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Abstract
Cancer is defined as a cumulative mutation of DNA sequences which are carried in the genetic map of a person’s DNA. The new field of Oncogenomics is dealing with the study of such processes. Our   conjectures are: Predicting cancer is a probabilistic problem and the probability of developing a certain type of cancer in the future is “embedded” and “written” in the Genome of every individual. There is high correlation between the probability of a specific set of oncogenes including mutations in the Genome and the probability of developing specific type of cancer.
First, the Lemma on the probability of a set of strings in a long sequence is presented. Next, we propose a new probabilistic paradigm that applies to cancer predicting.  The Lemma is applied to find the probability of subsets of oncogenes that with high probability are mapping to cancer types. An application of The Lemma in searching on DNA sequences yields an efficient way to calculate the probabilities of subsets of oncogenes. Eventually, the probability of a  subset of oncogenes is correlated with the probability of  predicting  cancer. Finally, we outline our algorithms which are our modest contributions to help to pave the way for prediction and treatment of cancer.
I. Introduction

1. Biomedical Approach
Humanity has faced a lot of health problems over the years and these have been the historical reasons for a high rate of mortality. Fortunately, a lot of them have been successfully researched and cures have been found for many. Advances in technology and computer science have greatly facilitated the research done in the fields of natural sciences, like medicine, biology, physics, mathematics, etc. However, the human struggle with some of them continues, and recently a great interest is being raised in finding a cure for cancer – one of the greatest modern morbidity risks.

A new branch of investigations in Genomics has been developed in the form of Oncogenomics. It is a very new area of genetic research that is concerned with the discovery of a set of cancer-specific genes and their dependencies in the human genome, which every person carries in their DNA. It has been found that every person carries a different set of genes that are specific to the development of a certain type of cancer. A different combination of these genes leads to different reactions of the human body to it, and the probability of it developing into a form of cancer depends on such settings which are yield by DNA mutations due to cancerous cells. Cancer is defined as a cumulative set of mutated genes from the normal DNA and therefore are not in accordance with the normal gene behavior. Heuristic classification methods were proposed by  (Furney et al-2008).
2.  Computational Background 
The material  is partially taken from   (Achuthsankar S. Nair, January 2007).
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Cells, as illustrated in figure 1, have a central core called Cells, as illustrated in figure 1, have a central core called nucleus, which is storehouse of an important molecule known as DNA. They are packaged in units known as chromosomes. DNA is a chain of 4 types of molecules, A, G, C and T. They are double stranded molecules as shown in figure 2, but informationally, we read the DNA from one strand alone, as the other side can be predicted. A G C and T always hook up in a predictable manner on the left and right strands: A always links with T, and C with G. 

Recall that DNA is packaged into units known as chromosomes. Humans have 23 pairs of it. They are together known as the genome, and today is known to be the blue-print of life. Genes are specific regions of the genomes (about 1%) spread throughout the genome, sometimes contiguous, many times non-contiguous. The study of the genome is known as “genomics”. 

RNAs are similar to DNA informationally, their major purpose is to copy information from DNA selectively and to bring it out of the nucleus to use it where it is designated to be. However there are other varieties of RNA which do different sort of things. RNA contains, like the DNA, 4 kinds of molecules – A G C and U, the last one replacing the T in DNA. The RNA is single stranded unlike the DNA and can also assume certain unique shapes.

Genomics is a big field, encompassing various studies of the genome. Computationally, it starts with sequence data, and attempt to answer questions like: Given a DNA sequence, where are the genes? (Gene Finding); How similar is the given sequence with another one? (Pair-wise Sequence Alignment); How similar are a set of given sequences? (Multiple Sequence   Alignment); Where on this sequence does another given bio-molecule bind? (Transcription factor binding site identification); How can we compress this sequence? How can we visualize this sequence insightfully?  (Genome browsing). 

The technique of sequence alignment which is widely applied in both genomics, deserves a special mention. It is all about writing two bio-sequences (DNA/RNA), one below the other, to highlight their similarity to the maximum extent possible. We can do this in English strings also. Consider the strings “Gates like cheese” and “Grated cheese”. If we write one below the other and compare letter for letter, we find only 2 letters matching, indicated by |.

