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1. Introduction 

Let Cnxn be the space of nxn complex matrices of order n. For ,
×

∈
n n

A C  let TA , A , 

A*, SA , θA  and -1  A denote the transpose, conjugate, conjugate transpose, secondary 

transpose, conjugate secondary transpose and inverse of matrix A respectively. The conjugate 

secondary transpose of A satisfies the following properties such 

as ( ) ( ) ( ), ,= + = + =A A A B A B AB B A
θ θ θθ θ θ θ θ . etc 

Definition 1 

 A matrix 
×

∈ n nA C  is said to be normal if * * .=AA A A  

Definition 2 

 A Matrix 
×

∈ n nA C  is said to be conjugate normal (con-normal) if  * * .=AA A A   

Definition 3  

 A matrix  
×

∈ n nA C   is said to be secondary normal (s-normal) if .=AA A Aθ θ    

Definition 4 

 A matrix  
×

∈
n n

A C  is said to be unitary if  * * .= =AA A A I  

Definition 5 

 A matrix 
×

∈
n n

A C  is said to be s-unitary if .= =AA A A Iθ θ  

Definition 6 [2] 

A matrix 
×

∈
n n

A C  is said to be a conjugate secondary normal matrix (con-s-normal) if 

=AA A Aθ θ  where =
S

A A
θ

.               . . . (1) 

 



2. Properties of Con-s-Normal Matrices 

Theorem 1 

 A matrix A is con-s-normal iff there exists an s-unitary matrix U such that sUAU is a 

direct sum of non-negative real numbers and of 2x2 matrices of the form:
-

a b

b a

 
 
 

    where a 

and b are non negative real numbers. 

Proof 

Let A be con-s-normal where A = P+Q where 
s

P P=  and   - s
Q Q= .  

Then
s sAA A A= gives ( ) ( )( ) ( ) ( ) ( ) ( )  -

s s s sP Q P Q P Q P Q or P Q P Q P Q P Q
 

+ + = + + + + = + 
 

 

and so: - -   - -PP QP PQ QQ PP QP PQ QQ+ = + or -QP PQ . There exists a s-unitary U  

such that SUSU D= is a secondary diagonal matrix with real, non–negative elements. 

Therefore  
S S

S S
UQU U P U U PU U QU= or WD DW=  where - SW W= . LetU be chosen 

so that D is such that  0
i j

d d> > for i j< where 
id is the thi secondary diagonal element of  D. 

( )
ij

W t= , where -
ji ij

t t= then ijij j it d d t= , for j>i, and 3 possibilities may occur : if 

0,j id d= ≠  then
ijt  is real; if 0,j id d= = ijt  is arbitrary (through -

S
W W=  still holds); and if 

,j id d≠  then ijt =0 for if ijt = a+ib then (a+ib) jd =
i

d (a-ib) and ( -  ) 0j ia d d =  implies a=0 

and ( ) 0i jb d d+ =  implies -i jd d=  (which is not possible since the di are real and  

non–negative and 
j id d≠ ) or b=0 so 

ijt =0. So if 
1 1 2 2 ...S

k kUPU d I d I d I= ⊕ ⊕ ⊕ where ⊕  

denotes direct sum, then 1 2 ....S

kUQU T T T= ⊕ ⊕ ⊕  where - S

i iQ Q=  is real and - S

K KQ Q=   is 

complex iff dk = 0. For each real 
i

Q  there exists a real-s-orthogonal matrix Vi so that S

i i iV TV  

is direct sum of zero matrices and matrices of the form 
0

0

b

b

 
 
−   

where b is real [1]. If 

- S

K KQ Q=  is complex, there exists a complex  s-unitary matrix 
k

V  such that 
k k k

V Q V Q  is a 

direct sum of matrices of the form [3] so that if 1 2 ... kV V V V= ⊕ ⊕ ⊕  then S SVUPU V D= and 

S S
VUQ U F= the direct sum. Therefore S S

V UAU V D F= +  this is the desired form. 

 If  A and B are two con-s-normal  matrices such that AB BA=  then A and B can be 

simultaneously brought into the above secondary normal form under the sameU (with a 

generalization to a finite number) but not conversely; if A is con-s-normal , AA is s-normal in 

the usual sense, but not conversely; and if A is con-s-normal and AA  is real, there is a real 

secondary orthogonal matrix which gives the above form. Among properties of con-s-normal 

matrices not obtained but of subsequent use are the following: 



(a) A is con-s-normal iff  S
A HU UH= =  where H is s-hermitian and U  is s-unitary. 

