PRODUCTS OF CONJUGATE SECONDARY NORMAL MATRICES

Dr.B.K.N.Muthugobal *, R.Surendar **, R.Raja***
* Guest Lecturer in Mathematics, Bharathidasan University Constituent College, Nannilam. **Guest Lecturer in Mathematics, Govt. Arts College (Autonomous), Kumbakonam. ***P.G. Assistant in Mathematics, Govt. Girls Hr. Sec. School, Papanasam. Tamil Nadu, India.
Email: bkn.math@gmail.com

Abstract

: In this paper, the properties of the products of conjugate secondary normal (con-s-normal) matrices are developed, their relation, in a sense, to s-normal matrices is considered and further results concerning s-normal products are obtained.

AMS classification: 15A21, 15A09, 15457 Keywords: Conjugate secondary transpose, Secondary normal, Secondary orthogonal, Secondary unitary, conjugate normal and con- s-normal.

\section*{1. Introduction}

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. For $A \in C_{n \times n}$, let A^{T}, \bar{A}, A^{*}, A^{s}, A^{θ} and A^{-1} denote the transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate secondary transpose of A satisfies the following properties such as $\left(A^{\theta}\right)^{\theta}=A,(A+B)^{\theta}=A^{\theta}+B^{\theta},(A B)^{\theta}=B^{\theta} A^{\theta}$. etc

Definition 1

A matrix $A \in C_{n \times n}$ is said to be normal if $A A^{*}=A^{*} A$.

Definition 2

A Matrix $A \in C_{n \times n}$ is said to be conjugate normal (con-normal) if $A A^{*}=\overline{A^{*} A}$.

Definition 3

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $A A^{\theta}=A^{\theta} A$.

Definition 4

A matrix $A \in C_{n \times n}$ is said to be unitary if $A A^{*}=A^{*} A=I$.

Definition 5

A matrix $A \in C_{n \times n}$ is said to be s-unitary if $A A^{\theta}=A^{\theta} A=I$.

Definition 6 [2]

A matrix $A \in C_{n \times n}$ is said to be a conjugate secondary normal matrix (con-s-normal) if $A A^{\theta}=\overline{A^{\theta} A}$ where $A^{\theta}=\bar{A}^{S}$.

2. Properties of Con-s-Normal Matrices

Theorem 1

A matrix A is con-s-normal iff there exists an s-unitary matrix U such that $U A U^{S}$ is a direct sum of non-negative real numbers and of 2 x 2 matrices of the form: $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where a and b are non negative real numbers.

Proof

Let A be con-s-normal where $A=P+Q$ where $P=P^{S}$ and $Q=-Q^{S}$. Then $A \bar{A}^{s}=A^{s} \bar{A} \operatorname{gives}(P+Q)\left(\bar{P}^{s}+\bar{Q}^{s}\right)=\left(P^{s}+Q^{s}\right)(\bar{P}+\bar{Q})$ or $(P+Q)(\bar{P}+\bar{Q})=(P-Q)(\bar{P}+\bar{Q})$ and so: $P \bar{P}+Q \bar{P}-P \bar{Q}-Q \bar{Q}=P \bar{P}-Q \bar{P}+P \bar{Q}-Q \bar{Q}$ or $Q \bar{P}-P \bar{Q}$. There exists a s-unitary U such that $U S U^{S}=D$ is a secondary diagonal matrix with real, non-negative elements. Therefore $U Q U^{s} \bar{U} \bar{P} \bar{U}^{s}=U P U^{s} \bar{U} \bar{Q} \bar{U}^{S}$ or $W D=D \bar{W}$ where $W=-W^{S}$. Let U be chosen so that D is such that $d_{i} \geq d_{j} \geq 0$ for $i<j$ where d_{i} is the $i^{\text {th }}$ secondary diagonal element of D. $W=\left(t_{i j}\right)$, where $t_{j i}=-t_{i j}$ then $t_{i j} d_{j}=d_{i} \bar{t}_{i j}$, for $j>i$, and 3 possibilities may occur : if $d_{j}=d_{i} \neq 0$, then $t_{i j}$ is real; if $d_{j}=d_{i}=0, t_{i j}$ is arbitrary (through $W=-W^{S}$ still holds); and if $d_{j} \neq d_{i}$, then $t_{i j}=0$ for if $t_{i j}=a+i b$ then $(a+i b) d_{j}=d_{i}(a-i b)$ and $a\left(d_{j}-d_{i}\right)=0$ implies $a=0$ and $b\left(d_{i}+d_{j}\right)=0$ implies $d_{i}=-d_{j}$ (which is not possible since the d_{i} are real and non-negative and $d_{j} \neq d_{i}$) or $b=0$ so $t_{i j}=0$. So if $U P U^{S}=d_{1} I_{1} \oplus d_{2} I_{2} \oplus \ldots \oplus d_{k} I_{k}$ where \oplus denotes direct sum, then $U Q U^{S}=T_{1} \oplus T_{2} \oplus \ldots \oplus T_{k}$ where $Q_{i}=-Q_{i}^{S}$ is real and $Q_{K}=-Q_{K}^{S}$ is complex iff $d_{k}=0$. For each real Q_{i} there exists a real-s-orthogonal matrix V_{i} so that $V_{i} T_{i} V_{i}^{S}$ is direct sum of zero matrices and matrices of the form $\left[\begin{array}{rr}0 & b \\ -b & 0\end{array}\right]$ where b is real [1]. If $Q_{K}=-Q_{K}^{S}$ is complex, there exists a complex s-unitary matrix V_{k} such that $V_{k} Q_{k} V_{k} Q$ is a direct sum of matrices of the form [3] so that if $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$ then $V U P U^{S} V^{S}=D$ and $V U Q^{s} U^{s}=F$ the direct sum. Therefore $V U A U^{s} V^{s}=D+F$ this is the desired form.

If A and B are two con-s-normal matrices such that $A \bar{B}=B \bar{A}$ then A and B can be simultaneously brought into the above secondary normal form under the same U (with a generalization to a finite number) but not conversely; if A is con-s-normal, $A \bar{A}$ is s-normal in the usual sense, but not conversely; and if A is con-s-normal and $A \bar{A}$ is real, there is a real secondary orthogonal matrix which gives the above form. Among properties of con-s-normal matrices not obtained but of subsequent use are the following:
(a) A is con-s-normal iff $A=H U=U H^{S}$ where H is s-hermitian and U is s-unitary.

