1's block of the form $(a^{2} + b^{2})^{-\frac{1}{2}} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ which are s-unitary. Therefore $A = \overline{U}^{s}D_{r}U\overline{U}^{s}V\overline{U} = \overline{U}^{s}V\overline{U}U^{s}D_{r}\overline{U}$ which exhibits the polar form in another guise.

- (**b**) A is both s-normal and con-s-normal iff $A=HU=UH=UH^s$ so $H=H^s=\overline{H}^s$ so that H is real.
- (c) If $A=HU=UH^{s}$ is con-s-normal, then UH is con-s-normal iff $HU^{2} = U^{2}H$, that is HU^{2} is s-normal. For if UH is con-s-normal, $UH = H^{s}U$ so that $HU^{2} = UH^{s}U = U^{2}H$; and if $HU^{2} = U^{2}H$, then $HUU = UH^{s}U = UUH$ or $H^{s}U = UH$.
- (d) A matrix A is con-s-normal, iff A can be written $A = PW = \overline{W}P$ where $P = P^s$ and W is s-unitary. If A is con-s-normal, form the above $A = \overline{U}^s F \overline{U} = \overline{U}^s D_r \overline{U} U^s V \overline{U} = PW = \overline{U}^s V U \overline{U}^s D_r \overline{U} = \overline{W}P$ where $P = \overline{U}^s D_r \overline{U}$ s-symmetric and $W = U^s V \overline{U}$ is s-unitary. Conversely, if $A = PW = \overline{W}P$, $A\overline{A}^s = PW \overline{W}^s \overline{P}^s = A^s \overline{A} = P^s \overline{W}^s \overline{P}$.

Note that if *B* is con-s-normal, and if B=PU where $P=P^s$ and *U* is s-unitary, it does not necessarily follow that $B=\overline{U}P$; but it possible to find on P_1 and U_1 such that $B=P_1U_1=\overline{U_1}P_1$ holds. This may be seen as follows. If B=PU is con-s-normal, Let *V* be s-unitary such that $VPV^s = D$ is secondary diagonal, real and non negative, so that $VBV^s = VPV^s \overline{V}UV^s = DW$ is con-s-normal from which $DW\overline{W}^s \overline{D} = W^s D^s \overline{D}\overline{W}$ or since *D* is real, $WD^2 = D^2W$ and WD = DW since *D* is non-negative. Then $B = (\overline{V}^s DV)(V^s W\overline{V}) = PU = (\overline{V}^s WV)(\overline{V}^s D\overline{V})$ which is not necessarily equal to $\overline{U}P = (\overline{V}^s \overline{W}V)(\overline{V}^s D\overline{V})$ However, if $D = r_1I_1 \oplus r_2I_2 \oplus ... \oplus r_kI_k$, $r_i > r_j$ for i > j, then $W = W_1 \oplus W_2 \oplus ... \oplus W_k$. Since each W_i is s-unitary, it is con-s-normal and there exist s-unitary X_i so that $X_iW_iX_i^s = F_i$ is in the real s-normal form of **Theorem 1** if $X = X_1 \oplus X_2 \oplus ... \oplus X_k$, then $XVBV^s X^s = XDWX^s = DXWX^s = DF = FD$ where $F = F_1 \oplus F_2 \oplus ... \oplus F_k$. So

$$B = \left(\overline{V}^{s} \,\overline{X}^{s} \, D\overline{X} \, \overline{V}\right) \left(V^{s} X^{s} F \,\overline{X} \, \overline{V}\right)$$
$$= \left(\overline{V}^{s} \,\overline{X}^{s} F X V\right) \left(\overline{V}^{s} \,\overline{X}^{s} D \,\overline{X} \, \overline{V}\right) = P_{1} U_{1} = \overline{U}_{1}^{s} P_{1} and$$
$$P_{1} = \overline{V}^{s} \,\overline{X}^{s} D \,\overline{X} \, \overline{V} \neq \overline{V}^{s} D \,\overline{V} = P and$$
$$U_{1} = V^{s} \, X^{s} F \,\overline{X} \, \overline{V} \neq V^{s} W \,\overline{V} = U.$$

3. Products of s-Normal Matrices

If A, B and AB are s-normal matrices then BA is s-normal; a necessary and sufficient condition that the product AB, of two s-normal matrices A and B be s-normal is that each commute with the s-hermitian polar matrix of the other. First a generalization of this theorem is obtained here and then an analog for the con-s-normal case is developed.

Theorem 2

Let A be an s-normal matrix. Then AB and BA are s-normal iff $(\overline{A}^{s}A)B = B(A\overline{A}^{s})$ and $\left(\overline{B}^{s}B\right)A = A\left(B\overline{B}^{s}\right)$. (In a sense, the latter condition might be described as stating that each matrix is s-normal relative to the other).