For if  A HU=  is a polar form of A, then 
S

U HU K=  is such that A=HU=UK and if 

,
S

S
AA A A= then ( )

2
2 SH K=  and since this is an s-hermitian matrix with non-negative 

roots, H = K
S
 and S

A HU UH= = . The converse is immediate. This same result may be 

seen as follows. If SUAU F=  is the s-normal form in Theorem 1, 
r r

F D V VD= = where 

Dr is real secondary diagonal and V is a direct sum of 1’s block of the form 

( )
-1

2 2 2

-

a b
a b

b a

 
+  

 
 which are s-unitary. Therefore 

S S S
S

r rA U D U U VU U VU U D U= =  

which exhibits the polar form in another guise. 

(b) A is both s-normal and con-s-normal iff  S
A HU UH UH= = =  so 

S
SH H H= = so that 

H is real. 

(c) If  S
A HU UH= =  is con-s-normal, then UH  is con-s-normal iff 2 2  ,HU U H= that is 

HU2 is s-normal. For if UH is con-s-normal,  SUH H U= so 

that
2 2
    

S
HU UH U U H= = ; and if 

2 2
  HU U H= , then     

S
HUU UH U UUH= =  

or   
S

H U UH= . 

(d) A matrix A is con-s-normal, iff A can be written     A PW WP= =  where SP P= and 

W is s-unitary. If A is con-s-normal, form the above 

  
S S S S

S

r rA U FU U D UU VU PW U VUU D U W P= = = = =  where 
S

rP U D U=                 

s-symmetric and SW U VU=  is s-unitary. Conversely, if 

,A PW W P= =
S S S S

S S
AA PWW P A A P W P= = = . 

 Note that if B is con-s-normal, and if B=PU where S
P P=  and U is s-unitary, it does 

not necessarily follow that ;B U P= but it possible to find on P1 and U1 such that 

1 1 1 1B PU U P= =  holds. This may be seen as follows. If B=PU is con-s-normal, Let V be  

s-unitary such that S
VPV D= is secondary diagonal, real and non negative, so that 

S S SVBV VPV V U V DW= =  is con-s-normal from which 
S

S S
DWW D W D DW=  or since D 

is real, 
2

WD =
2

D W and WD=DW since D is non-negative. Then 

( ) ( ) ( ) ( )
S S S

S
B V DV V WV PU V WV V DV= = = which is not necessarily equal to 

( ) ( )
S S

U P V W V V DV= However, if 1 1 2 2 ... k kD r I r I r I= ⊕ ⊕ ⊕ , i jr r>  for i j> , then 

1 2 ... KW W W W= ⊕ ⊕ ⊕ . Since each Wi is s-unitary, it is con-s-normal and there exist s-unitary 

Xi so that S

i i i iX W X F= is in the real s-normal form of Theorem 1 if 1 2 ... ,kX X X X= ⊕ ⊕ ⊕  

then S S S S
XVBV X XDWX DXWX DF FD= = = =  where 1 2 ... kF F F F= ⊕ ⊕ ⊕ .  



So 

 

( )( )

( )( ) 11 1 1

1

1

 

 

.

S S S S

S S S S S

S S S

S S S

B V X DX V V X F X V

V X FXV V X DX V PU U P and

P V X D X V V DV P and

U V X F X V V WV U

=

= = =

= ≠ =

= ≠ =

 

3. Products of s-Normal Matrices 

If A, B and AB are s-normal matrices then BA is s-normal; a necessary and sufficient 

condition that the product AB, of two s-normal matrices A and B be s-normal is that each 

commute with the s-hermitian polar matrix of the other. First a generalization of this theorem 

is obtained here and then an analog for the con-s-normal case is developed. 

Theorem 2 

 Let A be an s-normal matrix. Then AB and BA are s-normal iff ( ) ( )
S S

A A B B A A= and 

( ) ( )
S S

B B A A B B= . (In a sense, the latter condition might be described as stating that each 

matrix is s-normal relative to the other). 

