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Abstract

This paper focuses on the study of three dimensional real hypersurfaces in non-flat complex space
forms whose ∗-Ricci tensor satisfies conditions of parallelness. More precisely, extension of existing re-
sults concerning real hypersurfaces with vanishing, semi-parallel and pseudo-parallel ∗-Ricci tensor in case
of ambient space being the complex hyperbolic space are provided. Furthermore, new results concerning
ξ-parallelness of ∗-Ricci tensor of real hypersurfaces in non-flat complex space forms are presented.

1 INTRODUCTION

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sectional curvature c. A
complete and simply connected complex space form is complex analytically isometric to complex projective
space CPn if c > 0, or to complex Euclidean space Cn if c = 0 or to complex hyperbolic space CHn if c < 0.
The complex projective and complex hyperbolic spaces are called non-flat complex space forms, since c 6= 0
and the symbol Mn(c) is used to denote them when it is not necessary to distinguish them.

A real hypersurface M is an immersed submanifold with real co-dimension one inMn(c). The Kähler struc-
ture (J,G), where J is the complex structure and G is the Kähler metric of Mn(c), induces on M an almost
contact metric structure (ϕ, ξ, η, g). The vector field ξ is called structure vector field and when it is an eigen-
vector of the shape operator A of M the real hypersurface is called Hopf hypersurface and the corresponding
eigenvalue is α = g(Aξ, ξ).

The study of real hypersurfaces M in Mn(c) was initiated by Takagi, who classified homogeneous real
hypersurfaces in CPn and divided them into six types, namely (A1), (A2), (B), (C), (D) and (E) in [15].
These real hypersurfaces are Hopf ones with constant principal curvatures. In case of CHn the study of real
hypersurfaces with constant principal curvatures was started by Montiel in [9] and completed by Berndt in [1].
They are divided into two types, namely (A) and (B), depending on the number of constant principal curvatures
and they are homogeneous and Hopf hypersurfaces.

Many geometers have studied real hypersurfaces in non-flat complex space forms when certain geometric
conditions are satisfied. An important condition is that of the shape operator A commuting with the structure
tensor ϕ. More precisely, the following Theorem owed to Okumura in case of CPn ([12]) and to Montiel and
Romero in case of CHn ([10]) plays an important role in the proof of other Theorems.

Theorem 1.1 Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aϕ = ϕA, if and only if M is locally
congruent to a homogeneous real hypersurface of type (A). More precisely
in case of CPn
(A1) a geodesic hypersphere of radius r , where 0 < r < π

2 ,
(A2) a tube of radius r over a totally geodesic CP k,(1 ≤ k ≤ n− 2), where 0 < r < π

2 .

Keywords: Real hypersurfaces, ∗-Ricci tensor, ξ-parallel, Semi-parallel, Pseudo-parallel, Non-flat complex space
forms.

Mathematics Subject Classification (2010): Primary 53C40; Secondary 53C15, 53D15.

1



2 G. Kaimakamis and K. Panagiotidou

In case of CHn

(A0) a horosphere in CHn, i.e a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CHn−1,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

Generally, the Ricci tensor S, of a Riemannian manifold is given by the relation

S(X,Y ) = trace{Z → R(Z,X)Y },

where X , Y are tangent vectors on M . The same definition holds for real hypersurfaces in non-flat complex
space forms. Real hypersurfaces inMn(c), n ≥ 2, in terms of their Ricci tensor satisfying geometric conditions
such as parallelness and commutativity with other tensor fields of real hypersurfaces have been studied. A
review of known results concerning the Ricci tensor of the real hypersurfaces can be viewed in [11].