As soon as we stretch the sequences to highlight similarity by inserting gaps, we find it more truthfully highlights similarity with 10 matches. Consider doing this on DNA sequences millions of letters long!
Similar ideas appear in Oncogenomics. We consider the DNA sequence as a long stationary ergodic process with finite value alphabet.  The DNA’s Alphabet is denoted as {A, T, C, G}.  Knowing this, we can take a DNA sequence that has been mutated due to cancer and then apply algorithms that  find subsets of genes in the DNA that match (approximately, with a certain probabilistic threshold) the given reference type of cancer. Therefore, we can find a few parameters: how often a match is found, meaning how much of the DNA has been modified by cancer; how accurate the matches are as compared to the given reference sequence (threshold values), meaning how developed the cancer is and how much time it takes for a first match to be found.  The algorithms are based on “Approximate String Matching” concept. A pair of strings (or blocks) are “Approximate Matching” subject to a Distance measure (like Hamming Distance), if the average distance between the two strings does not exceed a certain tolerance. The distance in a block is simply the sum of the distances in each letter of the block. 

The first steps in using “Approximate String Matching” for lossy source coding, including DNA sequences, were performed by [Sadeh -93], [Sadeh -96], [Sadeh -98] and  by [Sadeh -95]..Ilan Sadeh in his PhD research (1990 - 1992) has proposed the first universal lossy source coding algorithm based on approximate string matching that attains Shannon bound.  Sadeh has proposed a few suboptimal algorithms based on approximate string matching and applied for patents in Israel (1992) and USA (1993). Sadeh has shown an asymptotic expansion of the Shannon Bound by using Large Deviation Theory [Sadeh -98]. The fundamental theory of Approximate String Matching  and  applications in coding theory are presented in the papers by Sadeh, I.[  Sadeh -93],  [ Sadeh -95],  [Sadeh -96] and [Sadeh -98]. 

Further research has presented algorithms and techniques  used  to facilitate the searching for genetic information . One of the most exploited techniques for passing through the DNA sequences is string matching  (Tarhio, 1997). Subjects like: sequence analysis, sequence comparison, biocomplexity, Functional information, biomolecular messages and textual data compression were studied by (Adami- 2004), (Giancarlo- 2009),  (Konopka -2005), ( Hazen-2007), (Valimaki 2007), (Varre  1999), (Vinga - 2003), [ Zhen 2005, ]and (Campagne,  2012)  . Large projects have started dealing with creating databases of genetic information to serve the needs of genetic research (Kohutyuk, 2012).

In this paper, we describe an analytic procedure based on searching strings for finding the probability of a set of strings (oncogenes) and its application in the field of Oncogenomics. The definition of a set is general: it does not necessarily encompass approximate string matching or exact string matching, but any set of strings of any length and of different types. 

Furthermore of interest is the discovering of the most probable subsets of oncogenes and not only of a unique oncogene, and their correlation and relations to certain cancer cases. Discovering such patterns of sets of oncogenes that map to a certain cancer type can lead to a higher level of understanding causes of cancer and also developing specialized treatments in accordance with a particular set. 
 The numbers are: there are approximately 23,000 genes in humans, among them  about 70 are defined as "oncogenes".  

There are approximately 3.2 billion double-helix DNA base pairs within chromosomes.

Whereas heredity genetic diseases are typically caused by mutations in a single gene, most forms of cancer are caused by many mutations in many genes. It is also easier to genetically sequence blood samples used to get  a read on hereditary genetic diseases than it is to pull apart  and analyze the labyrinth of genetic  insertions, deletions, and other mutations  in pathways exploited by cancer tumors. 
Other important applications are based on DNA mutations, so-called genetic disorders, but simpler than cancer , are the following: Angelman syndrome, Color Blindness, Cystic Fibrosis, Down syndrome, Hemophilia, Polycystic Kidney Disease, Turner syndrome, etc.