Proof 

   If AB and BA are s-normal, Let U be a unitary matrix such that 
S

UAU D= is 

secondary diagonal. 0i ji j
d d d d> > for i < j, and let ( )1

S

ij
UBU B b= = . From 

S S S S

ABB A B A AB= it follows that 11 1

S S

DB B D B DDB= ; by equating secondary diagonal 

elements it follows that 
1 1

n n

i i j j j ii i j j j i

j j

d d b b d d b b
= =

=∑ ∑ for i=1,2…n. Similarly from 

S S S S

BAA B A B BA= follows 1 11 1

S S

B D D B D B B D= and 
1 1

n n

j ij i jij ij i ji

j j

d d b b d d b b
= =

=∑ ∑ . Let i=1 in 

each of these equations So that 1 1 11 1 1

1 1

n n

j j jj j j

j j

d d b b d d b b
= =

=∑ ∑ and 

1 1 11 1 1

1 1

n n

j j jj j j

j j

d d b b d d b b
= =

=∑ ∑  from which follows  

( ) ( )11 11 1 1 1 1

1 1

j

n n

j jj j j j j

j j

d d d d b b d d d d d b
= =

− = −∑ ∑   

so that   ( ) ( )11 1 1 1 1

1

0.
n

jj j j j j

j

d d d d b b b b
=

− + =∑   



Let 
1 1 2 2 1 1... ,l l l ld d d d d d d d+ += = = > then 1 1 1 1 0

j j j j
b b b b+ =  for  1, 2,...j l l n= + +  since 

1 1 j j
d d d d− is zero or positive and is latter for .j l>  So 1 0jb =  and 1 0jb =  for 

1, 2,... .j l l n= + +  For i=2,…..l in turn it follows that bij=0 and bji=0. For i=1,2,….l and for 

j=l+1,l+2….n. Let 
1 1 2 2 ...

S

S SUAU D r D r D r D= = ⊕ ⊕ ⊕  where the ri are real ri > rj for i < j 

and the Di are s-unitary Then by repeating the above process it follows that 

1 1 2 ...
S

S
UBU B C C C= = ⊕ ⊕ ⊕  is conformable to D. 

 It follows from the given conditions that ( )( )
i

S S

ii ii i i i i i i i
r D C C D r C r D D r C= and 

i i

S S

i ii i i i i i i i
C r D D r C r D C C D r=  or that 

i i iC C C D
S S

i ii
D C = and 

i i iC C C D
S S

i ii
D C =  if ri > 0. If  

rs=0, Ds is arbitrary insofar as D is concerned and so may be chosen so that 
S S

S SS S S S
D C C C C D= in which case Ds  may not be secondary diagonal. But whether or not 

this is done, it follows that 1 11 1

S S

DB B B B D=  and that 
1 1

S S

B DD D DB=  so that 

( ) ( )
S S

A BB B B A=
 
and ( ) ( )

S S

B AA A A B= . The converse is immediate. It may be noted 

that if the roots of A are all distinct in absolute value, B must be s-normal. The following 

further clarifies the situation. 

Theorem 3 

 Let A = LW = WL be the polar form of the s-normal matrix A. Then AB and BA are  

s-normal iff 
S

B NW=  where N is s-normal and LN = NL. 

Proof 

 In the proof of the above theorem, let i i i i iC H U U K= =  be polar forms of the Ci. Then 

S

i i i i
U H U K=  so that .

S S S S S S S

i i i i i i ii i i i i
U C C U C C orU C C C C U= =  Also, from the 

above .
S S

i ii i i iD C C C C D=   

Let U
S

i iiR D=  then 
S S S S S S S S

i i ii i i i i i i ii i i i i i iR C C D U C C D C C U C C D U C C R= = = =  where 

Ri is s-unitary (if rs = 0, DS may be chosen  
S

SU=  as described above). So 2 2

i i i iR H H R=  and 

since Hi has positive or zero roots,  i i i iR H H R=  and so .
S S

i ii iH R R H=  Then 
S S S

r U
A U DU U D UU D U LW WL= = = = and 

  

( )

( )

( )

1 1 2

1 1 2 2

1 21 1 2 2

-

...

...

...