Proof

If AB and BA are s-normal, Let U be a unitary matrix such that $UA\overline{U}^s = D$ is secondary diagonal. $d_i \overline{d}_i \ge d_j \overline{d}_j \ge 0$ for i < j, and let $UB\overline{U}^s = B_1 = (b_{ij})$. From $AB\overline{B}^{s}\overline{A}^{s} = \overline{B}^{s}\overline{A}^{s}AB$ it follows that $DB_{1}\overline{B}_{1}^{s}\overline{D} = \overline{B}^{s}\overline{D}DB_{1}$; by equating secondary diagonal elements it follows that $\sum_{i=1}^{n} d_i \overline{d}_i b_{ij} \overline{b}_{ij} = \sum_{i=1}^{n} d_j \overline{d}_j b_{ji} \overline{b}_{ji}$ for i=1,2...n. Similarly from $BA\overline{A}^{S}\overline{B}^{S} = \overline{A}^{S}\overline{B}^{S}BA$ follows $B_{1}D\overline{D}\overline{B}_{1}^{S} = \overline{D}\overline{B}_{1}^{S}B_{1}D$ and $\sum_{i=1}^{n}d_{j}\overline{d}_{j}b_{ij}\overline{b}_{ij} = \sum_{i=1}^{n}\overline{d}_{i}d_{i}\overline{b}_{ji}b_{ji}$. Let i=1 in that $\sum_{i=1}^{n} d_1 \overline{d}_1 b_{1j} \overline{b}_{1j} = \sum_{i=1}^{n} d_j \overline{d}_j b_{j1} \overline{b}_{j1}$ and So each of these equations $\sum_{i=1}^{n} d_{j} \overline{d}_{j} b_{1j} \overline{b}_{1j} = \sum_{i=1}^{n} \overline{d}_{1} d_{1} \overline{b}_{j1} b_{j1} \quad \text{from which follows}$ $\sum_{j=1}^{n} \left(d_1 \overline{d}_1 - d_j \overline{d}_j \right) b_{1j} \overline{b}_{1j} = \sum_{j=1}^{n} \left(d_j \overline{d}_j - d_1 \overline{d}_1 \right) d_{j1} \overline{b}_{j1}$ $\sum_{i=1}^{n} \left(d_1 \overline{d}_1 - d_j \overline{d}_j \right) \left(b_{1j} \overline{b_{1j}} + b_{j1} \overline{b_{j1}} \right) = 0.$

so that

Let $d_1\overline{d_1} = d_2\overline{d_2} = ... = d_l\overline{d_l} > d_{l+1}d_{l+1}$, then $b_{1j}\overline{b_{1j}} + b_{j1}\overline{b_{j1}} = 0$ for j = l+1, l+2, ...n since $d_1\overline{d_1} - d_j\overline{d_j}$ is zero or positive and is latter for j > l. So $b_{1j} = 0$ and $b_{j1} = 0$ for j = l+1, l+2, ...n. For i=2,, l in turn it follows that $b_{ij}=0$ and $b_{ji}=0$. For i=1,2,...,l and for j=l+1, l+2, ...n. Let $UA\overline{U}^s = D = r_1D_1 \oplus r_2D_2 \oplus ... \oplus r_sD_s$ where the r_i are real $r_i > r_j$ for i < j and the D_i are s-unitary. Then by repeating the above process it follows that $UB\overline{U}^s = B_1 = C_1 \oplus C_2 \oplus ... \oplus C_s$ is conformable to D.

It follows from the given conditions that $r_i D_i C_i \overline{C}_i^S \overline{D_i} r_i = \overline{C}_i^S (r_i \overline{D}_i) (D_i r_i) C_i$ and $C_i r_i D_i \overline{D_i} r_i \overline{C}_i^S = r_i \overline{D_i} \overline{C}_i^S C_i D_i r_i$ or that $D_i C_i \overline{C}_i^S = \overline{C}_i^S C_i D_i$ and $D_i C_i \overline{C}_i^S = \overline{C}_i^S C_i D_i$ if $r_i > 0$. If $r_s = 0$, D_s is arbitrary insofar as D is concerned and so may be chosen so that $D_s C_s \overline{C}_s^S = \overline{C}_s^S C_s D_s$ in which case D_s may not be secondary diagonal. But whether or not this is done, it follows that $DB_1\overline{B}_1^S = \overline{B}_1^S B_1 D$ and that $B_1 D\overline{D}_s^S = \overline{D}_s^S DB_1$ so that $A(B\overline{B}^S) = (\overline{B}^S B)A$ and $B(A\overline{A}^S) = (\overline{A}^S A)B$. The converse is immediate. It may be noted that if the roots of A are all distinct in absolute value, B must be s-normal. The following further clarifies the situation.

Theorem 3

Let A = LW = WL be the polar form of the s-normal matrix A. Then AB and BA are s-normal iff $B = N\overline{W}^{s}$ where N is s-normal and LN = NL.

Proof

In the proof of the above theorem, let $C_i = H_i U_i = U_i K_i$ be polar forms of the C_i . Then $\overline{U}_i^s H_i U_i = K_i$ so that $\overline{U}_i^s C_i \overline{C}_i^s U_i = \overline{C}_i^s C_i \text{ or } \overline{U}_i^s C_i \overline{C}_i^s = \overline{C}_i^s C_i \overline{U}_i^s$. Also, from the above $D_i C_i \overline{C}_i^s = \overline{C}_i^s C_i D_i$.