For if $A=H U$ is a polar form of A, then $\bar{U}^{S} H U=K$ is such that $A=H U=U K$ and if $A \bar{A}^{S}=A^{S} A$, then $H^{2}=\left(K^{S}\right)^{2}$ and since this is an s-hermitian matrix with non-negative roots, $H=K^{S}$ and $A=H U=U H^{S}$. The converse is immediate. This same result may be seen as follows. If $U A U^{S}=F$ is the s-normal form in Theorem $1, F=D_{r} V=V D_{r}$ where D_{r} is real secondary diagonal and V is a direct sum of 1 's block of the form $\left(a^{2}+b^{2}\right)^{-1 / 2}\left[\begin{array}{ll}a & b \\ -b & a\end{array}\right]$ which are s-unitary. Therefore $A=\bar{U}^{s} D_{r} U \bar{U}^{s} V \bar{U}=\bar{U}^{s} V \bar{U} U^{s} D_{r} \bar{U}$ which exhibits the polar form in another guise.
(b) A is both s-normal and con-s-normal iff $A=H U=U H=U H^{S}$ so $H=H^{S}=\bar{H}^{S}$ so that H is real.
(c) If $A=H U=U H^{S}$ is con-s-normal, then $U H$ is con-s-normal iff $H U^{2}=U^{2} H$, that is $H U^{2}$ is s-normal. For if $U H$ is con-s-normal, $U H=H^{S} U$ so that $H U^{2}=U H^{S} U=U^{2} H$; and if $H U^{2}=U^{2} H$, then $H U U=U H^{S} U=U U H$ or $H^{S} U=U H$.
(d) A matrix A is con-s-normal, iff A can be written $A=P W=\bar{W} P$ where $P=P^{S}$ and W is s-unitary. If A is con-s-normal, form the above $A=\bar{U}^{S} F \bar{U}=\bar{U}^{S} D_{r} \bar{U} U^{S} V \bar{U}=P W=\bar{U}^{S} V U \bar{U}^{S} D_{r} \bar{U}=\bar{W} P \quad$ where $\quad P=\bar{U}^{S} D_{r} \bar{U}$ s-symmetric and $W=U^{s} V \bar{U}$ is s-unitary. Conversely, if $A=P W=\bar{W} P, A \bar{A}^{S}=P W \bar{W}^{S} \bar{P}^{S}=A^{S} \bar{A}=P^{S} \bar{W}^{S} \bar{P}$.

Note that if B is con-s-normal, and if $B=P U$ where $P=P^{S}$ and U is s-unitary, it does not necessarily follow that $B=\bar{U} P$; but it possible to find on P_{1} and U_{1} such that $B=P_{1} U_{1}=\overline{U_{1}} P_{1}$ holds. This may be seen as follows. If $B=P U$ is con-s-normal, Let V be s-unitary such that $V P V^{S}=D$ is secondary diagonal, real and non negative, so that $V B V^{S}=V P V^{S} \bar{V} U V^{S}=D W$ is con-s-normal from which $D W \bar{W}^{S} \bar{D}=W^{S} D^{S} \bar{D} \bar{W}$ or since D is real, $W D^{2}=D^{2} W$ and $W D=D W \quad$ since D is non-negative. Then $B=\left(\bar{V}^{S} D V\right)\left(V^{S} W \bar{V}\right)=P U=\left(\bar{V}^{S} W V\right)\left(\bar{V}^{S} D \bar{V}\right)$ which is not necessarily equal to $\bar{U} P=\left(\bar{V}^{s} \bar{W} V\right)\left(\bar{V}^{s} D \bar{V}\right)$ However, if $\quad D=r_{1} I_{1} \oplus r_{2} I_{2} \oplus \ldots \oplus r_{k} I_{k}, \quad r_{i}>r_{j} \quad$ for $i>j$, then $W=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{K}$. Since each W_{i} is s-unitary, it is con-s-normal and there exist s-unitary X_{i} so that $X_{i} W_{i} X_{i}^{S}=F_{i}$ is in the real s-normal form of Theorem 1 if $X=X_{1} \oplus X_{2} \oplus \ldots \oplus X_{k}$, then $X V B V^{S} X^{S}=X D W X^{s}=D X W X^{s}=D F=F D$ where $F=F_{1} \oplus F_{2} \oplus \ldots \oplus F_{k}$.

So

$$
\begin{aligned}
B & =\left(\bar{V}^{s} \bar{X}^{s} D \bar{X} \bar{V}\right)\left(V^{s} X^{s} F \bar{X} \bar{V}\right) \\
& =\left(\bar{V}^{s} \bar{X}^{s} F X V\right)\left(\bar{V}^{s} \bar{X}^{s} D \bar{X} \bar{V}\right)=P_{1} U_{1}=\bar{U}_{1}^{s} P_{1} \text { and } \\
P_{1} & =\bar{V}^{s} \bar{X}^{s} D \bar{X} \bar{V} \neq \bar{V}^{s} D \bar{V}=P \text { and } \\
U_{1} & =V^{s} X^{s} F \bar{X} \bar{V} \neq V^{s} W \bar{V}=U .
\end{aligned}
$$

3. Products of s-Normal Matrices

If A, B and $A B$ are s-normal matrices then $B A$ is s-normal; a necessary and sufficient condition that the product $A B$, of two s-normal matrices A and B be s-normal is that each commute with the s-hermitian polar matrix of the other. First a generalization of this theorem is obtained here and then an analog for the con-s-normal case is developed.

Theorem 2

Let A be an s-normal matrix. Then $A B$ and $B A$ are s-normal iff $\left(\bar{A}^{S} A\right) B=B\left(A \bar{A}^{S}\right)$ and $\left(\bar{B}^{S} B\right) A=A\left(B \bar{B}^{S}\right)$. (In a sense, the latter condition might be described as stating that each matrix is s-normal relative to the other).

Proof

If $A B$ and $B A$ are s-normal, Let U be a unitary matrix such that $U A \bar{U}^{s}=D$ is secondary diagonal. $d_{i} \bar{d}_{i} \geqq d_{j} \bar{d}_{j} \geq 0$ for $i<j$, and let $U B \bar{U}^{S}=B_{1}=\left(b_{i j}\right)$. From $A B \bar{B}^{s} \bar{A}^{s}=\bar{B}^{s} \bar{A}^{s} A B$ it follows that $D B_{1} \bar{B}_{1}^{s} \bar{D}=\bar{B}^{s} \bar{D} D B_{1}$; by equating secondary diagonal elements it follows that $\sum_{j=1}^{n} d_{i} \bar{d}_{i} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{j i} \bar{b}_{j i}$ for $i=1,2 \ldots n$. Similarly from $B A \bar{A}^{S} \bar{B}^{S}=\bar{A}^{S} \bar{B}^{S} B A$ follows $B_{1} D \bar{D}_{B_{1}}=\bar{D} \bar{B}_{1}^{S} B_{1} D$ and $\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} \bar{d}_{i} d_{i} \bar{b}_{j i} b_{j i}$. Let $i=1$ in each of these equations So that $\sum_{j=1}^{n} d_{1} \bar{d}_{1} b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{j 1} \bar{b}_{j 1}$ and $\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n} \bar{d}_{1} d_{1} \bar{b}_{j 1} b_{j 1} \quad$ from which follows

$$
\sum_{j=1}^{n}\left(d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}\right) b_{1 j} \bar{b}_{1 j}=\sum_{j=1}^{n}\left(d_{j} \bar{d}_{j}-d_{1} \bar{d}_{1}\right) d_{j 1} \overline{b_{j 1}}
$$

so that

$$
\sum_{j=1}^{n}\left(d_{1} \bar{d}_{1}-d_{j} \bar{d}_{j}\right)\left(b_{1 j} \overline{b_{1 j}}+b_{j 1} \overline{b_{j 1}}\right)=0 .
$$