II. The Lemma on the probability of a set of strings in a long sequence
The Lemma on the probability of a set of strings in a long sequence is an extension and a generalization of the Kac Lemma   (Kac, 1947), which lands on the ideas of Ozarow and Wyner (Wyner, 1989). Sadeh in his Ph.D. dissertation (1992) and later in  (Sadeh, 1996) has presented the Lemma in the context of approximate string matching in coding theory. We present the Lemma in a broader concept. This lemma provides a solid background on calculating the probabilities of sets of strings of different lengths and types in long sequences, and therefore it has a wider range of possible applications in different scientific branches. In order to understand this lemma, consider the following:
· v – is a finite-valued infinite stationary sequence.
· V – the alphabet upon which v is defined.
· vij  - is a sample sequence between positions i and j in the sequence v. 
· B – is any set of strings of length l taken from the space of all possible strings of length l, defined on the alphabet V; B C Vl such that Pr(B) > 0. 
· Yn – is a string of length l, starting at the position n, Yn = vnn+l-1, therefore we can state that two strings, Yn and Ym, are approximately matched with respect to B if Yn ∈ B, Ym ∈B. 
The conditional probability that an approximate match with respect to B will have its first occurrence at step k, is given by:
Qk (B) = Pr{Yk ∈ B; Yj ∉ B; 1 ≤ j ≤ k – 1 | Y0 ∈ B}.

The average reoccurence distance subject  to the set  B is defined by:
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The event that in the realizations of v we can find members of B is:
A = {Yn ∈ B for some n, -∞ < n < ∞}.

1. The  Lemma in Probabilistic Notation
The general form of the Lemma is given as:
Pr {A} = Pr {Y0 ∈ B} µ(B).
For a stationary ergodic process (a special case), we have:
1 = Pr {Y0 ∈ B} µ(B) = Pr{B} µ(B). 

2. Proof of the  Lemma
We slice the event A as follows:
A+ = {Yn ∈ B  for some n, 0 ≤ n ≤ ∞},
A- = {Yn ∈ B  for some n, -∞ ≤ n ≤ -1}.

Then,
A = A+ U A- = A+ A-  + A+ A-c + A+c A-
where + denotes the disjoint union. We first show that;
Pr{ A+ A-c} = Pr{ A+c A-} = 0.

From intuitive suggestion, it is obvious that during an ergodic process, in any infinite-length time slot, the event must occur. Taking the general and non-ergodic case into consideration, if the event A+ occurs, then there is the smallest
 j > 0, such that Yj ∈ B, and therefore, 
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However, because the sequence {Yn} is stationary, the summand does not depend on j, and must therefore vanish. Similarly, 
Pr{ A+ A-c} = Pr{ A+c A-} = 0.
If the two events A+ and A- occur, there must be the smallest  j > 0, such that Yj ∈ B, and the smallest k > 0, such that Y‑k∈B.  Thus,
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from the stationarity of Yn. 

For k > 1, Qi(B) which appears in the last summation exactly i times, that is, for (j, k) in (0, i), (1, i – 1)… (i – 1, 1). Thus,
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In particular, for stationary ergodic sources, we have:
1 = Pr{Y0 ∈ B}µ(B) = Pr{B}µ(B).

The exact matching of a single string in a stationary and ergodic process, is extended to a more general case of matching a certain member of a specific set of strings in any stationary process, including a non-ergodic process.