Let $R_i = \overline{D}_i \overline{U}_i^s$ then $R_i C_i \overline{C}_i^s = \overline{D}_i \overline{U}_i^s C_i \overline{C}_i^s = \overline{D}_i \overline{C}_i^s C_i \overline{U}_i^s = C_i \overline{C}_i^s \overline{D}_i \overline{U}_i^s = C_i \overline{C}_i^s R_i$ where R_i is s-unitary (if $r_s = 0$, D_s may be chosen $= \overline{U}_s^s$ as described above). So $R_i H_i^2 = H_i^2 R_i$ and since H_i has positive or zero roots, $R_i H_i = H_i R_i$ and so $H_i \overline{R}_i^s = \overline{R}_i^s H_i$. Then $A = \overline{U}^s DU = \overline{U}^s D_r U \overline{U}^s D_U U = LW = WL$ and

$$B = \overline{U}^{s} B_{1}U = \overline{U}^{s} (C_{1} \oplus C_{2} \oplus ... \oplus C_{s})U$$

$$= \overline{U}^{s} (H_{1}U_{1} \oplus H_{2}U_{2} \oplus ... \oplus H_{s}C_{s})U$$

$$= \overline{U}^{s} (H_{1}\overline{R}_{1}^{s}\overline{D_{1}} \oplus H_{2}\overline{R}_{2}^{s}\overline{D_{2}} \oplus ... \oplus H_{s}\overline{R}_{s}^{s}\overline{D_{s}})U$$

$$= NWC^{-s}$$

where $N = \overline{U}^{s} \left(H_{1} \overline{R}_{1}^{s} \oplus H_{2} \overline{R}_{2}^{s} \oplus ... \oplus H_{s} \overline{R}_{s}^{s} \right) U$ (which is s-normal since the s-hermitian H_{i} and s-unitary \overline{R}_{i}^{s} commute) and $\overline{W}^{s} = \overline{U}^{s} \left(\overline{D}_{1} \oplus \overline{D}_{2} \oplus ... \oplus \overline{D}_{s} \right) U$. It is evident that LN = NL.

Conversely, if A = LW = WL and $B = N\overline{W}^{S}$ as described, then $AB = WLN\overline{W}^{S}$ which is obviously s-normal as is $BA = N\overline{W}^{S}WL = NL$.

It is easy seen that $B = N\overline{W}^{s}$ is s-normal iff $N\overline{W}^{s} = \overline{W}^{s}N$. if $B = N\overline{W}^{s} = (HR)\overline{W}^{s}$ is con-s-normal; then $B = H(R\overline{W}^{s}) = (R\overline{W}^{s})H^{s} = RH\overline{W}^{s}$ (form property (**a**)) so $\overline{W}^{s}H^{s} = H\overline{W}^{s}$ or $WH = H^{s}W$ and $W(B\overline{B}^{s}) = (\overline{B}^{s}B)W$.

If *A* is s-normal and *B* is con-s-normal then *AB* is s-normal, it does not necessarily follow that *BA* is s-normal though it can occur. For example, if $B = HU = UH^s$ is con-s-normal and if $A = \overline{U}^s$ then $AB = \overline{U}^s UH^s$ and $BA = HU\overline{U}^s = H$ are both s-normal. But the following is an example in which *AB* is s-normal but not *BA*. Let $B = HU = UH^s$ be con-s-normal but not s-normal (i.e, *H* is not real by property (**b**)) and let *H* be non-singular. Let $A = H^{-1}$ is s-hermitian (So s-normal) and not con-s-normal (since H^{-1} is not real). Then $AB = H^{-1}HU = U$ is s-normal if *BA* were also s-normal, then by the above theorem $(\overline{A}^s A)B = B(A\overline{A}^s)$ and $(\overline{B}^s B)A = A(B\overline{B}^s)$. But $(\overline{B}^s B)A = (H^s)^2 H^{-1}$ and $A(B\overline{B}^s) = (\overline{H}^{-1})(H^2)$ and if these were equal, $(H^s)^2 = H^2$ would follow which means that $H^2 = (H^s)^2 = (\overline{H}^s)^2$ so that H^2 real. But this is not possible for if $H = VD\overline{V}^s$ where *D* is secondary diagonal with positive real elements (since *H* is non singular), then $H^2 = VD^2\overline{V}^s = \overline{V}DV^s$ if H^2 is real so that $V^sVD^2 = D^2V^sV$ so $V^sVD = DV^sV$ so $VD\overline{V}^s = \overline{V}DV^s = H$ is real which contradicts the above assumption.

Theorem 4

If A and B are con-s-normal and if AB is s-normal then BA is s-normal.

Proof

Let *U* be a s-unitary matrix such that $UAU^s = F$ is the s-normal from described in **Theorem 1** and where $F\overline{F}^s = FF^s = r_1^2 I_1 \oplus r_2^2 I_2 \oplus ... \oplus r_k^2 I_k$ which is real s-diagonal with $r_1^2 > r_2^2 > ... > r_k^2 \ge 0$ There r_i^2 may be either the squares of secondary diagonal elements of F or they may arise when matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ are squared. Assume that any of the latter whose r_i^2 are equal are arranged first in a given block followed by any secondary diagonal elements whose square is the same r_i^2 .