In [2] Hamada, motivated by Tachibana‘s work in [14], where the ∗-Ricci tensor of almost Hermitian
manifolds is defined, introduced the latter notion in case of real hypersurfaces in non-flat complex space forms.
Therefore, the ∗-Ricci tensor S∗ is given by

S∗(X,Y ) =
1

2
trace(Z → R(X,ϕY )ϕZ),

where X , Y are tangent vectors on M .
Motivated by the work that has been done in case of studying real hypersurfaces in terms of their Ricci

tensor, the authors began to study real hypersurfaces in non-flat complex space forms in terms of their ∗-
Ricci tensor. More precisely, in [6] real hypersurfaces in M2(c) with parallel ∗-Ricci tensor, i.e. (∇XS∗)Y =
0, for any tangent vectors X , Y on M were classified. In [7] conditions of semi-parallel ∗-Ricci tensor, i.e.
(R(X,Y ) · S∗)Z = 0, and pseudo-parallel ∗-Ricci tensor, i.e. (R(X,Y ) · S∗)Z = L{[(X ∧ Y ) · S∗]Z}, with
L being a non-zero function, were studied for real hypersurfaces in CP 2 .

The aim of the present paper is to provide an analytic proof and extension of the existing results included in
Theorems 2 and 3 in [7] in case of real hypersurfaces in CH2 . More precisely, the following results are proved

Theorem 1.2 The only real hypersurface with semi-parallel ∗-Ricci tensor is the geodesic hypersphere in
CH2 with coth(r) = 2.

Theorem 1.3 Every real hypersurface in M2(c) with pseudo-parallel ∗-Ricci tensor is a Hopf hypersurface.
Furthemore, M is locally congruent to either a real hypersurface of type (A) or to a Hopf hypersurface satisfying
relation Aξ = 0, with L constant.

Furthermore, in this paper the condition of ξ-parallel ∗-Ricci tensor, i.e.

(∇ξS∗)X = 0, for any tangent vector X on M , (1.1)

is studied and the following Theorem is proved

Theorem 1.4 Every real hypersurface in M2(c) with ξ-parallel ∗-Ricci tensor is a Hopf hypersurface. More-
over, M is locally congruent to i) a real hypersurface of type (A) or ii) to a Hopf hypersurface with Aξ = 0
or iii) to a Hopf hypersurface whose principal curvatures corresponding to the holomorphic distribution are
constant in the direction of ξ.

This paper is organized as follows: In Section 2 basic relations and results about real hypersurfaces in
M2(c) are given. In Section 3 analytic proofs of Theorems 1.2 and 1.3 are presented. Finally, in Section 4 proof
of Theorem 1.4 is provided.
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2 PRELIMINARIES

Throughout this paper all manifolds, vector fields etc are assumed to be of class C∞ and all manifolds are
assumed to be connected. Furthermore, in case of CP 2 we have c = 4 and in case of CH2 we have c = −4.

Let M be a real hypersurface without boundary immersed in a non-flat complex space form (Mn(c), G)
with complex structure J of constant holomorphic sectional curvature c. Let N be a locally defined unit normal
vector field on M and ξ = −JN be the structure vector field of M . For any vector fieldX tangent to M relation

JX = ϕX + η(X)N

holds, where ϕX and η(X)N are respectively the tangential and the normal component of JX . The Rieman-
nian connections∇ in Mn(c) and ∇ in M satisfy the relation

∇XY = ∇XY + g(AX,Y )N,

where g is the Riemannian metric induced from the metric G and for any vector fields X , Y on M .
The shape operator A of the real hypersurface M in Mn(c) with respect to N is defined by

∇XN = −AX.

An almost contact metric structure (ϕ, ξ, η, g) is induced on M from J of Mn(c), where ϕ is a tensor field of
type (1,1) and is called structure tensor and η is an 1-form. The following relations hold

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N),

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).

Moreover, J being parallel implies∇J = 0 and this leads to

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.