S S

S

S

S S

S S S S

SS S

S

B U BU U C C C U

U H U H U H C U

U H R D H R D H R D U

NWC

= = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

=

 



where ( )1 21 2 ...
S S S S

SSN U H R H R H R U= ⊕ ⊕ ⊕  (which is s-normal since the s-hermitian Hi 

and  s-unitary 
S

iR  commute) and ( )1 2 ... .
S S

SW U D D D U= ⊕ ⊕ ⊕  It is evident that LN = NL.  

Conversely, if A = LW = WL and 
S

B NW=  as described, then 
S

AB WLNW= which is 

obviously s-normal as is .
S

BA NW WL NL= =  

 It is easy seen that 
S

B NW= is s-normal iff .
S S

NW W N=  if ( )
S S

B NW HR W= =  is 

con-s-normal; then ( ) ( )
S S S

S
B H RW RW H RHW= = =  (form property (a)) so 

S S
S

W H HW=  or S
WH H W=  and ( ) ( ) .

S S

W BB B B W=  

 If A is s-normal and B is con-s-normal then AB is s-normal, it does not necessarily 

follow that BA is s-normal though it can occur. For example, if  S
B HU UH= =  is  

con-s-normal and if 
S

A U=  then 
S

S
AB U UH= and S

BA HUU H= =  are both s-normal. But 

the following is an example in which AB is s-normal but not BA. Let S
B HU UH= =  be  

con-s-normal but not s-normal (i.e, H is not real by property (b)) and let H be non-singular. 

Let -1
A H= is s-hermitian (So s-normal) and not con-s-normal (since -1H is not real). Then 

-1
AB H HU U= =  is s-normal if BA were also s-normal, then by the above theorem 

( ) ( )
S S

A A B B AA=  and ( ) ( )
S S

B B A A BB= . But ( ) ( )
2

-1S
s

B B A H H=  and 

( ) ( )( )
-1 2S

A BB H H= and if these were equal, ( )
2

2sH H=  would follow which means that 

( ) ( )
22

2
S

sH H H= =  so that H2 real. But this is not possible for if 
S

H VDV=  where D is 

secondary diagonal with positive real elements (since H is non singular), then 

2 2 S
S

H VD V V DV= =  if H
2
 is real so that 2 2S S

V VD D V V=  so S S
V VD DV V= so 

S
S

VDV V DV H= =  is real which contradicts the above assumption.  

Theorem 4 

 If A and B are con-s-normal and if AB is s-normal then BA is s-normal.   

Proof 

Let U be a s-unitary matrix such that S
UAU F=  is the s-normal from described in 

Theorem 1 and where 2 2 2

1 1 2 2 ...
S

S

k kF F FF r I r I r I= = ⊕ ⊕ ⊕ which is real s-diagonal with 

2 2 2

1 2
... 0

k
r r r> > > >  There 2

ir may be either the squares of secondary diagonal elements of F or 



they may arise when matrices of the form 
-

a b

b a

 
 
 

are squared. Assume that any of the latter 

whose 2

i
r  are equal are arranged first in a given block followed by any secondary diagonal 

elements whose square is the same 2

ir .  

 Let 
1

S

UBU B=  which is con-s-normal and then 
1

S
S

UAU UBU F B= is s-normal Let V  

be the s-unitary matrix. 

  
1/ 2 1/ 2

1/ 2 1/ 2

i
V

i

 
=  
  

 

Then the following matrix relation holds, independent of a and b: 

  
- 0

- 0

Sa b a bi
V V

b a a bi

   
=   

+   
 

 Let 1 2 ... kF F F F= ⊕ ⊕ ⊕  where the direct sum is conformable to that of 
S

F F given 

above ( )2. ,  
S

i i i i
i e F F r I= and consider 1 1 2 ... i iF G G G rI= ⊕ ⊕ ⊕ ⊕  where each Gi is 2x2 as 

described above and I is an identity matrix of proper size. Let 1 ...W V V V I= ⊕ ⊕ ⊕ ⊕  be 

conformable to F1; define Wi for each Fi in like manner and let 1 2 ... .KW W W W= ⊕ ⊕ ⊕ If 

0, .k kr W I= = Then 
S

WFW D=  is complex secondary diagonal, where if di is the i
th

 

secondary diagonal element 11 .i ii i
d d d d ++

>  Then 

( ) ( ) ( )( )1 2

S S S S S
S

W UAU W W UBU W WFW WB W DB= =  is  s-normal for 
2 1

S

B WB W= (or 

1 2

S

B W B W= ). Since 1B is con-s-normal, 1 11 1

S
S

B B B B=  so that 

2 22 2

S S S
S S S

W B WW B W W B WW B W=  or that 2 22 2

S
S S S

B B WW WW B B= .Now 
S

VV  is a matrix 

of the form 
0

.
0

i

i

 
 
   

So that 
S

WW  is a direct sum of matrices of this form and one’s. 