Let $\overline{UBU}^{s} = B_{1}$ which is con-s-normal and then $UAU^{s}\overline{UBU}^{s} = FB_{1}$ is s-normal Let V be the s-unitary matrix.

$$V = \begin{bmatrix} \sqrt{1/2} & i\sqrt{1/2} \\ i\sqrt{1/2} & \sqrt{1/2} \end{bmatrix}$$

Then the following matrix relation holds, independent of *a* and *b*:

$$V\begin{bmatrix}a&b\\-b&a\end{bmatrix}\overline{V}^{s} = \begin{bmatrix}a-bi&0\\0&a+bi\end{bmatrix}$$

Let $F = F_1 \oplus F_2 \oplus ... \oplus F_k$ where the direct sum is conformable to that of $F\overline{F}^s$ given above $(i.e, F_i\overline{F_i}^s = r_i^2 I_i)$ and consider $F_1 = G_1 \oplus G_2 \oplus ... \oplus G_i \oplus r_i I$ where each G_i is 2x2 as described above and I is an identity matrix of proper size. Let $W_1 = V \oplus V \oplus ... \oplus V \oplus I$ be conformable to F_i ; define W_i for each F_i in like manner and let $W = W_1 \oplus W_2 \oplus ... \oplus W_k$. If $r_k = 0, W_k = I$. Then $WF\overline{W}^s = D$ is complex secondary diagonal, where if d_i is the i^{th} secondary diagonal element $d_i\overline{d}_i \ge d_{i+1}\overline{d}_{i+1}$. Then $W(UAU^s)\overline{W}^s W(\overline{U}B\overline{U}^s)\overline{W}^s = (WF\overline{W}^s)(WB_1\overline{W}^s) = DB_2$ is s-normal for $B_2 = WB_1\overline{W}^s$ (or $B_1 = \overline{W}^s B_2 W$). Since B_1 is con-s-normal, $B_1\overline{B}_1^s = B_1^s\overline{B}_1$ so that $\overline{W}^s B_2W\overline{W}^s\overline{B}_2^sW = W^sB_2^s\overline{W}W^s\overline{B}_2W$ or that $B_2\overline{B}_2^sWW^s = WW^sB_2^s\overline{B}_2$. Now VV^s is a matrix of the form $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. So that WW^s is a direct sum of matrices of this form and one's.

Let $B_2 = (b_{ij})$ and consider $\overline{(WW^s)}^s B_2 \overline{B}_2^s (WW^s) = B_2^s \overline{B}_2$. Let $B_2 \overline{B}_2^s = (c_{ij})$, $B_2^s \overline{B}_2 = (f_{ij})$. c_{ij} and f_{ij} are identifiable with the b_{ij} , both matrices being s-hermitian. Consider two cases:

a) If $d_1\overline{d}_1 = d_j\overline{d}_j$ for all j (where d_j is the j^{th} secondary diagonal element of D), then $D=KD_u$ where D_u is s-unitary diagonal. Since $WFB_1\overline{W}^s = DB_2 = KD_uB_2 = D_u(KB_2)$ is s-normal, then $\overline{D}_u(D_uB_2K)D_u = B_2D = WB_1F\overline{W}^s$ is s-normal, as is $B_1F = \overline{U}B\overline{U}^sUAU^s$ so BA is s-normal. b) If $d_1 \overline{d}_1 \neq d_j \overline{d}_j$ for some j, let $d_1 \overline{d}_1 = d_2 \overline{d}_2 \dots = d_l \overline{d}_l$ for $1 \le l < n$ (so that $d_l \overline{d}_l > d_{l+1} \overline{d}_{l+1}$).

Suppose $F_1 = G_1 \oplus G_2 \oplus r_1 I_1$ where I_1 is the 2x2 matrix (The general case will be seen to follow from this example). From $(\overline{WW^s})^s B_2 \overline{B}_2^s (ww^s) = B_2^s \overline{B}_2$ and the fact that $W_1 = V \oplus V \oplus I_1$ it follows that $C_{11} = f_{22}, C_{22} = f_{11}, C_{33} = f_{44}, C_{44} = f_{33}, C_{55} = f_{55}, C_{66} = f_{66}$ (and $\overline{C}_{12} = f_{12}.\overline{C}_{34} = f_{34}$ etc) there equalities supply the following relation (where the summation is over i = 1 to n).

$$\begin{split} C_{11} &= \sum b_{1i} \overline{b}_{1i} = \sum b_{i2} \overline{b}_{i2} = f_{22}; \\ C_{22} &= \sum b_{2i} \overline{b}_{i2} = \sum b_{i1} \overline{b}_{i1} = f_{11}; \\ C_{33} &= \sum b_{3i} \overline{b}_{3i} = \sum b_{i4} \overline{b}_{i4} = f_{44}; \\ C_{44} &= \sum b_{4i} \overline{b}_{4i} = \sum b_{i3} \overline{b}_{i3} = f_{33}; \\ C_{55} &= \sum b_{5i} \overline{b}_{5i} = \sum b_{i5} \overline{b}_{i5} = f_{55}; \\ C_{66} &= \sum b_{6i} \overline{b}_{6i} = \sum b_{i6} \overline{b}_{i6} = f_{66}; \end{split}$$

 DB_2 is s-normal so that the following relations also hold:

$$d_{1}d_{1}, \sum b_{1i}b_{1i} = \sum d_{i}d_{i}b_{i1}b_{i1};$$

$$d_{1}\overline{d}_{2}, \sum b_{2i}\overline{b}_{2i} = \sum d_{i}\overline{d}_{i}b_{i2}\overline{b}_{i2};$$

$$d_{3}\overline{d}_{3}, \sum b_{3i}\overline{b}_{3i} = \sum d_{i}\overline{d}_{i}b_{i3}\overline{b}_{i3};$$

$$d_{4}\overline{d}_{4}, \sum b_{4i}\overline{b}_{4i} = \sum d_{i}\overline{d}_{i}b_{i4}\overline{b}_{i4};$$

$$d_{5}\overline{d}_{5}, \sum b_{5i}\overline{b}_{5i} = \sum d_{i}\overline{d}_{i}b_{i5}\overline{b}_{i5};$$

$$d_{6}\overline{d}_{6}, \sum b_{6i}\overline{b}_{6i} = \sum d_{i}\overline{d}_{i}b_{i6}\overline{b}_{i6};$$