The ambient spaceMn(c) is of constant holomorphic sectional curvature c and this results in Gauss and Codazzi
equations are respectively given by

R(X,Y )Z =
c

4
[g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX (2.1)

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ], (2.2)

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields on M .
The tangent space TPM at every point P ∈ M is decomposed as

TPM = span{ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomorphic distribution (if n ≥ 3).
Due to the above decomposition the vector field Aξ can be written

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ ker(η) is a unit vector field, provided that β 6= 0.

Next, the following results concern any non-Hopf real hypersurface M in M2(c) with local orthonormal
basis {U,ϕU, ξ} at a point P of M .



4 G. Kaimakamis and K. Panagiotidou

Lemma 2.1 Let M be a non-Hopf real hypersurface in M2(c) . The following relations hold on M

AU = γU + δϕU + βξ, AϕU = δU + µϕU, Aξ = αξ + βU (2.3)

∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ, ∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ, ∇ϕUϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Remark 2.2 The proof of Lemma 2.1 is included in [13].

The Codazzi equation (2.2) for X ∈ {U,ϕU} and Y = ξ because of Lemma 2.1 implies

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2, (2.4)

(ϕU)α = αβ + βκ3 − 3βµ, (2.5)

(ϕU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ, (2.6)

and for X = U and Y = ϕU

Uδ − (ϕU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ. (2.7)

Similar calculations to those of Theorem 2 in [5] imply that the ∗-Ricci tensor of M in M2(c) since the
ambient space is of constant holomorphic sectional curvature c and n = 2 is given by

S∗X = −[cϕ2X + (ϕA)2X], for X ∈ TM. (2.8)

If M is a non-Hopf real hypersurface in M2(c) and {U,ϕU, ξ} is a local orthonormal basis of it at some point
P , the ∗-Ricci tensor for X ∈ {U,ϕU, ξ} due to (2.3) and (2.8) takes the form

S∗ξ = βµU − βδϕU, S∗U = (c+ γµ− δ2)U and S∗ϕU = (c+ γµ− δ2)ϕU. (2.9)

Finally, the following Theorem which in case of CPn is owed to Maeda [8] and in case of CHn is owed to
Montiel [9] (also Corollary 2.3 in [11]) is provided.

Theorem 2.3 Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
i) α is constant.
ii) If W is a vector field which belongs to D such that AW = λW , then

(λ− α

2
)AϕW = (

λα

2
+
c

4
)ϕW.

iii) If the vector field W satisfies AW = λW and AϕW = νϕW then

λν =
α

2
(λ+ ν) +

c

4
. (2.10)

Remark 2.4 In case of three dimensional Hopf hypersurfaces we can always consider a local orthonormal
basis {W,ϕW, ξ} at some point P ∈ M such that AW = λW and AϕW = νϕW . So relation (2.10) holds.
Furthermore, the ∗-Ricci tensor for X ∈ {W,ϕW, ξ} satisfies the relation

S∗ξ = 0, S∗W = (c+ λν)W and S∗ϕW = (c+ λν)ϕW. (2.11)
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3 PROOF OF THEOREMS 1.2 AND 1.3

Before proving Theorems 1.2 and 1.3 the extension of Theorem 5 in [7] in case of real hypersurfaces in CH2 is
given. More precisely, we obtain the following Theorem

Theorem 3.1 The only real hypersurface with vanishing ∗-Ricci tensor is the geodesic hypersphere in CH2 with
coth(r) = 2.

In order to prove that every real hypersurface in M2(c) with vanishing ∗-Ricci tensor, i.e. S∗X = 0, for
any X ∈ TM is a Hopf one, we follow the same steps as in the proof of Theorem 5 in [7]. The case of
Hopf hypersurfaces in CP 2 with vanishing ∗-Ricci tensor is also included in the above proof. So it remains to
examine the case of real hypersurfaces in CH2 in order to complete the proof of Theorem 3.1 of the present
paper.

Since M is a Hopf hypersurface in M2(c) Theorem 2.3 and remark 2.4 hold. Since S∗ = 0 relation (2.11)
implies that

c+ λν = 0.