Let $d_{1} \overline{d_{1}}=d_{2} \overline{d_{2}}=\ldots=d_{l} \overline{\bar{c}_{l}}>d_{l+1} d_{l+1}$, then $b_{1 j} \overline{b_{1 j}}+b_{j 1} \overline{b_{j 1}}=0$ for $j=l+1, l+2, \ldots n$ since $d_{1} \overline{d_{1}}-d_{j} \overline{d_{j}}$ is zero or positive and is latter for $j>l$. So $b_{1 j}=0$ and $b_{j 1}=0$ for $j=l+1, l+2, \ldots n$. For $i=2, \ldots . . l$ in turn it follows that $b_{i j}=0$ and $b_{j i}=0$. For $i=1,2, \ldots . l$ and for $j=l+l, l+2 \ldots . n$. Let $U A \bar{U}^{s}=D=r_{1} D_{1} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{S} D_{S}$ where the r_{i} are real $r_{i}>r_{j}$ for $i<j$ and the D_{i} are s-unitary Then by repeating the above process it follows that $U B \bar{U}^{S}=B_{1}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{S}$ is conformable to D.

It follows from the given conditions that $r_{i} D_{i} C_{i} \bar{C}_{i}^{s} \overline{D_{i}} r_{i}=\bar{C}_{i}^{s}\left(r_{i} \bar{D}_{i}\right)\left(D_{i} r_{i}\right) C_{i}$ and $C_{i} r_{i} D_{i} \overline{D_{i}} r_{i} \bar{C}_{i}^{s}=r_{i} \overline{D_{i}} \bar{C}_{i}^{s} C_{i} D_{i} r_{i}$ or that $D_{i} C_{\mathrm{i}} \overline{\mathrm{C}}_{i}^{s}=\overline{\mathrm{C}}_{i}^{s} \mathrm{C}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}$ and $D_{i} C_{\mathrm{i}} \overline{\mathrm{C}}_{i}^{s}=\overline{\mathrm{C}}_{i}^{s} \mathrm{C}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}$ if $r_{i}>0$. If $r_{s}=0, D_{s}$ is arbitrary insofar as D is concerned and so may be chosen so that $D_{S} C_{S} \bar{C}_{s}^{S}=\bar{C}_{S}^{S} C_{S} D_{S}$ in which case D_{s} may not be secondary diagonal. But whether or not this is done, it follows that $D B_{1} \bar{B}_{1}^{S}=\bar{B}_{1}^{S} B_{1} D$ and that $B_{1} D \bar{D}^{S}=\bar{D}^{S} D B_{1}$ so that $A\left(B \bar{B}^{S}\right)=\left(\bar{B}^{S} B\right) A$ and $B\left(A \bar{A}^{S}\right)=\left(\bar{A}^{S} A\right) B$. The converse is immediate. It may be noted that if the roots of A are all distinct in absolute value, B must be s-normal. The following further clarifies the situation.

Theorem 3

Let $A=L W=W L$ be the polar form of the s-normal matrix A. Then $A B$ and $B A$ are s-normal iff $B=N \bar{W}^{S}$ where N is s-normal and $L N=N L$.

Proof

In the proof of the above theorem, let $C_{i}=H_{i} U_{i}=U_{i} K_{i}$ be polar forms of the C_{i}. Then $\bar{U}_{i}^{s} H_{i} U_{i}=K_{i} \quad$ so that $\quad \bar{U}_{i}^{s} C_{i} \bar{C}_{i}^{s} U_{i}=\bar{C}_{i}^{s} C_{i} \operatorname{or} \bar{U}_{i}^{s} C_{i} \bar{C}_{i}^{s}=\bar{C}_{i}^{s} C_{i} \bar{U}_{i}^{s}$. Also, from the above $D_{i} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} D_{i}$.

Let $R_{i}=\bar{D}_{i} \overline{\mathrm{U}}_{i}^{S}$ then $R_{i} C_{i} \bar{C}_{i}^{S}=\bar{D}_{i} \bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S}=\bar{D}_{i} \bar{C}_{i}^{S} C_{i} \bar{U}_{i}^{S}=C_{i} \bar{C}_{i}^{s} \bar{D}_{i} \bar{U}_{i}^{S}=C_{i} \bar{C}_{i}^{S} R_{i}$ where R_{i} is s-unitary (if $r_{s}=0, D_{S}$ may be chosen $=\bar{U}_{S}^{S}$ as described above). So $R_{i} H_{i}^{2}=H_{i}^{2} R_{i}$ and since H_{i} has positive or zero roots, $R_{i} H_{i}=H_{i} R_{i}$ and so $H_{i} \bar{R}_{i}^{S}=\bar{R}_{i}^{S} H_{i}$. Then $A=\bar{U}^{S} D U=\bar{U}^{S} D_{r} U \bar{U}^{S} D_{U} U=L W=W L$ and

$$
\begin{aligned}
B & =\bar{U}^{S} B_{1} U=\bar{U}^{S}\left(C_{1} \oplus C_{2} \oplus \ldots \oplus C_{S}\right) U \\
& =\bar{U}^{S}\left(H_{1} U_{1} \oplus H_{2} U_{2} \oplus \ldots \oplus H_{S} C_{S}\right) U \\
& =\bar{U}^{S}\left(H_{1} \bar{R}_{1}^{S} \overline{D_{1}} \oplus H_{2} \bar{R}_{2}^{S} \overline{D_{2}} \oplus \ldots \oplus H_{S} \bar{R}_{S}^{S} \overline{D_{S}}\right) U \\
& =N W C^{-s}
\end{aligned}
$$

where $N=\bar{U}^{S}\left(H_{1} \bar{R}_{1}^{S} \oplus H_{2} \bar{R}_{2}^{S} \oplus \ldots \oplus H_{S} \bar{R}_{S}^{S}\right) U$ (which is s-normal since the s-hermitian H_{i} and s-unitary \bar{R}_{i}^{S} commute) and $\bar{W}^{S}=\bar{U}^{s}\left(\bar{D}_{1} \oplus \bar{D}_{2} \oplus \ldots \oplus \bar{D}_{S}\right) U$. It is evident that $L N=N L$.