Hereby, it should be emphasized that despite the set of strings being defined of equal length, it can be easily extended to a set of strings of different length. The longest string in the set has to be chosen, and for all other members of the set, we define such longer strings with arbitrary (“don’t care”) letters over the alphabet (any letter over the given alphabet would be accepted). In this way, all the strings of the set are equalized in length, and then the same algorithm can be applied to them. 
III. Principles of Oncogenomics
1. Cancer Initiation
In the general case, there are three known ways cancer can be initiated in the human body. Two of these are related to the encoding of proteins in genes, and the third one occurs as an alteration of the microRNA. From the genetic standpoint, there are two types of genes that carry cancer information and if altered, they can cause cancer; those being the tumor-suppressor genes and the oncogenes. An activation of an oncogene, followed by change of function of a tumor-suppressor gene, is one way to cause cancer.  Croce (2008)  stated “In contrast, most carcinomas are initiated by the loss of function of a tumor-suppressor gene, followed by alterations in oncogenes and additional tumor-suppressor genes”. The microRNA genes, on the other side, do not encode proteins, and “the microRNA blocks protein translation or causes degradation of the mRNA (Messenger RNA)” (Croce, 2008]. Any alterations of these genes cause the occurrence of new, carcinoma types of genes which are responsible for the appearance of cancer. Cancer cells, like other cells in the body, are kept together by Focal Adhesion and once these cells lose adhesion, metastasis of cancer start to develop  (Bendas,  2011). 

The following lines are important conclusions retrieved from the Oncogenes and Cancer article by Croce, (2008)
. We are making use of these important findings in cancer initiation primarily because of their importance for the key points of our proposed research. All of these points illustrate the medical and biological sequence of states that happen in cancer initiation and progression. Since, from our point of view, we are approaching the probabilistic side of oncogenomics, we consider it important to put a stronger basis on it using some biomedical information about the matching of oncogenes in initiation of cancer. Croce’s findings that are of relevance here are the following:
· “The first evidence that cancer arises from somatic genetic alterations came from studies of Burkitt's lymphoma, in which one of three different translocations juxtaposes an oncogene, MYC, on chromosome 8q24 to one of the loci for immunoglobulin genes.”
· “The cloning and characterization of the chromosomal breakpoints that are characteristic of follicular lymphomas and some diffuse large B-cell lymphomas have shown a juxtaposition of theBCL2 oncogene to enhancer elements in the immunoglobulin heavy-chain locus, resulting in deregulation of BCL2.”
· “Chromosomal translocations often activate transcription-factor genes in lymphoid cancers and sometimes do so in solid tumors (e.g., prostate cancer).”
· “In Ewing's sarcoma, for example, the EWS gene is fused with one of a number of partner genes, resulting in aberrant transcriptional activity of the fused proteins. The EWS protein is an RNA-binding molecule with a domain that, when fused to a heterologous DNA-binding domain, can greatly stimulate gene transcription.”
· “Prostate carcinomas carry translocations of the TMPR552 gene that fuse with and activate ERG1 or ETV1. The fusion ofTMPR552, which has androgen-responsive promoter elements, with an ETS-related gene creates a fusion protein that increases proliferation and inhibits apoptosis of cells in the prostate gland, thereby facilitating their transformation into cancer cells.”
· “The fusion of ALL1 with 1 of more than 50 proteins results in the formation of the chimeric proteins that underlie acute lymphoblastic leukemia and acute myelogenous leukemia.”
· “In many tumors, a deletion of the ligand-binding domain of epidermal growth factor receptor (EGFR). Activating mutations occur in three other members of the EGFR family — ERBB2, ERBB3, and ERBB4 — and within the kinase domains of the HER2/neu and KIT signaling receptors. Such mutations occur in lung and breast cancer and gastrointestinal stromal tumors.”
· “Gastrointestinal stromal tumors that carry activating mutations of KIT respond to imatinib or other inhibitors of these receptor kinases.”
· “The BCL2 gene, which is involved in the initiation of almost all follicular lymphomas and some diffuse large B-cell lymphomas, encodes a cytoplasmic protein that localizes to mitochondria and increases cell survival by inhibiting apoptosis. BCL2 is also important in chronic lymphocytic leukemia and lung cancer.”
· “Mutation of oncogenes in the RAS family has been associated with exposure to environmental carcinogens. Mutations of KRAS are common in carcinomas of the lung, colon, and pancreas, whereas mutations of NRASoccur principally in acute myelogenous leukemia and the myelodysplastic syndrome.”
· “An example of gene amplification, which usually occurs during tumor progression, is the amplification of the dihydrofolate reductase gene (DHFR) in methotrexate-resistant acute lymphoblastic leukemia.”
· “MYC is amplified in small-cell lung cancer, breast cancer, esophageal cancer, cervical cancer, ovarian cancer, and head and neck cancer, whereas amplification of NMYC correlates with an advanced tumor stage.”
· “The t(11;14) translocation juxtaposes CCND1 and immunoglobulin enhancer elements and is characteristic of mantle-cell lymphoma. CCND1 amplification also occurs in breast, esophageal, hepatocellular, and head and neck cancer.”
· “EGFR (ERBB1) is amplified in glioblastoma and head and neck cancer. Amplification of ERBB2 (also called HER2/neu) in breast cancer correlates with a poor prognosis.”
2. Mapping of a Subset of Oncogenes to Cancer Types
The basic assumption of Oncogenomics is the existence of one-to-one mapping between oncogenes or tumor-suppressor genes to cancer types. Such mapping is predicting clinical outcome of cancer with high probability. For example:  breast cancer (Herschkowitz 2012).