            Let 2 ( )ijB b= and consider ( ) ( )2 22 2 .
S S

S S S
WW B B WW B B=  Let ( )22 ,=

S

ij
B B c  

( )22
.=

S

ij ij
B B f c and fij are identifiable with the bij, both matrices being 

s-hermitian.  Consider two cases: 

a) If 11 jj
d d d d=  for all j (where dj is the jth secondary diagonal element of D), then 

D=KDu where Du is s-unitary diagonal. Since ( )1 2 2 2

S

u uWFB W DB KD B D KB= = = is 

s-normal, then ( )2 2 1

S

u u uD D B K D B D WB FW= =  is s-normal, as is 

1 =
S

S
B F UBU UAU  so BA is   s-normal. 



b) If 11 jj
d d d d≠  for some j, let 1 21 2 ... 1lld d d d d d for l n= = ≤ < (so that 

11l ll ld d d d ++> ). 

    Suppose 1 1 2 1 1F G G r I= ⊕ ⊕  where I1 is the 2x2 matrix (The general case will be seen 

to follow from this example). From ( ) 22

S
s

s
WW B B ( ) 22

S
ww B B

s
=  and the fact that          

W1=V ⊕ V ⊕ I1 it follows that C11=f22,C22=f11, C33=f44, C44=f33, C55=f55, C66=f66 (and 

12 3412 34.C f C f= = etc) there equalities supply the following relation (where the summation is 

over i=1 to n). 

11 1 2 221 2

22 2 1 112 1

433 3 4 443

4 344 4 3 33

5 555 5 5 55

6 666 6 6 66

;

;

;

;

;

;

i ii i

i ii i

ii ii

i ii i

i ii i

i ii i

C b b b b f

C b b b b f

C b b b b f

C b b b b f

C b b b b f

C b b b b f

= = =∑ ∑

= = =∑ ∑

= = =∑ ∑

= = =∑ ∑

= = =∑ ∑

= = =∑ ∑

 

DB2 is s-normal so that the following relations also hold: 

  

1 1 11 1 1

1 2 22 2 2

3 3 33 3 3

4 4 44 4 4

5 5 55 5 5

6 6 66 6 6

, ;

, ;

, ;

, ;

, ;

, ;

i i i ii i

i i i ii i

i i i ii i

i i i ii i

i i i ii i

i i i ii i

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

d d b b d d b b

=∑ ∑

=∑ ∑

=∑ ∑

=∑ ∑

=∑ ∑

=∑ ∑

 

              Since 1 21 2
d d d d= on combining the first 2 relation in each of these 

sets, ( ) ( )1 1 1 2 2 1 11 1 1 22
i i i i i i ii

d d b b b b d d b b b b+ = +∑ ∑ ∑ ∑ =
 

( )1 1 2 2i i i i i id d b b b b+∑  so 

that ( )( )1 1 1 2 21
- 0

i i i ii i
d d d d b b b b+ =∑  1 1 j j

d d d d=  for j=1,2…6 but for j beyond 6, 

1 1
0j j

d d d d= >  or 
1 1 2 2 0i i i ib b b b+ =  or 

1 20  0i ib and b= =  for i=7,8….n similarly, bi3=0 and 

bi4=0 for i>6 the third relation in each set give bi5=0 and bi6=0 for i>6. 

        On adding all 6 relation in the first set, 

              
6 6 6 6

, 1 1 7 , 1 7 1

n n

ij ij ij ijij ij ij ij
i j i j i j i j

b b b b b b b b
= = = = = =

+ = +∑ ∑ ∑ ∑ ∑ ∑  

and on canceling the first summations on each side, 

                                    
6 6

1 7 7 1

.
= = = =

=∑ ∑ ∑ ∑
n n

ij ijij ij
i j i j

b b b b  



But the right side is zero from the above, so the left side is 0 and so bij=0 for i=1,2…6 

and j>6. 

