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Abstract

Reserve risk represents a fundamental component of underwriting risk for non-life insurers and its evalu-

ation can be achieved through a wide range of stochastic approaches, including the Collective Risk Model.

This paper, in order to fill a gap in existing literature, proposes a Bayesian technique aimed at evaluating

the standard deviation of structure variables embedded into the Collective Risk Model. We adopt uninfor-

mative prior distributions and the observations of the statistical model are obtained making use of Mack’s

formula linked to bootstrap methodology. Moreover, correlation between structure variables is investi-

gated with a Bayesian method, where a dependent bootstrap approach is adopted. Finally, a case study is

carried out: the Collective Risk Model is used to evaluate the claims reserve of two non-life insurers char-

acterized by a different reserve size. The claims reserve distribution is examined with respect to the total

run-off and the one-year time horizon, enabling the assessment of the reserve risk capital requirement.

JEL classification: G22, C63

keywords: stochastic claims reserving, collective risk model, structure variables, Bayesian approach, boot-

strap

1 Introduction

Stochastic claims reserving models allow the assessment of the standard deviation or the probability dis-

tribution of claims reserve necessary to quantify the capital charge from a solvency point of view [1]. A

variety of stochastic methodologies exist in literature. Mack proposed a first approach [2], [3], [4], which

provides the prediction variance related to Chain-Ladder estimate; the variability of the reserve is herein

split into Process Variance and Estimation Variance. Furthermore, other methodologies like Bootstrap [5],

[6] and Generalized Linear Models [7] are used to determine the claims reserve distribution. In recent years,

Bayesian methods have become increasingly important and adopted in stochastic claims reserving; in this

paper we follow this line of research with the aim to assess the structural risk factors embedded into the

Collective Risk Model to stochastically evaluate the claims reserve. The main advantages of Bayesian mod-

els consist in the possibility to investigate distributions of model parameters and the chance to include

external information rigorously into actuarial models. In [6] the authors showed that when it comes to

incorporating judgment on parameters/parameter distributions underlying a particular statistical model

or combining together several statistical models, the Bayesian reserving approach is the preferred option

compared to other stochastic reserving methods like the bootstrapping technique [8]. Without being ex-

haustive, the principal deterministic methods developed under the Bayesian framework are Chain-Ladder

[9], [10], [11], Bornhuetter-Ferguson [9], [10], [12] and Overdispersed Poisson Model [12]. Additionally, in

[13] different Bayesian approaches to estimate claim frequency are presented and in [14], [15], [16] and [17]

it is shown a range of other Bayesian models for both incurred and paid loss data. Furthermore, [18] de-

veloped a Bayesian Collective Risk Model where the structure of parameters is based on the deterministic

1



method called Cape Code; the expected loss ratio and the incremental paid loss development factor, which

represent model parameters, are evaluated in a Bayesian manner.

The Collective Risk Model (CRM) to assess claims reserve was proposed by different authors (see [19],

[18], [20] and [21]). This approach was extended by Ricotta and Clemente [22] assuming that incremental

payments to be estimated in the run-off triangle are a compound mixed Poisson process, where the un-

certainty on claim size is introduced with a multiplicative structure variable. The model considers, there-

fore, structure variables on claim count and claim size in order to describe parameter uncertainty on both

random variables. In addition, linear dependence between different development and accidental years is

addressed.

Literature lacks methodologies designed to calibrate structural risk factors embedded into Collective

Risk Theory models for reserve risk. The aim of this paper is to propose a Bayesian procedure to esti-

mate the standard deviation of the structure variables related to the Collective Risk Model as described in

[22]. We developed an approach based on two established and widely used methodologies in literature

such as the bootstrap method applied to the Chain-Ladder algorithm [7] and the Mack’s formula [2]. In

addition, the dependence between model parameters, i.e. claim count and claim size, caused by the deter-

ministic average cost method is taken into account; linear correlation, evaluated according to the Bayesian

framework, is introduced in the CRM through structural risk factors. Concerning the Bayesian approach

adopted to quantify the standard deviation of structure variables, the bootstrap methodology jointed to the

Mack’s formula is used to enforce the likelihood function. Run-off triangles of different accounting years

are considered with the aim to acquire all the accessible historical information available to the insurance

company. It is noted that [23] presented a Bayesian bootstrap scheme embedded within an approximate

Bayesian computation (ABC) framework to obtain posterior distribution of the Distribution-free Chain-