Conversely, if $A=L W=W L$ and $B=N \bar{W}^{S}$ as described, then $A B=W L N \bar{W}^{S}$ which is obviously s-normal as is $B A=N \bar{W}^{S} W L=N L$.

It is easy seen that $B=N \bar{W}^{s}$ is s-normal iff $N \bar{W}^{s}=\bar{W}^{S} N$. if $B=N \bar{W}^{S}=(H R) \bar{W}^{s}$ is con-s-normal; then $B=H\left(R \bar{W}^{s}\right)=\left(R \bar{W}^{S}\right) H^{s}=R H \bar{W}^{s} \quad$ (form property (a)) so $\bar{W}^{s} H^{s}=H \bar{W}^{s}$ or $W H=H^{s} W$ and $W\left(B \bar{B}^{S}\right)=\left(\bar{B}^{s} B\right) W$.

If A is s-normal and B is con-s-normal then $A B$ is s-normal, it does not necessarily follow that $B A$ is s-normal though it can occur. For example, if $B=H U=U H^{S}$ is con-s-normal and if $A=\bar{U}^{S}$ then $A B=\bar{U}^{S} U H^{S}$ and $B A=H U \bar{U}^{s}=H$ are both s-normal. But the following is an example in which $A B$ is s-normal but not $B A$. Let $B=H U=U H^{s}$ be con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular. Let $A=H^{-1}$ is s-hermitian (So s-normal) and not con-s-normal (since H^{-1} is not real). Then $A B=H^{-1} H U=U$ is s-normal if $B A$ were also s-normal, then by the above theorem $\left(\bar{A}^{S} A\right) B=B\left(A \bar{A}^{S}\right) \quad$ and $\quad\left(\bar{B}^{S} B\right) A=A\left(B \bar{B}^{S}\right)$. But $\quad\left(\bar{B}^{S} B\right) A=\left(H^{s}\right)^{2} H^{-1} \quad$ and $A\left(B \bar{B}^{S}\right)=\left(\bar{H}^{-1}\right)\left(H^{2}\right)$ and if these were equal, $\left(H^{s}\right)^{2}=H^{2}$ would follow which means that $H^{2}=\left(H^{s}\right)^{2}=\left(\bar{H}^{s}\right)^{2}$ so that H^{2} real. But this is not possible for if $H=V D \bar{V}^{s}$ where D is secondary diagonal with positive real elements (since H is non singular), then $H^{2}=V D^{2} \bar{V}^{s}=\bar{V} D V^{s}$ if H^{2} is real so that $V^{s} V D^{2}=D^{2} V^{s} V$ so $V^{s} V D=D V^{s} V$ so $V D \bar{V}^{s}=\bar{V} D V^{s}=H$ is real which contradicts the above assumption.

Theorem 4

If A and B are con-s-normal and if $A B$ is s-normal then $B A$ is s-normal.

Proof

Let U be a s-unitary matrix such that $U A U^{S}=F$ is the s-normal from described in Theorem 1 and where $F \bar{F}^{S}=F F^{S}=r_{1}^{2} I_{1} \oplus r_{2}^{2} I_{2} \oplus \ldots \oplus r_{k}^{2} I_{k}$ which is real s-diagonal with $r_{1}^{2}>r_{2}^{2}>\ldots>r_{k}^{2} \geqq 0$ There r_{i}^{2} may be either the squares of secondary diagonal elements of F or
they may arise when matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ are squared. Assume that any of the latter whose r_{i}^{2} are equal are arranged first in a given block followed by any secondary diagonal elements whose square is the same r_{i}^{2}.

Let $\bar{U} B \bar{U}^{S}=B_{1}$ which is con-s-normal and then $U A U^{S} \bar{U} B \bar{U}^{S}=F B_{1}$ is s-normal Let V be the s-unitary matrix.

$$
V=\left[\begin{array}{cc}
\sqrt{1 / 2} & i \sqrt{1 / 2} \\
i \sqrt{1 / 2} & \sqrt{1 / 2}
\end{array}\right]
$$

Then the following matrix relation holds, independent of a and b :

$$
V\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \bar{V}^{s}=\left[\begin{array}{cc}
a-b i & 0 \\
0 & a+b i
\end{array}\right]
$$

Let $F=F_{1} \oplus F_{2} \oplus \ldots \oplus F_{k}$ where the direct sum is conformable to that of $F \bar{F}^{s}$ given above $\left(i . e, F_{i} \bar{F}_{i}^{s}=r_{i}^{2} I_{i}\right)$ and consider $F_{1}=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{i} \oplus r_{i} I$ where each G_{i} is 2 x 2 as described above and I is an identity matrix of proper size. Let $W_{1}=V \oplus V \oplus \ldots \oplus V \oplus I$ be conformable to F_{1}; define W_{i} for each F_{i} in like manner and let $W=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{K}$. If $r_{k}=0, W_{k}=I$. Then $W F \bar{W}^{S}=D$ is complex secondary diagonal, where if d_{i} is the $i^{\text {th }}$ secondary diagonal element $d_{i} \bar{d}_{i} \geqq d_{i+1} \bar{d}_{i+1}$. Then $W\left(U A U^{S}\right) \bar{W}^{S} W\left(\bar{U} B \bar{U}^{S}\right) \bar{W}^{s}=\left(W F \bar{W}^{S}\right)\left(W B_{1} \bar{W}^{S}\right)=D B_{2}$ is s-normal for $B_{2}=W B_{1} \bar{W}^{s}$ (or $\left.B_{1}=\bar{W}^{S} B_{2} W\right)$. Since $\quad B_{1}$ is con-s-normal, $\quad B_{1} \bar{B}_{1}^{S}=B_{1}^{S} \bar{B}_{1} \quad$ so that $\bar{W}^{S} B_{2} W \bar{W}^{s} \bar{B}_{2}^{S} W=W^{S} B_{2}^{S} \bar{W} W^{S} \bar{B}_{2} W$ or that $B_{2} \bar{B}_{2}^{S} W W^{S}=W W^{S} B_{2}^{S} \bar{B}_{2}$. Now $V V^{S}$ is a matrix of the form $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$. So that $W W^{S}$ is a direct sum of matrices of this form and one's.