 From this it is evident that this procedure may be repeated and that if    

D=r1D1 ⊕ r2D2 ⊕ …⊕ rkDk. Where the Di are s-unitary and the ri non–negative real, as above, 

then B2=C1 ⊕ C2 ⊕ …⊕ Ck Conformable to D then riDiCi is s–normal so 

( )S

i i i i i i i i
D DC r D = C r D  is s-normal so B2D is s-normal. So B1F and so 

S S
UBU UAU and  BA. 

Theorem 5 

If A and B are con-s-normal then AB is s-normal iff 
S S

A AB BAA=  and 
S S

ABB B BA= (ie, iff each is s-normal relative to the other). 

Proof 

 If AB is s-normal, from the above 
2 2

S S

D DB B DD= so that 
1 1

S S

F FB B F F= or 

.
S S

A AB BAA=  

Similarly DB2 is s-normal, 
2 2 2 2 22 2 2

 
S S S S

DB B D B DDB so DB B B B D= =  or 

1 11 1

S S

FB B B B F= or .
S S

ABB B BA=  the converse is directly verifiable.  

Theorem 6 

 Let A and B be con-s-normal, if AB is s-normal, then A=LW=WL
S
 (with L  s-hermitian 

and W s-unitary) and 
s

B NW= . Where N is s-normal and S SL N NL= ; and conversely. 

Proof 

 As above, let 
r u

s s ssUAU F W DW w D ww D w= = = where Dr and Du are the 

 s-hermitian and s-unitary polar matrices of D) and ( )1 2 1 ... .
S S

K

s
UBU B W B W W C C W= = = ⊕ ⊕  

As in the proof of Theorem 3 if follows that for all i, 
S S

i i i ii i
DC C C C D=  and 

S S

ii i ii i

s s
U C C C C U=  with Ui as defined there, so that when 

S

i iiR D U= (where D, here, 

=r1D1 ⊕ r2D2 ⊕ …⊕ rkDk as earlier) then
S

i ii i i i i i i iC H U H R D with H R R H= = = .   

Then since, WDr=DrW, 
S SS

r u r u

s
UAU W D wW D w D W D w

 
= =  

 
  and 

( )

r u

S

u r

s s s
A U D U U w D wU LX

s s s
U w D wU U D U XL

  
= =  
  

 
= = 
 

 

with r

s
L U D U= s-hermitian and u

s s
X U w D wU=   s-unitary.  



Also, 
1 2 11 1 2 2

... k k k

s s s s s
UBU w H R D H R D H R D w N Y

 
= ⊕ ⊕ ⊕ = 

 
 

Where
1 1 21 2

... k k

s s s s
N w H R H R H R w

 
= ⊕ ⊕ ⊕ 

 
 is s-normal  and ( )1 2

...
k

s
Y w D D D w= ⊕ ⊕ ⊕

 

is s-unitary; then ( )( )1 1 .= = =
ss s sB U NYU U N U U YU NX  

  Where 1

sN U N U=  is s-normal and .u

s ss sX U YU U W D wU= =  Also 

1 1
1 1

sin ,r r r r

s sL N NL ce D N N D D N N D= = =  so ( )( ) ( )( )s s s s
ULU UNU UNU ULU= so 

s sL N NL= .  

The converse is immediate.  

4. Products of Con-s-Normal Matrices 

It is possible if A is s-normal and B con-s-normal that AB is con-s-normal. For 

example, any con-s-normal matrix C=HU=UH
S
 is such a product with A=H and B=U. Or if 

C=HU=UH
S
 and A=H, then AC=H

2
U=HUH

S
=U(H

S
)

2
 is con-s-normal. The following 

theorems clarify this matter.  

Theorem 7 

                 If A is s-normal and B is con-s-normal then AB is con-s-normal iff 

( ).Ss s s ss
ABB BB A and BAA A AB orB AA A AB= = =  

 (If one were to define N is s-normal with respect to M” to mean 

S S

N N M M N N= and Q is con-s-normal with respect to P to mean 
S S

PQQ Q QP=  the 

above theorem would say that if A is s-normal and B is con-s-normal then AB is con-s-normal 

iff (con-s-normal) B is s-normal with respect to A and (s-normal) A is con-s-normal with 

respect to B ). 