Ladder model parameters and the associated reserve risk measures. In the present paper, instead, the

bootstrap procedure, joined to Mack’s formula, is adopted to generate the data used to evaluate the likeli-

hood of Bayes’ formula. On the other hand, the Bayesian method applied to evaluate correlation between

structure variables is built on Mack’s formula joined to a dependent bootstrap approach. The bootstrap

methodology is herein carried out by jointly resampling in a dependent manner the data into the run-off

triangles of claim count and average claim cost, namely entries that fill the same position in the respective

run-off triangles. For the estimation of both the standard deviation and the correlation between structure

variables, we considered (improper) flat priors over (0,+∞) and Jeffreys priors. Both of these represent the

case when no a priori information is available and the prior is to have minimal influence on the inference;

the uniform follows the Laplace postulate or principle of insufficient reason, whereas Jeffreys prior is based

on the Fisher information and, as opposed to the former, satisfies the invariant reparametrization require-

ment [24]. A formalization and discussion of uninformative and improper priors can be found in [25] and

[26].

Model parameters different from the structure variables are calibrated by using a data set of individual

claims and an average cost method; the deterministic Frequency-Severity method, based on the Chain-

Ladder mechanics, is adopted to separately calculate the number of claims and the average costs for each

cell of the bottom part of the run-off triangle. Monte Carlo method is performed to simulate the claims

reserve distribution according to the whole lifetime of insurer obligations. Furthermore, with regards to

a one-year time horizon evaluation, we adapt the "re-reserving" method [27], [28] and estimate both the

uncertainty of claims development result and the reserve risk capital requirement.

The paper is organized as follows. Section 2 introduces the Collective Risk Model and displays how to

estimate parameters other than structure variables. In Section 3, the Bayesian approach is presented and

performed to estimate the standard deviation of structural risk factors; at the same time we report results

acquired according to the Metropolis-Hastings algorithm with respect to two non-life insurers. Moreover,

the exact moments of structure variables are acquired. Section 4 refers to Pearson correlation coefficient

between structural risk factors; results related to the two data sets are also reported. A case study on two

non-life insurers is shown in Section 5 where the Collective Risk Model is enforced to evaluate claims re-

serve distribution concerning both a total run-off and a one-year time horizon. In addition, we investigate

the effect of linear correlation magnitude between structure variables on both claims reserve and the av-

erage Pearson correlation coefficient affecting outstanding claims of different accident and development
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years. Conclusions follow.

2 Collective Risk Model

This section reports the main features of the Collective Risk Model developed in [22]. This model, based

on the Collective Risk Theory, aims to assess the claims reserve in a stochastic way. Here the claims reserve

is represented through the run-off triangle: available data is reported in rectangular table of dimension

N × N where rows (i = 1, ..., N ) represent the claims accident years (AY), whereas columns ( j = 1, ..., N )

are the development years (DY) related to the number or the amount of claims. Data linked to observed

incremental payments fill the upper triangle D = {Xi , j ; i + j ≤ N +1}, where Xi , j denotes incremental pay-

ments of claims in the cell (i , j ), namely claims incurred in the generic accident year i and paid after j −1

years of development. Analogously, the observed number of claims ni , j in the upper triangle is defined as

Dn = {ni , j ; i + j ≤ N +1}. Future numbers or amounts of payments must be assessed for each cell of the

lower triangle. The scope is to investigate the random variable1 (r.v.) of future incremental payments X̃i , j .

The CRM represents incremental payments for each cell to be estimated as follows:

X̃i , j =
K̃i , j∑
h=1

p̃ Z̃i , j ,h

and the r.v. claims reserve, denoted by R̃, is equal to the sum of the cells of lower run-off triangle:

R̃ =
N∑

i=1

N∑
j=N−i+2

X̃i , j ,

where:

• K̃i , j represents the r.v. number of claims related to the accident year i and paid after j − 1 years.

This r.v. is assumed to be a mixed Poisson process; parameter uncertainty is addressed through a

multiplicative structure variable q̃ with unitary mean and standard deviation σq̃ . Therefore, the r.v.

claims number is parametrized as follow, K̃i , j ∼ Po(q̃ni , j ).

• Z̃i , j ,h is the random variable describing the amount of the hth claim occurred in the accident year i

and paid after j −1 years.

• p̃ denotes the parameter uncertainty related to claim size. This structure variable has mean and

standard deviation equal to 1 and σp̃ respectively.