Let $\quad B_{2}=\left(b_{i j}\right)$ and consider $\overline{\left(W W^{S}\right)}{ }^{s} B_{2} \bar{B}_{2}^{s}\left(W W^{S}\right)=B_{2}^{S} \overline{\boldsymbol{B}}_{2} . \quad$ Let $\quad B_{2} \bar{B}_{2}^{S}=\left(c_{i j}\right)$, $B_{2}^{S} \bar{B}_{2}=\left(f_{i j}\right) \cdot c_{i j}$ and $f_{i j}$ are identifiable with the $b_{i j}$, both matrices being s-hermitian. Consider two cases:
a) If $d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j}$ for all j (where d_{j} is the $j^{\text {th }}$ secondary diagonal element of D), then $D=K D_{u}$ where D_{u} is s-unitary diagonal. Since $W F B_{1} \bar{W}^{S}=D B_{2}=K D_{u} B_{2}=D_{u}\left(K B_{2}\right)$ is s-normal, then $\bar{D}_{u}\left(D_{u} B_{2} K\right) D_{u}=B_{2} D=W B_{1} F \bar{W}^{s}$ is s-normal, as is $B_{1} F=\bar{U} B \bar{U}^{s} U A U^{S}$ so $B A$ is s -normal.
b) If $\quad d_{1} \bar{d}_{1} \neq d_{j} \bar{d}_{j}$ for some j, let $\quad d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2} \ldots=d_{l} \bar{d}_{l}$ for $1 \leq l<n$ (so that $\left.d_{l} \bar{d}_{l}>d_{l+1} \bar{d}_{l+1}\right)$.

Suppose $F_{1}=G_{1} \oplus G_{2} \oplus r_{1} I_{1}$ where I_{l} is the 2×2 matrix (The general case will be seen to follow from this example). From $\left(\overline{W W^{s}}\right)^{s} B_{2} \bar{B}_{2}^{S}\left(w w^{s}\right)=B_{2}^{S} \bar{B}_{2}$ and the fact that $W_{l}=V \oplus V \oplus I_{1}$ it follows that $C_{11}=f_{22}, C_{22}=f_{11}, C_{33}=f_{44}, C_{44}=f_{33}, C_{55}=f_{55}, C_{66}=f_{66}$ (and $\bar{C}_{12}=f_{12} \cdot \bar{C}_{34}=f_{34}$ etc) there equalities supply the following relation (where the summation is over $i=1$ to n).

$$
\begin{aligned}
& C_{11}=\sum b_{1 i} \bar{b}_{1 i}=\sum b_{i 2} \bar{b}_{i 2}=f_{22} \\
& C_{22}=\sum b_{2 i} \bar{b}_{i 2}=\sum b_{i 1} \bar{b}_{i 1}=f_{11} \\
& C_{33}=\sum b_{3 i} \bar{b}_{3 i}=\sum b_{i 4} \bar{b}_{i 4}=f_{44} \\
& C_{44}=\sum b_{4 i} \bar{b}_{4 i}=\sum b_{i 3} \bar{b}_{i 3}=f_{33} \\
& C_{55}=\sum b_{5 i} \bar{b}_{5 i}=\sum b_{i 5} \bar{b}_{i 5}=f_{55} \\
& C_{66}=\sum b_{6 i} \bar{b}_{6 i}=\sum b_{i 6} \bar{b}_{i 6}=f_{66}
\end{aligned}
$$

$D B_{2}$ is s-normal so that the following relations also hold:

$$
\begin{aligned}
& d_{1} \bar{d}_{1}, \sum b_{1 i} \bar{b}_{1 i}=\sum d_{i} \overline{d_{i}} b_{i 1} \bar{b}_{i 1} \\
& d_{1} \bar{d}_{2}, \sum b_{2 i} \bar{b}_{2 i}=\sum d_{i} \overline{d_{i}} b_{i 2} \bar{b}_{i 2} \\
& d_{3} \bar{d}_{3}, \sum b_{3 i} \bar{b}_{3 i}=\sum d_{i} \overline{d_{i}} b_{i 3} \bar{b}_{i 3} \\
& d_{4} \bar{d}_{4}, \sum b_{4 i} \bar{b}_{4 i}=\sum d_{i} \overline{d_{i}} b_{i 4} \bar{b}_{i 4} \\
& d_{5} \bar{d}_{5}, \sum b_{5 i} \bar{b}_{5 i}=\sum d_{i} \overline{d_{i}} b_{i 5} \bar{b}_{i 5} \\
& d_{6} \bar{d}_{6}, \sum b_{6 i} \bar{b}_{6 i}=\sum d_{i} \overline{d_{i}} b_{i 6} \bar{b}_{i 6}
\end{aligned}
$$

Since $d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}$ on combining the first 2 relation in each of these sets, $d_{1} \bar{d}_{1}\left(\sum b_{1 i} \overline{b_{1 i}}+\sum b_{2 i} \overline{b_{2 i}}\right)=d_{1} \bar{d}_{1}\left(\sum b_{i 1} \bar{b}_{i 1}+\sum b_{i 2} \bar{b}_{i 2}\right)=\quad \sum d_{i} \overline{d_{i}}\left(b_{i 1} \overline{b_{i 1}}+b_{i 2} \overline{b_{i 2}}\right) \quad$ so that $\sum\left(d_{1} \bar{d}_{1}-d_{i} \bar{d}_{i}\right)\left(b_{i 1} \bar{b}_{i 1}+b_{i 2} \bar{b}_{i 2}\right)=0 \quad d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j} \quad$ for $j=1,2 \ldots 6$ but for j beyond 6 , $d_{1} \bar{d}_{1}=d_{j} \bar{d}_{j}>0$ or $b_{i 1} \overline{b_{i 1}}+b_{i 2} \overline{b_{i 2}}=0$ or $b_{i 1}=0$ and $b_{i 2}=0$ for $i=7,8 \ldots . n$ similarly, $b_{i 3}=0$ and $b_{i 4}=0$ for $i>6$ the third relation in each set give $b_{i 5}=0$ and $b_{i 6}=0$ for $i>6$.

On adding all 6 relation in the first set,

$$
\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} \bar{b}_{i j}=\sum_{i, j=1}^{6} b_{i j} \bar{b}_{i j}+\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} \bar{b}_{i j}
$$

and on canceling the first summations on each side,

$$
\sum_{i=1}^{6} \sum_{j=7}^{n} b_{i j} \bar{b}_{i j}=\sum_{i=7}^{n} \sum_{j=1}^{6} b_{i j} \bar{b}_{i j}
$$

But the right side is zero from the above, so the left side is 0 and so $b_{i j}=0$ for $i=1,2 \ldots 6$ and $j>6$.