Since $d_1\overline{d}_1 = d_2\overline{d}_2$ on combining the first 2 relation in each of these sets, $d_1\overline{d}_1\left(\sum b_{1i}\overline{b_{1i}} + \sum b_{2i}\overline{b_{2i}}\right) = d_1\overline{d}_1\left(\sum b_{i1}\overline{b}_{i1} + \sum b_{i2}\overline{b}_{i2}\right) = \sum d_i\overline{d}_i\left(b_{i1}\overline{b}_{i1} + b_{i2}\overline{b}_{i2}\right)$ so that $\sum \left(d_1\overline{d}_1 - d_i\overline{d}_i\right) \left(b_{i1}\overline{b}_{i1} + b_{i2}\overline{b}_{i2}\right) = 0$ $d_1\overline{d}_1 = d_j\overline{d}_j$ for j=1,2...6 but for j beyond 6, $d_1\overline{d}_1 = d_j\overline{d}_j > 0$ or $b_{i1}\overline{b}_{i1} + b_{i2}\overline{b}_{i2} = 0$ or $b_{i1} = 0$ and $b_{i2} = 0$ for i=7,8...n similarly, $b_{i3}=0$ and $b_{i4}=0$ for i>6 the third relation in each set give $b_{i5}=0$ and $b_{i6}=0$ for i>6.

On adding all 6 relation in the first set,

$$\sum_{i,j=1}^{6} b_{ij} \overline{b}_{ij} + \sum_{i=1}^{6} \sum_{j=7}^{n} b_{ij} \overline{b}_{ij} = \sum_{i,j=1}^{6} b_{ij} \overline{b}_{ij} + \sum_{i=7}^{n} \sum_{j=1}^{6} b_{ij} \overline{b}_{ij}$$

and on canceling the first summations on each side,

$$\sum_{i=1}^{6} \sum_{j=7}^{n} b_{ij} \overline{b}_{ij} = \sum_{i=7}^{n} \sum_{j=1}^{6} b_{ij} \overline{b}_{ij}.$$

But the right side is zero from the above, so the left side is 0 and so $b_{ij}=0$ for i=1,2...6 and j>6.

From this it is evident that this procedure may be repeated and that if $D=r_1D_1 \oplus r_2D_2 \oplus ... \oplus r_kD_k$. Where the D_i are s-unitary and the r_i non-negative real, as above, then $B_2=C_1 \oplus C_2 \oplus ... \oplus C_k$ Conformable to D then $r_iD_iC_i$ is s-normal so $\overline{D}_i^s(D_iC_ir_i)D_i = C_ir_iD_i$ is s-normal so B_2D is s-normal. So B_1F and so $\overline{U}B\overline{U}^sUAU^s$ and BA.

Theorem 5

If A and B are con-s-normal then AB is s-normal iff $\overline{A}^{s}AB = BA\overline{A}^{s}$ and $AB\overline{B}^{s} = \overline{B}^{s}BA$ (ie, iff each is s-normal relative to the other).

Proof

If AB is s-normal, from the above $\overline{D}^{s}DB_{2} = B_{2}D\overline{D}^{s}$ so that $\overline{F}^{s}FB_{1} = B_{1}F\overline{F}^{s}$ or $\overline{A}^{s}AB = BA\overline{A}^{s}$.

Similarly DB_2 is s-normal, $DB_2\overline{B_2}^s\overline{D} = \overline{B}_2^s\overline{D}DB_2$ so $DB_2\overline{B}_2^s = \overline{B}_2^sB_2D$ or $FB_1\overline{B}_1^s = \overline{B}_1^sB_1F$ or $AB\overline{B}^s = \overline{B}^sBA$. the converse is directly verifiable.

Theorem 6

Let *A* and *B* be con-s-normal, if *AB* is s-normal, then $A = LW = WL^S$ (with *L* s-hermitian and *W* s-unitary) and $B = N\overline{W}^S$. Where *N* is s-normal and $L^SN = NL^S$; and conversely.

Proof

As above, let $UAU^{s} = F = \overline{W}^{s}DW = \overline{w}^{s}D_{r}w\overline{w}^{s}D_{u}w$ where D_{r} and D_{u} are the s-hermitian and s-unitary polar matrices of D) and $\overline{U}B\overline{U}^{s} = B_{1} = \overline{W}^{s}B_{2}W = \overline{W}^{s}(C_{1} \oplus ... \oplus C_{k})W$. As in the proof of **Theorem 3** if follows that for all i, $D_{i}C_{i}\overline{C}_{i}^{s} = \overline{C}_{i}^{s}C_{i}D_{i}$ and $\overline{U}_{i}^{s}C_{i}\overline{C}_{i}^{s} = \overline{C}_{i}^{s}C_{i}\overline{U}_{i}^{s}$ with U_{i} as defined there, so that when $R_{i} = \overline{D}_{i}\overline{U}_{i}^{s}$ (where D, here, $=r_{1}D_{1} \oplus r_{2}D_{2} \oplus ... \oplus r_{k}D_{k}$ as earlier) then $C_{i} = H_{i}U_{i} = H_{i}\overline{R}_{i}^{s}\overline{D}_{i}$ with $H_{i}R_{i} = R_{i}H_{i}$.