The two structure variables enable the introduction of parameter uncertainty without affecting the ex-

pected value of claim number and amount. Furthermore, in the bottom part of the run-off triangle only

one r.v. affects the claim number and the claim size respectively, allowing for the dependence between

these random variables of different AY and DY given by the settlement process. The assumptions underly-

ing the CRM are the following:

• claim number (K̃i , j ), claim cost (Z̃i , j ,h), and the structure variable p̃ are mutually independent in

each cell (i , j ) of the lower run-off triangle;

• claim size values in different cells of the lower run-off triangle are independent and in the same cell

are independent and identically distributed (i.i.d.);

• structure variable q̃ is independent of the claim costs in each cell;

• q̃ and p̃ are mutually independent.

1A tilde superscript will henceforth denote random variables.
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In [22] the exact expressions of mean, standard deviation (SD) and skewness of the claims reserve dis-

tribution was obtained. The authors showed that the expected value corresponds to the claims reserve

estimated by the underlying deterministic method (in our context the Frequency-Severity) and they ex-

hibit the non-negligible impact, on the claims reserve distribution, of structure variables, which turn to be

a systemic risk that cannot be diversified by a larger portfolio. Finally, the authors stressed the importance

of the estimation of structural risk factors in the CRM; differently to what they proposed, in this paper we

developed a Bayesian approach to address this matter.

In order to apply the CRM we need to estimate a set of parameters for each cell (i , j ) of the lower triangle.

The expected number of paid claims (ni , j ) and the expected claims cost (mi , j ) are obtained, conditionally

to the set of information D (the run-off triangle of incremental payments) and Dn (the run-off triangle of

incremental number of paid claims), with a deterministic average cost method. We use the Frequency-

Severity method by applying the Chain-Ladder mechanics on the triangles of cumulative numbers and

cumulative average costs2. The other quantities necessary to implement the CRM are the cumulants of the

severity. According to the claims data set, we estimate the variability coefficient of the claim size for each

DY; later, adopting a distribution assumption, the moments of the r.v. Z̃i , j are obtained.

3 Bayesian approach to estimate the standard deviation of structure

variables

In classical statistics the parameters of a model are assumed to be fixed; Bayesian statistics contrasts with

this approach and considers parameters to be random variables (an exhaustive dissertation of the topic can

be found in [29], [30] and [31]). The aim of the Bayesian approach is to take parameters uncertainty into

account; this variability is introduced through prior probability distributions that, jointly with observed

data, allow the posterior probability distribution of the model parameters to be achieved. According to the

Bayes theorem, the parameter posterior distribution, f (θ | x), can be computed as:

f (θ | x) = f (x | θ) f (θ)

f (x)
.

The term f (x | θ) is the sampling density of data under a chosen probability model; this element, viewed

as function of θ for fixed x, is the likelihood function. The parameter prior distribution is f (θ), which refers

to the parameter uncertainty, also interpretable as the prior opinion or knowledge related to parameter

values. The denominator of Bayes’ formula represents the marginal distribution of data. This quantity does

not depend on θ and with fixed x turns out to be a constant quantity which acts as a normalizing factor

that leads to a proper posterior distribution. Bayes theorem is often considered without the normalizing

constant that has only the effect of rescaling the density:

f (θ | x) ∝ f (x | θ) f (θ).

Hence, the posterior distribution is proportional to the product of likelihood function and prior. There-

fore, Bayes’ formula depends on data and prior distribution. Typically, prior distributions are classified as

uninformative and informative distributions. The former ideally refers to the principle of indifference and

is typically flat distributions that assign equal probability to all possible values of the parameter, with the

aim to have a minimal effect, relative to the data, on the posterior inference. On the other hand, informa-

tive distributions are calibrated using observed data. Bayes’ approach also allows us to make inference on

future observation through the posterior predictive distribution, where the adjective posterior refers to the

consideration that the distribution is conditional to the observed data (x), and predictive because it is a

prediction of new observable data (y). The posterior predictive distribution is an average of the probability

distribution of y conditional on the unknown value of θ, weighted with the posterior distribution of θ:

f
(
y | x

)= ∫
f
(
y | θ)

f (θ | x) dθ.

2We adopt the same run-off triangles used in [22].
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Hence, outcomes of the Bayesian analysis are the posterior predictive distribution, which provides infor-

mation about new observations, and the posterior distribution, which contains information about the pa-

rameters underlying the model. With regards to the posterior distribution, it is possible to summarize this

information by developing different types of inference analysis on this distribution (i.e. both point or re-

gion estimation and hypothesis testing).

The Bayesian framework here is used to calibrate the standard deviation of structure variables of CRM.