The above relation taking into account relation (2.10) yields that the real hypersurface has constant principal
curvatures and this leads to the conclusion that a real hypersurface with vanishing ∗-Ricci tensor is locally
congruent to a real hypersurface of type (A) or type (B).

The following matrix includes the eigenvalues corresponding to three dimensional real hypersurfaces in
CH2 according to [1]. The type (A1,1) refers to a geodesic hypersphere and the type (A1,2) refers to a tube over
a totally geodesic complex hyperbolic hyperplane CH1.

Type α λ ν mα mλ mν

(A0) 2 1 - 1 2 -
(A1,1) 2coth(2r) coth(r) - 1 2 -
(A1,2) 2coth(2r) tanh(r) - 1 2 -
(B) 2tanh(2r) tanh(r) coth(r) 1 1 1

Substitution of the above eigenvalues in relation c + λν = 0 and because of c = −4 leads to the conclu-
sion that only the eigenvalues of the geodesic hypersphere satisfies the latter. Furthermore, the radius r of the
geodesic hypersphere satisfies the relation coth(r) = 2.

3.1 Semi-parallel ∗-Ricci tensor

The ∗-Ricci tensor is called semi-parallel when (R(X,Y ) · S∗)Z = 0, where R is the Riemannian curvature
and acts as derivation on S∗. More analytically, the above relation is written

R(X,Y )S∗Z − S∗(R(X,Y )Z) = 0⇒ R(X,Y )S∗Z = S∗(R(X,Y )Z), (3.1)

where X , Y and Z are any tangent vectors on M .
Let N be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

The inner product of relation (3.1) for X = U , Y = ϕU and Z = U with ϕU , due to (2.1) and (2.9) yields

δ = 0,

and relation (2.9) becomes

S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU. (3.2)
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Furthermore, relation (3.1) for X = ϕU , Y = ξ and Z = ϕU due to (2.1) and (3.2) implies

µ(
c

4
+ αµ) = 0 and (c+ γµ)(

c

4
+ αµ) = 0.

Suppose that c4 6= αµ then the first of the above relations implies that µ = 0 and the second due to the latter
results in c = 0, which is a contradiction.

Therefore, on N relation c
4 + αµ = 0 holds. The inner product of relation (3.1) for X = U , Y = ξ and

Z = U with U because of (2.1) and (3.2) yields

µ(
c

4
+ αγ − β2) = 0.

If c
4 + αγ 6= β2 then we obtain µ = 0 and relation c

4 + αµ = 0 leads to c = 0, which is a contradiction. So
on N relation c

4 + αγ = β2 holds.
The structure Jacobi operator l = Rξ of a real hypersurface in Mn(c), n ≥ 2 is defined by

lX = RξX = R(X, ξ)ξ.

In case of non-Hopf hypersurfaces M in M2(c) taking into account relations (2.1) and (2.3) the structure Jacobi
operator is given by

lU = (
c

4
+ αγ − β2)U + αδϕU, lϕU = αδU + (

c

4
+ αµ)ϕU and lξ = 0.

Since δ = 0, c4 + αµ = 0 and c
4 + αγ = β2 we obtain

lU = lϕU = lξ = 0.

It is known that there do not exist real hypersurfaces in Mn(c) , n ≥ 2, with vanishing structure Jacobi
operator (see Lemma 9 [3]). Thus, N is empty and the following Proposition is proved

Proposition 3.2 Every real hypersurface in M2(c) whose ∗-Ricci tensor is semi-parallel is a Hopf hypersur-
face.

Since M is a Hopf hypersurface Theorem 2.3 and remark 2.4 hold. The case of Hopf hypersurfaces in
CP 2 with semi-parallel ∗-Ricci tensor has been analytically studied in [7]. It remains the case of Hopf hyper-
surfaces in CH2 with c = −4. Relation (3.1) for X = W , Y = ξ and Z = W and for X = ϕW , Y = ξ and
Z = ϕW because of relations (2.1) and (2.11) implies

(λν − 4)(αλ− 1) = 0 and (λν − 4)(αν − 1) = 0. (3.3)

Combination of the above relations implies that

α(λ− ν)(4− λν) = 0.