From this it is evident that this procedure may be repeated and that if $D=r_{1} D_{l} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{k} D_{k}$. Where the D_{i} are s-unitary and the r_{i} non-negative real, as above, then $\quad B_{2}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k} \quad$ Conformable to D then $r_{i} D_{i} C_{i}$ is s -normal so $\bar{D}_{i}^{S}\left(D_{i} C_{i} r_{i}\right) D_{i}=C_{i} r_{i} D_{i}$ is s-normal so $B_{2} D$ is s-normal. So $B_{1} F$ and so $\bar{U} B \bar{U}^{S} U A U^{S}$ and $B A$.

Theorem 5

If A and B are con-s-normal then $A B$ is s-normal iff $\bar{A}^{S} A B=B A \bar{A}^{s}$ and $A B \bar{B}^{s}=\bar{B}^{S} B A$ (ie, iff each is s-normal relative to the other).

Proof

If $A B$ is s-normal, from the above $\bar{D}^{S} D B_{2}=B_{2} D \bar{D}^{S}$ so that $\bar{F}^{S} F B_{1}=B_{1} F \bar{F}^{S}$ or $\bar{A}^{S} A B=B A \bar{A}^{S}$.

Similarly $\quad D B_{2}$ is s-normal, $\quad D B_{2}{\overline{B_{2}}}^{s} \bar{D}=\bar{B}_{2}^{S} \bar{D} D B_{2}$ so $D B_{2} \bar{B}_{2}^{S}=\bar{B}_{2}^{S} B_{2} D \quad$ or $F B_{1} \bar{B}_{1}^{S}=\bar{B}_{1}^{S} B_{1} F$ or $A B \bar{B}^{S}=\bar{B}^{S} B A$. the converse is directly verifiable.

Theorem 6

Let A and B be con-s-normal, if $A B$ is s-normal, then $A=L W=W L^{S}$ (with L s-hermitian and W s-unitary) and $B=N \bar{W}^{S}$. Where N is s-normal and $L^{S} N=N L^{S}$; and conversely.

Proof

As above, let $U A U^{S}=F=\bar{W}^{s} D W=\bar{w}^{S} D_{r} w \bar{w}^{s} D_{u} w$ where D_{r} and D_{u} are the s-hermitian and s-unitary polar matrices of D) and $\bar{U} B \bar{U}^{S}=B_{1}=\bar{W}^{S} B_{2} W=\bar{W}^{S}\left(C_{1} \oplus \ldots \oplus C_{K}\right) W$. As in the proof of Theorem 3 if follows that for all $i, D_{i} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} D_{i}$ and $\bar{U}_{i}^{S} C_{i} \bar{C}_{i}^{S}=\bar{C}_{i}^{S} C_{i} \bar{U}_{i}^{S}$ with U_{i} as defined there, so that when $R_{i}=\bar{D}_{i} \bar{U}_{i}^{S}$ (where D, here, $=r_{1} D_{l} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{k} D_{k}$ as earlier) then $C_{i}=H_{i} U_{i}=H_{i} \bar{R}_{i}^{s} \bar{D}_{i}$ with $H_{i} R_{i}=R_{i} H_{i}$.

Then since, $\quad W D_{r}=D_{r} W, \quad U A U^{S}=\bar{W}^{S} D_{r} w \bar{W}^{S} D_{u} w=D_{r}\left(\bar{W}^{s} D_{u} w\right) \quad$ and

$$
\begin{aligned}
A & =\left(\bar{U}^{s} D_{r} U\right)\left(\bar{U}^{s} \bar{w}^{s} D_{u} w \bar{U}\right)=L X \\
& =\left(\bar{U}^{s-s}{ }_{w}^{s} D_{u} w \bar{U}\right)\left(U^{s} D_{r} \bar{U}\right)=X L^{s}
\end{aligned}
$$

with $L=\bar{U}^{s} D_{r} U$ s-hermitian and $X=\bar{U}^{s} \bar{w}^{s} D_{u} w \bar{U}$ s-unitary.

Also, $\quad \bar{U} B \bar{U}^{s}=\bar{w}^{s}\left(H_{1} \bar{R}_{1}^{s} \bar{D}_{1} \oplus H_{2} \bar{R}_{2}^{S} \bar{D}_{2} \oplus \ldots \oplus H_{k} \bar{R}_{k}^{s} \bar{D}_{k}\right) w=N_{1} Y$
Where $N_{1}=\bar{w}^{s}\left(H_{1} \bar{R}_{1}^{s} \oplus H_{2} \bar{R}_{2}^{s} \oplus \ldots \oplus H_{k} \bar{R}_{k}^{s}\right) w$ is s-normal and $Y={ }_{w}^{s}\left(\bar{D}_{1} \oplus \bar{D}_{2} \oplus \ldots \oplus \bar{D}_{k}\right) w$ is s-unitary; then $B=U^{s} N_{1} Y U=\left(U^{s} N_{1} \bar{U}\right)\left(U^{S} Y U\right)=N \bar{X}^{s}$.

Where $\quad N=U^{S} N_{1} \bar{U} \quad$ is s-normal \quad and $\bar{X}^{s}=U^{S} Y U=U^{S} \bar{W}^{s}{\overline{D_{u}}} w U$. Also $L^{s} N=N L^{s} \sin c e D_{r} N_{1}=N_{1} D_{r}, \bar{D}_{r} N_{1}=N_{1} \bar{D}_{r} \quad$ so $\quad\left(\bar{U} \bar{U} U^{s}\right)\left(\bar{U} N U^{s}\right)=\left(\bar{U} N U^{s}\right)\left(\bar{U} \bar{U} U^{s}\right)$ so $L^{S} N=N L^{S}$.

The converse is immediate.

4. Products of Con-s-Normal Matrices

It is possible if A is s-normal and B con-s-normal that $A B$ is con-s-normal. For example, any con-s-normal matrix $C=H U=U H^{S}$ is such a product with $A=H$ and $B=U$. Or if $C=H U=U H^{S}$ and $A=H$, then $A C=H^{2} U=H U H^{S}=U\left(H^{S}\right)^{2}$ is con-s-normal. The following theorems clarify this matter.

Theorem 7

If A is s-normal and B is con-s-normal then $A B$ is con-s-normal iff $A B \bar{B}^{S}=B \bar{B}^{S} A$ and $\bar{B} A \bar{A}^{S}=A^{S} \bar{A} \bar{B}\left(\operatorname{or} B \bar{A} A^{S}=\bar{A}^{S} A B\right)$.
(If one were to define N is s-normal with respect to $M^{\prime \prime}$ to mean $N \bar{N}^{S} M=M \bar{N}^{S} N$ and Q is con-s-normal with respect to P to mean $P Q \bar{Q}^{S}=Q^{S} \bar{Q} P$ the above theorem would say that if A is s-normal and B is con-s-normal then $A B$ is con-s-normal iff (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with respect to \bar{B}).