Proof 

             If the latter condition hold, then; ( ) ( )
S S S Ss

AB AB ABB A BB AA= =  and 

( ) ( )
SS S S SAB AB B A A B B BAA= =  which are equal. 

 Conversely, let AB be con-s-normal and let 
1 1 2 2 ...

k k

s
UAU D d I d I d I= = ⊕ ⊕ ⊕  where 

,  .d d d d i ji ji j
> >

 



( )1  ,
S S

Let UB U B bij= =
 

( )( ) ( ) ( ) 
S S S S SS

if AB AB ABB A AB B A AB AB= = =
 

 ,
S S S S

B A A B B AA B= =  

then ( )( ) ( )( )( )
S S S SS S S S S S Ss

UAU UB U U B U U A U UB U U AU U A U U BU
 

= 
 

 

So that 1 11 1

S S S

DB B D B DDB= .  

Equating secondary diagonal elements on each side of this relation, we get

 
1 1

 
n n

i ij j iji ij j ij

j j

d d b b d d b b
= =

=∑ ∑ , i=1,2,…n or  

( )
1

- 0
n

i j iji j ij

j

d d d d b b
=

=∑ . 

Let  
1 2 11 2 1

... l l ll
d d d d d d d d+ +

= = > then 0ijb =  for i=1,2… l  and 1, 2...j l l n= + +  

since B1 is con-s-normal, 
1 1

n n

ij jiij ji

j j

b b b b
= =

=∑ ∑ for  i = 1,2,…n on adding the first l  of these 

equation and canceling, 0ijb =  for i= 1, 2...nl l+ + and j=1,2,...,l . In this manner if 

1 1 2 2 ... t tD rD r D rD= ⊕ ⊕ ⊕ with 1i ir r +>  and Di s-unitary, then 1 1 2 ... tB C C C= ⊕ ⊕ ⊕
 

conformable to D.  

Since 
2 2 ,

S S S
S S S

i iii i i i i i i i i i ir D D r C r C C r C r D D r= = = for all i, 1 1

S S
S SDD B B DD=   and so 

1 1

S S S S S
S S SU DD UU B U U B UU DD U=  or 

S s
AA B BA A=  or 

S S
A AB BA A=  or 

SS
A AB BAA= . 

 Also, ( ) ( )1 1 1 11 1 1

S S S S S

D B B D B D D B DD B D D B B= = = so that ( ) ( )
S S

i ii ii i i i
C C r D r D C C=  

for i = 1,2…t. (if rt = 0, this is still true and Dt  may be chosen to be identity matrix). 

Therefore 1 11 1

S S S S

B B D D B B=  and 1

S S S S S S
S S S SU B U U B U U A U U A U UB U U B U= so 

S SS S S S
B B A A B B or AB B B B A= = . 

Corollary 1 

               Let A be s-normal, B con-s-normal; if AB is con-s-normal, then BA is con-s-normal, 

and conversely.              

 



Proof 

                From the above,  
1

S S S
UAU UBU DB=  is con-s-normal, and if ,r uD D D= D

r
 real 

and 
uD  s-unitary, then since  

( )1 1 1 1,
S S S S S

u u u u r u r uD D D DB D D B D B D D B D= = = =  is con-s-normal,  

as are S S
U BU U A U  and B A . Reversing the steps proves the converse. 

 If A is s-normal and B is con-s-normal, B A  is con-s-normal iff AB is con-s-normal, 

iff ( ) ( )
S

S
B B A A BB=  and ( ) ( )

S
S

A A B B AA= . Therefore if A is s-normal B is  

con-s-normal BA is con-s-normal iff ( ) ( )
S

S
B B A A BB=   and ( ) ( )

S
S

A A B B AA= that is 

replace A by A  in the proceeding or ( ) ( ) ( )
S S

S
B B A A BB A B B= =  and 

( ) ( )
S

S
A A B B AA= , thus exhibiting the fact that when AB is con-s-normal, BA is not 

necessarily so. 

Theorem 8 

 If A LW WL= = is s-normal and  
S

B KV VK= =  is con-s-normal (where L and K are 

s-hermitian and W and V  are s-unitary) then AB is con-s-normal iff ,
S

LK KL LV VL= = and 

WK KW= . 