Then since, $WD_r = D_r W$, $UAU^s = \overline{W}^s D_r w \overline{W}^s D_u w = D_r \left(\overline{W}^s D_u w\right)$ and $A = \left(\overline{U}^s D_r U\right) \left(\overline{U}^s \overline{w}^s D_u w \overline{U}\right) = LX$ $= \left(\overline{U}^s \overline{w}^s D_u w \overline{U}\right) \left(U^s D_r \overline{U}\right) = XL^s$

with $L = \overline{U}^{S} D_{r} U$ s-hermitian and $X = \overline{U}^{S} \overline{w}^{S} D_{u} w \overline{U}$ s-unitary.

Also, $\overline{U}B\overline{U}^{S} = \overline{w}^{S} \left(H_{1}\overline{R}_{1}^{S}\overline{D}_{1} \oplus H_{2}\overline{R}_{2}^{S}\overline{D}_{2} \oplus ... \oplus H_{k}\overline{R}_{k}^{S}\overline{D}_{k} \right) w = N_{1}Y$

Where $N_1 = \overline{w}^S \left(H_1 \overline{R}_1^S \oplus H_2 \overline{R}_2^S \oplus ... \oplus H_k \overline{R}_k^S \right) w$ is s-normal and $Y = \overline{w}^S \left(\overline{D}_1 \oplus \overline{D}_2 \oplus ... \oplus \overline{D}_k \right) w$ is s-unitary; then $B = U^S N_1 Y U = \left(U^S N_1 \overline{U} \right) \left(U^S Y U \right) = N \overline{X}^S$.

Where $N = U^{S} N_{1} \overline{U}$ is s-normal and $\overline{X}^{S} = U^{S} Y U = U^{S} \overline{W}^{S} \overline{D_{u}} w U$. Also $L^{S} N = NL^{S} \operatorname{sin} ce D_{r} N_{1} = N_{1} \overline{D}_{r}, \overline{D}_{r} N_{1} = N_{1} \overline{D}_{r}$ so $(\overline{U} \overline{U} U^{S}) (\overline{U} N U^{S}) = (\overline{U} N U^{S}) (\overline{U} \overline{U} U^{S}) \operatorname{so} L^{S} N = NL^{S}$.

The converse is immediate.

4. Products of Con-s-Normal Matrices

It is possible if A is s-normal and B con-s-normal that AB is con-s-normal. For example, any con-s-normal matrix $C=HU=UH^S$ is such a product with A=H and B=U. Or if $C=HU=UH^S$ and A=H, then $AC=H^2U=HUH^S=U(H^S)^2$ is con-s-normal. The following theorems clarify this matter.

Theorem 7

If A is s-normal and B is con-s-normal then AB is con-s-normal iff $AB\overline{B}^{S} = B\overline{B}^{S}A$ and $\overline{B}A\overline{A}^{S} = A^{S}\overline{AB}(orB\overline{A}A^{S} = \overline{A}^{S}AB).$

(If one were to define N is s-normal with respect to M' to mean $N\overline{N}^{S}M = M\overline{N}^{S}N$ and Q is con-s-normal with respect to P to mean $PQ\overline{Q}^{S} = Q^{S}\overline{Q}P$ the above theorem would say that if A is s-normal and B is con-s-normal then AB is con-s-normal iff (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with respect to \overline{B}).

Proof

If the latter condition hold, then; $(AB)(\overline{AB})^{s} = AB\overline{B}^{s}\overline{A}^{s} = B\overline{B}^{s}A\overline{A}^{s}$ and $(AB)^{s}(\overline{AB}) = B^{s}A^{s}\overline{A} = B^{s}\overline{B}A\overline{A}^{s}$ which are equal.

Conversely, let AB be con-s-normal and let $UA\overline{U}^{S} = D = d_{1}I_{1} \oplus d_{2}I_{2} \oplus ... \oplus d_{k}I_{k}$ where $d_{i}\overline{d}_{i} > d_{j}\overline{d}_{j}$, i > j.