Proof

If the latter condition hold, then; $(A B)(\overline{A B})^{S}=A B \bar{B}^{S} \bar{A}^{S}=B \bar{B}^{S} A \bar{A}^{s}$ and $(A B)^{S}(\overline{A B})=B^{S} A^{S} \bar{A} \bar{B}=B^{S} \bar{B} A \bar{A}^{S}$ which are equal.

Conversely, let $A B$ be con-s-normal and let $U A \bar{U}^{S}=D=d_{1} I_{1} \oplus d_{2} I_{2} \oplus \ldots \oplus d_{k} I_{k}$ where $d_{i} \bar{d}_{i}>d_{j} \bar{d}_{j}, i>j$.

Let $U B^{S} U^{S}=B_{1}=(b i j)$,

$$
\text { if } \begin{aligned}
(A B)(\overline{A B})^{S} & =A B \bar{B}^{S} \bar{A}^{S}=A B^{S} \bar{B} \bar{A}^{S}=(A B)^{S}(\overline{A B}) \\
& =B^{S} A^{S} \bar{A} \bar{B}=B^{S} \bar{A} A^{S} \bar{B},
\end{aligned}
$$

then $\quad\left(U A \bar{U}^{s}\right)\left(U B^{s} U^{s} \bar{U} \bar{B} \bar{U}^{s}\right)\left(U \bar{A}^{s} \bar{U}^{s}\right)=\left(U B^{s} U^{s}\right)\left(\bar{U} \bar{A} U^{s} \bar{U} A^{s} U^{s}\right)\left(\bar{U} \bar{B} \bar{U}^{s}\right)$
So that $D B_{1} \bar{B}_{1}^{S} \bar{D}^{S}=B_{1} \bar{D} D \bar{B}_{1}^{S}$.
Equating secondary diagonal elements on each side of this relation, we get
$\sum_{j=1}^{n} d_{i} \bar{d}_{d} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} d_{j} \bar{d}_{j} b_{i j} \bar{b}_{i j}, i=1,2, \ldots n$ or
$\sum_{j=1}^{n}\left(d_{i} \bar{d}_{i}-d_{j} \bar{d}_{j}\right) b_{i j} \bar{b}_{i j}=0$.
Let $d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}=\ldots d_{l} \bar{d}_{l}>d_{l+1} \bar{d}_{l+1}$ then $b_{i j}=0$ for $i=1,2 \ldots l$ and $j=l+1, l+2 \ldots n$ since B_{l} is con-s-normal, $\sum_{j=1}^{n} b_{i j} \bar{b}_{i j}=\sum_{j=1}^{n} b_{j i} \bar{b}_{j i}$ for $i=1,2, \ldots n$ on adding the first l of these equation and canceling, $b_{i j}=0$ for $\mathrm{i}=l+1, l+2 \ldots \mathrm{n}$ and $\mathrm{j}=1,2, \ldots, l$. In this manner if $D=r_{1} D_{1} \oplus r_{2} D_{2} \oplus \ldots \oplus r_{t} D_{t}$ with $\quad r_{i}>r_{i+1} \quad$ and $\quad D_{i} \quad$ s-unitary, then $\quad B_{1}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t}$ conformable to D.

Since $r_{i} D_{i} \bar{D}_{i}^{S} r_{i} \bar{C}_{i}^{S}=r_{i}^{2} C_{i}^{S}=C_{i}^{S} r_{i}^{2}=C_{i}^{S} r_{i} D_{i} \bar{D}_{i}^{S} r_{i}$, for all $i, D \bar{D}^{S} B_{1}^{S}=B_{1}^{S} D \bar{D}^{s}$ and so $\bar{U}^{S} D \bar{D}^{S} U \bar{U}^{S} B_{1}^{S} \bar{U}=\bar{U}^{S} B_{1}^{S} \bar{U} U^{S} D \bar{D}^{S} \bar{U}$ or $A \bar{A}^{S} B=B A^{s} \bar{A}$ or $\bar{A}^{S} A B=B A^{S} \bar{A}$ or $A^{S} \bar{A} \bar{B}=\bar{B} A \bar{A}^{s}$.

Also, $D\left(B_{1} \bar{B}_{1}^{S} \bar{D}^{S}\right)=B_{1} \bar{D} D \bar{B}_{1}^{S}=\bar{D} D \bar{B}_{1}^{S}=D\left(\bar{D} B_{1} \bar{B}_{1}^{S}\right)$ so that $C_{i} \bar{C}_{i}^{S}\left(r_{i} \bar{D}_{i}\right)=\left(r_{i} \bar{D}_{i}\right) C_{i} \bar{C}_{i}^{S}$ for $i=1,2 \ldots t$. (if $r_{t}=0$, this is still true and D_{t} may be chosen to be identity matrix). Therefore $\quad B_{1} \bar{B}_{1}^{s} \bar{D}^{s}=\bar{D}^{s} B_{1} \bar{B}_{1}^{s} \quad$ and $\quad U B^{S} U^{S} \bar{U} \bar{B}^{U} \bar{U}^{s} U \bar{A}^{s} \bar{U}^{s}=U \bar{A}^{s} \bar{U}^{s} U B^{s} U^{s} \bar{U} \bar{B}_{1} \bar{U}^{s}$ so $B^{S} \bar{B}_{\bar{A}}{ }^{S}=\bar{A}^{S} B^{S} \bar{B}$ or $A B^{S} \bar{B}=B^{S} \bar{B} A$.

Corollary 1

Let A be s-normal, B con-s-normal; if $A B$ is con-s-normal, then $B \bar{A}$ is con-s-normal, and conversely.

Proof

From the above, $U A \bar{U}^{S} U B U^{S}=D B_{1}^{S}$ is con-s-normal, and if $D=D_{r} D_{u}, D_{r}$ real and D_{u} s-unitary, then since
as are $U B U^{s} \bar{U} \bar{A} U^{s}$ and $B \bar{A}$. Reversing the steps proves the converse.
If A is s-normal and B is con-s-normal, $B \bar{A}$ is con-s-normal iff $A B$ is con-s-normal, iff $\left(B^{S} \bar{B}\right) A=A\left(B \bar{B}^{S}\right)$ and $\left(A^{S} \bar{A}\right) \bar{B}=\bar{B}\left(A \bar{A}^{S}\right)$. Therefore if A is s-normal B is con-s-normal $B A$ is con-s-normal iff $\left(B^{S} \bar{B}\right) \bar{A}=\bar{A}\left(B \bar{B}^{S}\right)$ and $\left(\bar{A}^{S} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{S}\right)$ that is replace A by \bar{A} in the proceeding or $\left(\bar{B}^{S} B\right) A=A\left(\bar{B} B^{S}\right)=A\left(\bar{B}^{S} B\right)$ and $\left(\bar{A}^{S} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{S}\right)$, thus exhibiting the fact that when $A B$ is con-s-normal, $B A$ is not necessarily so.