Our conjecture is:   there is a correlation  between the probability  of a subset of oncogenes or tumor-suppressor genes to  the probability of outcome  of a certain cancer type. This means that only a subset of such genes in the DNA sequence with probability above a certain probability, is predicting the clinical outcome of cancer with a high probability. The mapping is not unique in the sense that members of one subset which is associated to one cancer type might be included in another subset associated to another cancer type.
We summarize the  conjectures:

1. Predicting cancer is a probabilistic problem.
2. The probability of developing a certain type of cancer in the future is “embedded” and “written” in the Genome of every individual.
3. There is high correlation between the probability of  a specific set of oncogenes in the Genome and the probability of developing  specific type of cancer.
Unfortunately, most forms of cancer are caused by many mutations in many genes. Our goal is to find the probabilities   of all subsets of genetic insertions, deletions, and other mutations exploited by cancer tumors. These probabilities are supposed to be correlated with the probabilities of developing  specific types of cancer. The more pieces we put into  place, the better our understanding is and the closer we are to the cure.
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Figure 3: Mapping oncogene sets to cancer types
Figure 3 illustrates a few of the many cases of mapping of specific oncogene sets to different cancer types. The arrow representing the mapping also indicates that there is an ongoing process in between the gene and cancer types. These processes are usually biological and thus not of the main relevance here, but they have to be considered for the accuracy of the whole process of mapping.

3. The Probabilistic Approach in Mapping Subsets of Oncogenes to Cancer Types
We would like to generalize this study to a probabilistic paradigm where there are mappings between subsets of oncogenes or non-functioning tumor suppressor genes to cancer types with a high probability. That is, a probability of a subset of oncogenes in the DNA sequence  is correlated with the probability of predicting clinical outcome of cancer type. The mapping is such that members of one subset which is associated to one cancer type might be included in another subset associated to another one.

The multi-step process of sequential alterations in several, often many, oncogenes, tumor- suppressor genes, or microRNA genes in cancer cells, should be described in terms of a sequence of events of sets of genes. It is probably a highly complicated task to determine the probability of the sequential processes. 
However, the Lemma on the probability of a set of strings in a long sequence, can be useful to calculate the probabilities of those particular sets of genes, by searching the set in the DNA and repeatedly calculating the average index of first appearance of those sets in the DNA sequence.

We consider the DNA sequence as a long stationary ergodic process with finite value alphabet.  The DNA’s Alphabet is denoted as {A, T, C, G}. These are known as the four hydrogen bases of DNA, and their names stand for: Adenine, Thymine, Cytosine, and Guanine. There are some specific rules that apply to this alphabet, and they are the following: A only bonds to T, and C only bonds to G. 

Determining different probabilities for each subset of oncogenes in a particular DNA sequence is almost impossible because of the extremely high computational burden which is required. The number of all possible subsets is 2n, where n is the number of oncogene. From this, the application of the Lemma in this case is obvious. This Lemma provides a relatively simple way for evaluation of the probability of a subset of oncogenes, making use of a partial search for the first repetition from a few  randomly chosen starting points, in a particular DNA sequence of interest. Finding the average repetition  distance , tr, for the occurrence of a desired match implies that the probability of the set of oncogenes is:
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IV. Practical Applications.
Oncogenomics is a recently identified field in Genetics that deals with cancer-specific genes and their dependencies in mapping to specific cancer types. Discovering the probabilities of such sets of genes is of great importance to predicting clinical outcomes of cancer with high probabilities. 