Let
$$UB^{s}U^{s} = B_{i} = (bij)$$
,
 $if (AB)(\overline{AB})^{s} = AB\overline{B}^{s}\overline{A}^{s} = AB^{s}\overline{B}\overline{A}^{s} = (AB)^{s}(\overline{AB})$
 $= B^{s}A^{s}\overline{A}\overline{B} = B^{s}\overline{A}A^{s}\overline{B}$,
then $(UA\overline{U}^{s})(UB^{s}U^{s}\overline{U}\overline{B}\overline{U}^{s})(U\overline{A}^{s}\overline{U}^{s}) = (UB^{s}U^{s})(\overline{U}\overline{A}U^{s}\overline{U}A^{s}U^{s})(\overline{U}\overline{B}\overline{U}^{s})$
So that $DB_{i}\overline{B}_{1}^{s}\overline{D}^{s} = B_{i}\overline{D}D\overline{B}_{1}^{s}$.
Equating secondary diagonal elements on each side of this relation, we get
 $\sum_{j=1}^{n} d_{i}\overline{d}_{i}b_{ij}\overline{b}_{ij} = \sum_{j=1}^{n} d_{j}\overline{d}_{j}b_{ij}\overline{b}_{ij}$, $i=1,2,...n$ or
 $\sum_{j=1}^{n} (d_{i}\overline{d}_{i} - d_{j}\overline{d}_{j})b_{ij}\overline{b}_{ij} = 0$.
Let $d_{1}\overline{d}_{1} = d_{2}\overline{d}_{2} = ...d_{i}\overline{d}_{i} > d_{i+1}\overline{d}_{i+1}$ then $b_{ij}=0$ for $i=1,2...l$ and $j=l+1,l+2...n$
since B_{l} is con-s-normal, $\sum_{j=1}^{n} b_{ij}\overline{b}_{ij} = \sum_{j=1}^{n} b_{ji}\overline{b}_{ji}$ for $i=1,2,...n$ on adding the first l of these
equation and canceling, $b_{ij} = 0$ for $i=l+1,l+2...n$ and $j=1,2,...,l$. In this manner if
 $D = r_{i}D_{1} \oplus r_{2}D_{2} \oplus ... \oplus r_{i}D_{i}$ with $r_{i} > r_{i+1}$ and D_{i} s-unitary, then $B_{i} = C_{1} \oplus C_{2} \oplus ... \oplus C_{i}$

D C_t $r_1 D_1$ $B_1 = C_1 \oplus C_2$ ry conformable to *D*.

if

Since
$$r_i D_i \overline{D}_i^s r_i \overline{C}_i^s = r_i^2 C_i^s = C_i^s r_i^2 = C_i^s r_i D_i \overline{D}_i^s r_i$$
, for all i , $D\overline{D}^s B_1^s = B_1^s D\overline{D}^s$ and so
 $\overline{U}^s D\overline{D}^s U\overline{U}^s B_1^s \overline{U} = \overline{U}^s B_1^s \overline{U} U^s D\overline{D}^s \overline{U}$ or $A\overline{A}^s B = BA^s \overline{A}$ or $\overline{A}^s AB = BA^s \overline{A}$ or $A^s \overline{AB} = \overline{B}A\overline{A}^s$.
Also, $D(B_1 \overline{B}_1^s \overline{D}^s) = B_1 \overline{D} D \overline{B}_1^s = \overline{D} D \overline{B}_1^s = D(\overline{D} B_1 \overline{B}_1^s)$ so that $C_i \overline{C}_i^s (r_i \overline{D}_i) = (r_i \overline{D}_i) C_i \overline{C}_i^s$

for i = 1, 2...t. (if $r_t = 0$, this is still true and D_t may be chosen to be identity matrix). Therefore $B_1\overline{B}_1^s \overline{D}^s = \overline{D}^s B_1\overline{B}_1^s$ and $UB^s U^s \overline{U} \overline{B} \overline{U}^s U\overline{A}^s \overline{U}^s = U\overline{A}^s \overline{U}^s UB^s U^s \overline{U}\overline{B}_1 \overline{U}^s$ so $B^{s}\overline{B}\overline{A}^{s} = \overline{A}^{s}B^{s}\overline{B}$ or $AB^{s}\overline{B} = B^{s}\overline{B}A$.

Corollary 1

Let A be s-normal, B con-s-normal; if AB is con-s-normal, then $B\overline{A}$ is con-s-normal, and conversely.

Proof

From the above, $UA\overline{U}^{s}UBU^{s} = DB_{1}^{s}$ is con-s-normal, and if $D = D_{r}D_{u}$, D_{r} real and D_{u} s-unitary, then since

$$\overline{D_u} = \overline{D_u}^s, \overline{D_u} (DB_1^s) \overline{D_u} = D_r B_1^s \overline{D_u} = B_1^s D_r \overline{D_u} = B_1^s \overline{D} \text{ is con-s-normal,}$$

as are $U B U^{s} \overline{U} \overline{A} U^{s}$ and $B \overline{A}$. Reversing the steps proves the converse.

If A is s-normal and B is con-s-normal, $B\overline{A}$ is con-s-normal iff AB is con-s-normal, iff $(B^s \overline{B})A = A(B\overline{B}^s)$ and $(A^s \overline{A})\overline{B} = \overline{B}(A\overline{A}^s)$. Therefore if A is s-normal B is con-s-normal BA is con-s-normal iff $(B^s \overline{B})\overline{A} = \overline{A}(B\overline{B}^s)$ and $(\overline{A}^s A)\overline{B} = \overline{B}(\overline{A}A^s)$ that is replace A by \overline{A} in the proceeding or $(\overline{B}^s B)A = A(\overline{B}B^s) = A(\overline{B}^s B)$ and $(\overline{A}^s A)\overline{B} = \overline{B}(\overline{A}A^s)$, thus exhibiting the fact that when AB is con-s-normal, BA is not necessarily so.

Theorem 8

If A=LW=WL is s-normal and $B = KV = VK^s$ is con-s-normal (where L and K are s-hermitian and W and V are s-unitary) then AB is con-s-normal iff LK = KL, $LV = VL^s$ and WK = KW.