Theorem 8

If $A=L W=W L$ is s-normal and $B=K V=V K^{S}$ is con-s-normal (where L and K are s-hermitian and W and V are s-unitary) then $A B$ is con-s-normal iff $L K=K L, L V=V L^{S}$ and $W K=K W$.

Proof

If the three relations in the theorem hold, then $A B=L W K V=L K W V$, and $A B=W L K V=W K L V=W K V L^{S}=W V K^{S} L^{S}=W V(L K)^{S}$ is con-s-normal since $L K$ is s-hermitian and $W V$ is s-unitary.

Conversely, Let $A=\bar{U}^{S} D U=\left(\bar{U}^{S} D_{r} U\right)\left(\bar{U}^{S} D_{u} U\right)=L W$ and

$$
B=\left(\bar{U}^{s} B_{1}^{S} \bar{U}\right)=\left(\bar{U}^{s} K_{1} U\right)\left(\bar{U}^{S} V_{1} \bar{U}\right)=K V=V K^{S}
$$

where K_{1} and V_{1} are s-hermitian and s-unitary and direct sums conformable to B_{1}^{S} and D. A direct check shows that $L K=K L$ and $L V=V L^{S}$, also $W K=\bar{U}^{S} D_{u} K_{1} U=\bar{U}^{S} K_{1} D_{u} U=K W$ since $D_{u} B_{1} \bar{B}_{1}^{S}=B_{1} \bar{B}_{1}^{S} D_{u}$ implies $D_{u} K_{1}=K_{1} D_{u}$.

A sufficient condition for the simultaneous reduction of A and B is given by the following:

Theorem 9

If A is s-normal, B is con-s-normal and $A B=B A^{s}$, then $W A \bar{W}^{s}=D$ and $W B^{S} W=F$, the s-normal form of Theorem 1, where W is an s-unitary matrix; also $A B$ is con-s-normal.

Proof

Let $U A \bar{U}^{S}=D$ secondary diagonal and $U B U^{S}=B_{2}$ which is con-s-normal. Then $A B=B A^{S}$ implies $D B_{2}=U A \bar{U}^{S} U B U^{S}=U B U^{S} \bar{U} A^{S} U^{S}=B_{2} D^{S}=B_{2} D$.

Let $D=C_{1} I_{1} \oplus C_{2} I_{2} \oplus \ldots \oplus C_{K} I_{K}$. Where the C_{i} are complex and $C_{i} \neq C_{j}$ for $i \neq j$ and $B_{2}=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{K}$ let V_{i} be s-unitary such that $V_{i} C_{i} V_{i}^{S}=F_{i}$ the real s-normal form of Theorem 1, and let $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$.

Then $V U A \bar{U}^{S} \bar{V}^{S}=D, V U B U^{S} V^{s}=F=a$ direct sum of the F_{i}.
Also, $\quad A B=B A^{S} \quad$ implies $\quad B^{S} A^{S}=A B^{S} \quad$ and so

$$
A B \bar{B}^{S} \bar{A}^{S}=A B^{S} \bar{B}_{A}^{S}=B^{S} A^{S} \bar{A} \bar{B}=(A B)^{S}(\overline{A B}) .
$$

It is also possible for the product of two s-normal matrices A and B to be con-s-normal if $Q=H U=U H^{S}$ is con-s-normal and if $A=U$ and $B=H$ this is so or if $K V=V K^{S}$ is con-s-normal and if $A=U K=K U$ is s-normal with K s-hermitian and V and U s-unitary, for $B=V, A B=(U K) V=K(U V)=(U V) K^{S}$ con-s-normal. But if in the first example, $U^{2} H$ is not s-normal then $H U$ is not con-s-normal so that $B A$ is not necessarily con-s-normal though $A B$ is. When A alone is s-normal an analog of Theorem 2 can be obtained which states the following: if A is s-normal, then $A B$ and $A B^{S}$ are con-s-normal iff $A B \bar{B}^{S}=B^{S} \bar{B} A, B \bar{B}^{S} A=A B^{S} \bar{B}$ and $\bar{B} A \bar{A}^{S}=A^{S} \bar{A} \bar{B}$. (The proof is not included here because of its similarity to that above) when B is con-s-normal, two of these conditions merge into one in Theorem 7.

It is possible for the product of two con-s-normal matrices to be con-s-normal but no such simple analogous necessary and sufficient conditions as exhibited above are available. This may be seen as follows two non-real complex commutative matrices $P=P^{S}$ and $Q=Q^{S}$ can form a con-s-normal (and non-real s-symmetric) matrix $P Q$ which need not be s-normal. Then two s-symmetric matrices $X=\left[\begin{array}{cc}-i & -i \\ i & -i\end{array}\right] \quad Y=\left[\begin{array}{cc}2 i & 0 \\ 0 & 2 i\end{array}\right]$ are such that $X Y=Z$ is real, s-normal and con-s-normal (s-symmetric).

Finally if U and V are two complex s-unitary matrices of the same order, they can be chosen so $U V$ is non-real that is complex, s-normal and con-s-normal. If $A=P \oplus X \oplus U$ and $B=Q \oplus Y \oplus V A B=P Q \oplus X Y \oplus U V$ where A and B are con-s-normal as in $A B$ (s-symmetric). A simple inspection of these matrices shows that relations on the order of $\left(B^{S} \bar{B}\right) A=A\left(B \bar{B}^{S}\right)=\left(B \bar{B}^{S}\right) A$ and $\left(A^{S} \bar{A}\right) \bar{B}=\left(A \bar{A}^{S}\right) \bar{B}=\bar{B}\left(A \bar{A}^{S}\right)$ do not necessarily hold; these are sufficient, however, to guarantee that $A B$ is con-s-normal (as direct verification from the definition).

References

[1] Bellman, R., "Introduction to Matrix Analysis." McGraw-Hill, New York, 1960.
[2] Krishnamoorthy, S. and Raja, R., "On Con-s-normal matrices." International J. of Math. Sci. and Engg. Appls., Vol. 5 (II), (2011), 131-139.
[3] Stander, J. and Wiegmann, N., "Canonical Forms for Certain Matrices under Unitary Congruence." Can. J. Math., 12 (1960), 427-445.
[4] Wiegmann, N., "Normal Products of Matrices." Duke Math. Journal, 15 (1948), 633-638.