Suppose that α(λ − ν) = 0 then we have two cases either α = 0 or λ = ν. If α = 0 then relation (2.10)
implies λν = −1. Substitution of the latter relation in the first of (3.3) leads to−5 = 0, which is a contradiction.
If λ = ν then the shape operator A commutes with the structure tensor ϕ and because of Theorem 1.1 M is
locally congruent to a real hypersurface of type (A). Moreover, the combination of relations (2.10) and the first
of (3.3) implies λ2(λ2 − 4) = 0. Because of the matrix in section 3 we conclude that λ2 = 4 and this occurs in
case of geodesic hypersphere in CH2 .

Finally, if λν = 4 then relation (2.11) implies that the ∗-Ricci tensor vanishes and owing to Theorem 3.1
we conclude that M is a geodesic hypersphere and this completes the proof of Theorem 1.2
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3.2 Pseudo-parallel ∗-Ricci tensor

The ∗-Ricci tensor is called pseudo-parallel when (R(X,Y ) · S∗)Z = L{[(X ∧ Y ) · S∗]Z}, where R is the
Riemannian curvature and acts as derivation on S∗ and L is a non-zero function. More analytically, the above
relation is written

R(X,Y )S∗Z − S∗(R(X,Y )Z) = L{g(Y, S∗Z)X − g(X,S∗Z)Y − S∗[g(Y, Z)X − g(X,Z)Y ]}, (3.4)

where X , Y and Z are any tangent vectors on M .
We consider N be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

The inner product of relation (3.4) for X = U , Y = ϕU and Z = U with ϕU because of (2.1) and (2.9)
yields

δ = 0,

and relation (2.9) becomes

S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU. (3.5)

Relation (3.4) for X = U , Y = ϕU and Z = ξ because of (2.1) and (3.5) yields

µ = 0.

Moreover, relation (3.4) for X = ϕU , Y = ξ and Z = ϕU due to (2.1) and (3.5) implies

c

4
= L.

Relation (3.4) for X = U , Y = ξ and Z = U due to (2.1), (3.5), µ = 0 and c
4 = L yields

αγ = β2.

On N relation (2.4), (2.5), (2.6) and (2.7) because of δ = µ = 0 become

γκ3 = βκ1 +
c

4
,

(ϕU)α = β(α+ κ3),

(ϕU)β = β2 + βκ1 +
c

2
,

(ϕU)γ = κ1γ + βγ.

Differentiation of αγ = β2 with respect to ϕU and taking into account all the above relations results in
c = 0 which is a contradiction.

Thus, N is empty and the following Proposition is proved

Proposition 3.3 Every real hypersurface in M2(c) whose ∗-Ricci tensor is pseudo-parallel is a Hopf hyper-
surface.

Since M is a Hopf hypersurface, Theorem 2.3 and remark 2.4 hold. The case of Hopf hypersurfaces in
CP 2 with pseudo-parallel ∗-Ricci tensor has been extensively studied in Theorem 3 in [7]. It remains the case
of Hopf hypersurfaces in CH2 with c = −4. Relation (3.4) for X = W , Y = ξ and Z = W because of
relations (2.1) and (2.11) implies

(λν − 4)(αλ− 1− L) = 0.
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Suppose that λν = 4 then relation (2.11) yields S∗X = 0, for any vector field X tangent to M . The
only real hypersurface with vanishing ∗-Ricci tensor because of Theorem 3.1 is the geodesic hypersphere in
CH2 with coth(r) = 2.

Next case L = αλ − 1 is examined. Relation (3.4) for X = ϕW , Y = ξ and Z = ϕW because of (2.1)
and (2.11) implies

(λν − 4)(αν − 1− L) = 0.