Proof

If the three relations in the theorem hold, then AB = LWKV = LKWV, and $AB = WLKV = WKLV = WKVL^{S} = WVK^{S}L^{S} = WV(LK)^{S}$ is con-s-normal since LK is s-hermitian and WV is s-unitary.

Conversely, Let $A = \overline{U}^{s} DU = (\overline{U}^{s} D_{r}U)(\overline{U}^{s} D_{u}U) = LW$ and

$$B = \left(\overline{U}^{S} B_{1}^{S} \overline{U}\right) = \left(\overline{U}^{S} K_{1} U\right) \left(\overline{U}^{S} V_{1} \overline{U}\right) = KV = VK^{S}$$

where K_1 and V_1 are s-hermitian and s-unitary and direct sums conformable to B_1^S and D. A direct check shows that LK = KL and $LV = VL^S$, also $WK = \overline{U}^S D_u K_1 U = \overline{U}^S K_1 D_u U = KW$ since $D_u B_1 \overline{B}_1^S = B_1 \overline{B}_1^S D_u$ implies $D_u K_1 = K_1 D_u$.

A sufficient condition for the simultaneous reduction of A and B is given by the following:

Theorem 9

If A is s-normal, B is con-s-normal and $AB = BA^s$, then $WA\overline{W}^s = D$ and $WB^sW = F$, the s-normal form of **Theorem 1**, where W is an s-unitary matrix; also AB is con-s-normal.

Proof

Let $UA\overline{U}^s = D$ secondary diagonal and $UBU^s = B_2$ which is con-s-normal. Then $AB = BA^s$ implies $DB_2 = UA\overline{U}^s UBU^s = UBU^s \overline{U}A^s U^s = B_2 D^s = B_2 D.$

Let $D = C_1 I_1 \oplus C_2 I_2 \oplus \oplus C_K I_K$. Where the C_i are complex and $C_i \neq C_j$ for $i \neq j$ and $B_2 = C_1 \oplus C_2 \oplus \oplus C_K$ let V_i be s-unitary such that $V_i C_i V_i^s = F_i$ the real s-normal form of **Theorem 1**, and let $V = V_1 \oplus V_2 \oplus ... \oplus V_k$.

Then
$$VUA\overline{U}^{s}\overline{V}^{s} = D$$
, $VUBU^{s}V^{s} = F = a$ direct sum of the F_{i} .
Also, $AB = BA^{s}$ implies $B^{s}A^{s} = AB^{s}$ and so
 $AB\overline{B}^{s}\overline{A}^{s} = AB^{s}\overline{B}\overline{A}^{s} = B^{s}A^{s}\overline{A}\overline{B} = (AB)^{s}(\overline{AB}).$

It is also possible for the product of two s-normal matrices A and B to be con-s-normal if $Q = HU = UH^s$ is con-s-normal and if A = U and B = H this is so or if $KV = VK^s$ is con-s-normal and if A=UK=KU is s-normal with K s-hermitian and V and U s-unitary, for $B = V, AB = (UK)V = K(UV) = (UV)K^s$ con-s-normal. But if in the first example, U^2H is not s-normal then HU is not con-s-normal so that BA is not necessarily con-s-normal though AB is. When A alone is s-normal an analog of **Theorem 2** can be obtained which states the following: if A is s-normal, then AB and AB^s are con-s-normal iff $AB\overline{B}^s = B^s\overline{B}A, B\overline{B}^sA = AB^s\overline{B}$ and $\overline{B}A\overline{A}^s = A^s\overline{AB}$. (The proof is not included here because of its similarity to that above) when B is con-s-normal, two of these conditions merge into one in **Theorem 7**.

It is possible for the product of two con-s-normal matrices to be con-s-normal but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows two non-real complex commutative matrices $P = P^s$ and $Q = Q^s$ can form a con-s-normal (and non-real s-symmetric) matrix PQ which need not be s-normal. Then two s-symmetric matrices $X = \begin{bmatrix} -i & -i \\ i & -i \end{bmatrix}$ $Y = \begin{bmatrix} 2i & 0 \\ 0 & 2i \end{bmatrix}$ are such that XY = Z is real, s-normal and con-s-normal (s-symmetric).

Finally if U and V are two complex s-unitary matrices of the same order, they can be chosen so UV is non-real that is complex, s-normal and con-s-normal. If $A = P \oplus X \oplus U$ and $B = Q \oplus Y \oplus V$ $AB = PQ \oplus XY \oplus UV$ where A and B are con-s-normal as in AB (s-symmetric). A simple inspection of these matrices shows that relations on the order of $(B^S \overline{B})A = A(B\overline{B}^S) = (B\overline{B}^S)A$ and $(A^S \overline{A})\overline{B} = (A\overline{A}^S)\overline{B} = \overline{B}(A\overline{A}^S)$ do not necessarily hold; these are sufficient, however, to guarantee that AB is con-s-normal (as direct verification from the definition).

References

- [1] Bellman, R., "Introduction to Matrix Analysis." McGraw-Hill, New York, 1960.
- [2] Krishnamoorthy, S. and Raja, R., "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol.5 (II), (2011), 131-139.
- [3] Stander, J. and Wiegmann, N., "Canonical Forms for Certain Matrices under Unitary Congruence." *Can. J. Math.*, **12** (1960), 427-445.
- [4] Wiegmann, N., "Normal Products of Matrices." *Duke Math. Journal*, 15 (1948), 633-638.