These variables related to claim count and claim cost do not affect the expected value of the reserve but

have an impact on the other characteristics (i.e. variance, skewness and so on). As adopted in [22], we

follow the usual assumption of Collective Risk Theory that structure variables are gamma distributed with

identical parameters:

q̃ ∼ Gamma(h;h) , p̃ ∼ Gamma(k;k) .

The variables q̃ and p̃ have mean equal to 1, given by the ratio of the parameters, and standard deviation

σq̃ = 1/
p

h andσp̃ = 1/
p

k. Therefore, the values ofσq̃ andσp̃ determine the parameter of interest, h and k,

which all the characteristics of the structure variable depend upon. In [22] a deterministic approach based

on the Estimation Variance derived via Mack is proposed to assess the parameters of structure variables.

In Mack’s formula, the Estimation Error measures the variability produced by the parameters estimation;

because of this, it is ascribable to the structure variables that have the aim to introduce parameters uncer-

tainty on quantities being considered (i.e. claim count and severity). Here the standard deviations σq̃ and

σp̃ are interpreted as random variables and consequently later denoted by a tilde (random variables and

their parameters are denoted with the subscript q̃ or p̃ to indicate which r.v. is considered in the Bayes ap-

proach, whereas if general considerations are carried out, the subscript is omitted for a simpler notation).

It is assumed that, σ̃q̃ and σ̃p̃ , define for positive values, follow a gamma distribution:

σ̃∼ Gamma
(

Ã; B̃
)

,

where the parameters Ã and B̃ are random variables with regards to prior information is conveyed. Param-

eters of Ã and B̃ are called hyperparameters of the model. In this context, the evaluation of the standard

deviation of structure variables is acquired through the Bayes’ formula with the purpose to obtain a poste-

rior distribution of the parameters which σ̃q̃ and σ̃p̃ depend on:

f (A,B | σ̃) ∝ f
(
σ | Ã, B̃

)
f (A) f (B) . (3.1)

With regards to the posterior distributions achieved via the Bayesian method, their expected values are

used to calibrate the random variables (r.v.s) σ̃q̃ and σ̃p̃ . Therefore, the posteriors means are adopted to

estimate the parameters of the r.v.s σ̃q̃ and σ̃p̃ :

σ̃∼ Gamma
(
E

(
Ã | σ̃)

;E
(
B̃ | σ̃))

. (3.2)

It may be noted that, as depicted in formula (3.1) above, we are assuming Ã and B̃ prior probability distri-

butions to be independent; this premise is however neither affecting nor restrictive on our model for two

reasons. First and foremost, since only the posterior expected values of Ã and B̃ enter formula (3.2), we are

looking separately at the marginal posterior distributions of the parameters (when computing one param-

eter expectation, the other one is automatically marginalized out). Secondly, in the outlined framework,

even if starting with independent priors, the Bayes theorem formula will generate a dependent posterior

distribution, whose dependency is induced by the likelihood function.

The likelihood function of formula (3.1) is implemented making use of Mack’s formula and bootstrap

methodology. The latter is carried out following the procedure adopted in [7]. Within the Chain-Ladder

framework, the bootstrap method, by resampling the upper triangle of model residuals, allows us to create

different resampled data sets, which can be used to calculate the quantity of interest and make inference

on it. For our purposes, we applied the bootstrap approach to the run-off triangles of the cumulative claim
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count and cumulative average cost. On every iteration, for both triangles, the square root of the Estimation

Variance derived via Mack’s formula is divided by the respective Chain-Ladder estimate (i.e.the mean of fre-

quency and severity) with the aim to measure the variability produced by the parameters estimation. These

relative variabilities, concerning only the Estimation Error, are interpreted as the coefficient of variation of

the structure variables q̃ and p̃; bearing in mind that their means are equal to 1, these values correspond

to the standard deviations σq̃ and σp̃ and are interpreted as the uncertainty related to the parameters esti-

mate. The quantities σq̃ and σp̃ are written here without tilde because they represent one generic realiza-

tion of the corresponding r.v.s σ̃q̃ and σ̃p̃ . In detail, each simulation step of the Mack-Bootstrap procedure

consists of the following stages.

1. Determine the Chain-Ladder development factors, the so-called link ratios, for each development

year according to the observed data in the upper run-off triangle.

2. From the link ratios and the data observed in the last available diagonal of the triangle, recursively

calculate cumulative amounts in the upper run-off triangle, and then incremental data by subtrac-

tion.

3. Compute the adjusted Pearson’s residuals of the model from incremental data obtained in the previ-

ous step and the original observed data of the run-off triangle.