4. The Algorithm for finding the Probabilities of  Subsets of Oncogenes. 
We assume that DNA sequences can be considered as ergodic and stationary processes during the search. The basic algorithm is the following:

1. Given is a subset of oncogenes in a particular DNA sequence.  That subset is one of all possible subsets. The total number of possibilities to choose a subset  is 2n, where n is the number of oncogenes. 
2. The Lemma provides a relatively simple way for evaluation of the probability of a subset of oncogenes. Given the DNA sequence, search for the first repetition from a few  randomly chosen starting points on the sequence. 
3. Find the average repetition “distance” tr, for the occurrence of a  match of an oncogene – a  member of the subset. Calculate the probability of the set of oncogenes :
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 The following algorithm is useful during the research and hopefully later for using in pre – diagnosis of cancer. The idea is that all babies will pass such a test on their DNA and will have a profile of all risks of cancer.

5. Using the  Algorithm for finding the Probabilities of  Subsets of Oncogenes in Research. 
1. During the ongoing research: It is important to find what are the most probable   subsets of oncogenes (not only a unique oncogene) and what are the correlation and relations of that subsets to certain Cancer cases based on statistical tests on large number of Cancer cases (Cancer Group) and Non-Cancer cases of DNA (Non-Cancer Group). The Lemma on the probability of a set of strings in a long sequence can be applied to estimate the probability of a certain subset of genes in case of the Cancer Group and in contrast, the probability of that subset in the Non-Cancer Group.

2. Given a DNA sequence we will use the algorithm  to identify, categorize and find the probabilities of the subsets of oncogenes. It is recommended to create a list of all probable subsets of oncogenes and accumulation of mutations to DNA in a particular DNA sequence.

Such study will pave the way to understand and analyze the relations between certain sets of oncogenes and the various types of cancer.
6.   Algorithm for Predicting Cancer. 
Assuming after a comprehensive research  we obtain a table of correlations and probabilities associated to each subset of oncogenes and types of cancer. Then commercial use is possible. Every baby will pass such test on his/her DNA. The results will determine the risks of cancer and will be considered as reliable PREDICTION OF DEVELOPING  CANCER.

1.  If and only if the probability of a certain subset of oncogenes and accumulation of mutations to DNA in a particular DNA sequence, is above a certain threshold, then it is predicting clinical outcome of cancers with high probability. For this purpose, the algorithm above  can be applied. Otherwise, it is almost impossible because of the extremely high computational burden of calculating probabilities for each subset of oncogenes in a particular DNA sequence. The number of all possible subsets is 2n (n - number of oncogenes). It is practically impossible to calculate all probabilities for all possible subsets in a DNA sequence. It is impossible to do it for many patients.
2.  The identification of oncogenes involved in the initiation and progression of tumors has generated targets for the development of new anticancer drugs. The algorithm above,  gives a relatively simple way to identify the most frequent sets of oncogenes and evaluate the probability of the subset of oncogenes after a partial search  for the first repetition from a few  randomly chosen starting points, in a particular DNA sequence, and finding the average first repetition time of the subset.
3.  The discovery of the involvement of microRNAs in the initiation and progression of human cancer may provide additional targets for anticancer treatments. The algorithm above,  gives a relatively simple way to identify the most frequent sets of microRNAs and evaluate the probability of the subset of microRNAs after a search from a few randomly chosen starting points and finding the average first repetition time of the subset.
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�Figure 1.  A schematic of the Cell.





Figure 2.  The Chromosome and the DNA. 








�	 We disclaim any author rights to the content cited in this paper. All of the citations in italic and quotation marks are part of the work of Croce (2008) and are recalled here, a credit is given for that. We are only making use of some important cited points from the author’s article in order to establish a better understanding of the problem presented in our paper.
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