Suppose that λν = 4, then relation (2.11) implies that S∗ = 0 and due to Theorem 3.1 M is geodesic
hypersphere. Secondly, if L = αν − 1 combination of the latter relation with L = αλ− 1 results in

α(λ− ν) = 0.

Thus, on M either α = 0 or λ = ν. If α = 0 then M is locally congruent to a real hypersurface in CH2 with
Aξ = 0 (for the construction of these real hypersurfaces see [4]). If λ = ν it implies that the shape operator A
commutes with the structure tensor ϕ and because of Theorem 1.1 it is concluded that M is locally congruent
to a real hypersurface of type (A) in CH2 .

Conversely, it is easily proved that the ∗-Ricci tensor of the previous real hypersurfaces in CH2 have
pseudo-parallel ∗-Ricci tensor and that L is constant given by L = αλ − 1 and this completes the proof of
Theorem 1.3.

4 PROOF OF THEOREM 1.4

Let M be a real hypersurface in M2(c) whose *-Ricci tensor is ξ-parallel. More analytically, relation (1.1) is
written

∇ξ(S∗X) = S∗(∇ξX), for any X ∈ TM . (4.1)

Let N be the open subset of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

On N the inner product of relation (4.1) for X = ξ with ξ and ϕU because of (2.9) and relations of Lemma
2.1 implies respectively

δ = 0 and µκ3 = c+ γµ. (4.2)

So relation (2.9) becomes

S∗ξ = βµU, S∗U = (c+ γµ)U and S∗ϕU = (c+ γµ)ϕU. (4.3)

The inner product of relation (4.1) for X = ϕU with U due to relation (4.3) and relations of Lemma 2.1
yields

µ = 0.

Substitution of the above relation in the second of (4.2) results in c = 0 which is a contradiction. Therefore, the
following Proposition has been proved.

Proposition 4.1 Every real hypersurface in M2(c) with ξ-parallel ∗-Ricci tensor is a Hopf hypersurface.

Since M is a Hopf hypersurface Theorem 2.3 and remark 2.4 hold. Relation (4.1) forX =W due to relation
(2.11) and ∇ξW = κW , where κ = g(∇ξW,W ) and g(∇ξW,W ) = g(∇ξW, ξ) = 0 implies

ξ(λν) = 0.
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Differentiating relation (2.10) with respect to ξ and taking into account the fact that α is constant and the
above relation we lead to

α[ξ(λ+ ν)] = 0.

Suppose that α 6= 0 then the above relation implies (ξλ) = −(ξν). Substituting the last one in relation
ξ(λν) = 0 we obtain

(λ− ν)(ξλ) = 0.

If (ξλ) 6= 0 then λ = ν and this results in Aϕ = ϕA. The last relation because of Theorem 1.1 implies that
M is locally congruent to a real hypersurface of type (A).

If (ξλ) = 0 then also (ξν) = 0 and since λ, ν are the principal curvature corresponding to the holomorphic
distribution we conclude that M is locally congruent to a Hopf hypersurface with constant λ, ν in direction of
ξ.

The remaining case is α = 0 which implies that M is a Hopf hypersurface with Aξ = 0. More analytically,
in case of CP 2 , M is locally congruent to a geodesic hypersphere or to a non-homogeneous real hypersurface,
which is considered as a tube of radius r = π

4 over a holomorphic curve. In case of CH2 , M is locally
congruent to a Hopf hypersurface with Aξ = 0 (see [4]) and this completes the proof of Theorem 1.4.

Remark 4.2 In case of real hypersurfaces with constant λ, ν in direction of ξ it can be proved that the eigen-
values of real hypersurfaces of type (B) both in CP 2 and CH2 satisfies the above. So the *-Ricci tensor of real
hypesurfaces of type (B) is ξ-parallel.
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