Proof 

 If the three relations in the theorem hold, then AB LWKV LKWV= = , and 

( )
SS S SAB WLKV WKLV WKVL WVK L WV LK= = = = =  is con-s-normal since LK is              

s-hermitian and WV is s-unitary. 

Conversely, Let ( ) ( )
S S S

r uA U DU U D U U D U LW= = =  and 

 ( ) ( )( )1 1 1

S S S
SS

B U B U U K U U V U KV VK= = = =   

where 1K  and 1V  are s-hermitian and s-unitary and direct sums conformable to 
1

S
B  and D. A 

direct check shows that LK KL=  and ,
S

LV VL= also 1 1

S S

u uWK U D K U U K D U KW= = =  

since 1 11 1

S S

u uD B B B B D=  implies 1 1 .u uD K K D=  

 A sufficient condition for the simultaneous reduction of A and B is given by the 

following: 



Theorem 9 

 If A is s-normal, B is con-s-normal and S
AB BA= , then 

S

WAW D=  and 

S
WB W F= ,  the s-normal form of Theorem 1, where W is an s-unitary matrix; also AB is 

con-s-normal.                  

Proof 

                Let 
S

UAU D=  secondary diagonal and 
2

SUBU B= which is con-s-normal. Then 

S
AB BA=  implies 2 2 2 .

S
S S S S S

DB UAU UBU UBU UA U B D B D= = = =  

Let 1 1 2 2 .... K KD C I C I C I= ⊕ ⊕ ⊕ . Where the Ci are complex and 
i jC C≠  for 

i j≠ and 2B =
1 2 .... KC C C⊕ ⊕ ⊕  let iV  be s-unitary such that S

i i i i
V C V F= the real s-normal 

form of Theorem 1, and let 1 2 ... kV V V V= ⊕ ⊕ ⊕ .  

Then ,
S S

S SVUAU V D VUBU V F a= = =  direct sum of the iF . 

            Also,           S
AB BA=        implies      S S S

B A AB=          and so 

( ) ( ) .
S S S SS S S

ABB A AB B A B A AB AB AB= = =    

 It is also possible for the product of two s-normal matrices A and B to be con-s-normal 

if S
Q HU UH= =  is con-s-normal and if A U= and B H= this is so or if S

KV VK=  is 

con-s-normal and if A=UK=KU is s-normal with K s-hermitian and V  and U s-unitary, for 

( ) ( ) ( ), S
B V AB UK V K UV UV K= = = =  con-s-normal. But if in the first example, 

2
U H  is 

not s-normal then HU  is not con-s-normal so that BA is not necessarily con-s-normal though 

AB is. When A alone is s-normal an analog of Theorem 2 can be obtained which states the 

following: if A is s-normal, then AB and AB
S
 are con-s-normal iff 

,
S S

S SABB B BA BB A AB B= =  and 
S

SBAA A AB= . (The proof is not included here 

because of its similarity to that above) when B is con-s-normal, two of these conditions merge 

into one in Theorem 7. 

 It is possible for the product of two con-s-normal matrices to be con-s-normal but no 

such simple analogous necessary and sufficient conditions as exhibited above are available. 

This may be seen as follows two non-real complex commutative matrices S
P P=  and 

S
Q Q=  can form a con-s-normal (and non-real s-symmetric) matrix PQ which need not be  

s-normal. Then two s-symmetric matrices
- - 2 0

- 0 2

i i i
X Y

i i i

   
= =   
   

 are such that XY=Z is 

real, s-normal and con-s-normal (s-symmetric).   



Finally if U and V  are two complex s-unitary matrices of the same order, they can be 

chosen so UV is non-real that is complex, s-normal and con-s-normal. If A P X U= ⊕ ⊕  and 

B Q Y V= ⊕ ⊕ AB PQ XY UV= ⊕ ⊕  where A and B are con-s-normal as in AB  

(s-symmetric). A simple inspection of these matrices shows that relations on the order of 

( ) ( ) ( )
S S

S
B B A A BB BB A= =  and ( ) ( ) ( )

S S
S

A A B AA B B AA= =  do not necessarily hold; 

these are sufficient, however, to guarantee that AB is con-s-normal (as direct verification 

from the definition).  
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