4. By sampling the residuals with replacement, create the run-off triangle of residuals and, from this,

achieve cumulative data.

5. Enforce Chain-Ladder method and Mack’s formula to estimate quantities of interest: the ratio be-

tween the square root the Estimation Variance and the Chain-Ladder estimate provides the standard

deviation of the structure variable under analysis, namely the standard deviation of either q̃ or p̃.

We thus estimate σ̃q̃ and σ̃p̃ sampling distributions, which will be leveraged to implement the Bayes’ the-

orem, by making use of two sound methodologies: the bootstrap scheme applied to the Chain-Ladder

algorithm [7] and the Mack’s formula [2]. The bootstrap procedure joined to the Mack’s formula takes as

input the run-off triangles of both claim count and average costs of different dimensions; the aim is to take

into consideration all available historical information. Starting from the run-off triangle related to the cur-

rent accounting year, with dimension N×N , this approach is performed on triangles obtained by gradually

deleting the last diagonal available, one at a time. Therefore, the run-off triangles of different accounting

years are considered up to the current triangle, where the first run-off triangle is chosen starting from the

earliest information considered currently representative. Hence, in respect to the last l accounting years,

the run-off triangles have dimensions (N − l +1×N − l +1), . . . , (N ×N ) respectively and the Mack’s formula

applied to the bootstrap scheme lets us obtain for each historical triangle the sample distribution of ran-

dom variables σ̃q̃ and σ̃p̃ . The likelihood functions f
(
σq̃ | Ãq̃ , B̃q̃

)
and f

(
σp̃ | Ãp̃ , B̃p̃

)
, based on the gamma

model, are evaluated at the expected values of the distributions of σ̃q̃ and σ̃p̃ related to the sequence of the

l historical triangles. Thus, concerning a generic historical triangle, the sample mean of the distribution

of the standard deviation, namely the average variability of parameter estimation that affects the triangle,

is adopted as an estimate of the true unobservable historical value of the r.v.s σ̃q̃ and σ̃p̃ . The l values of

E
(
σ̃q̃

)
and E

(
σ̃p̃

)
are interpreted as data and used to compute likelihood functions; we assume this data

to be independent and identically distributed. However, it is to be noted that the latter assumption, useful

to calculate the likelihood, in practice does not fully hold since data is attained on the l historical trian-

gles that share common cells, affecting the assumption of independence; moreover, the model is lacking in

conditions apt to fulfill the identical distribution assumption of data.

We consider uninformative priors related to the positive parameters of σ̃q̃ and σ̃p̃ with the aim to pre-

vent any sort of expert judgment. In particular, f (A) and f (B) are modeled either via uniform or Jeffreys

distributions. The form of the Jeffreys prior depends on the likelihood model selected, and its functional

dependence on the likelihood is invariant under reparameterization of the parameter. Jeffreys priors for

two-parameter gamma distribution are easily derived from [32].

The Bayesian method, as described above, has been applied to the claim data sets of two non-life in-

surance companies working in the Motor Third Party Liability (MTPL) line of business and concerning
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accounting years from 1993 to 2004. DELTA insurer is a small-medium company, whereas OMEGA insurer

is roughly 10 times larger. Appendix A reports the run-off triangles adopted to estimate, via the Frequency-

Severity deterministic method, the claims reserve. Triangles related to cumulative claim count and cumu-

lative average costs are used to enforce the Bayesian methodology detailed above. The bootstrap joined to

the Mack’s formula has been carried out regarding run-off triangles for 9 accounting years; therefore, the

triangles adopted to acquire historical data and calibrate prior distributions have dimension from 4×4 to

12× 12. The number of iterations carried out in the bootstrap stage is equal to 10,000. In respect to the

insurer DELTA, the distributions of σ̃q̃ acquired via the Mack-Bootstrap procedure related to the 9 histori-

cal triangles of claim count show expected values included between 1.66% and 2.48%; for σ̃p̃ the minimum

value of the mean is 2.33% whereas the maximum is 4.29%. Table 1 details the expected values, 5% quantile

and 95% quantile related to the distributions of σ̃q̃ and σ̃p̃ .

Table 1: DELTA - Expected value, 5% quantile and 95% quantile of the r.v.s σ̃q̃ and σ̃p̃ related to the historical

triangles with dimensions from 4×4 to 12×12.

DELTA

Dimension 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12

σ̃q̃

Exp. Value 1.83% 1.66% 1.75% 2.30% 2.48% 2.40% 2.32% 2.42% 2.26%

Quantile 5% 0.66% 0.82% 1.08% 1.32% 1.66% 1.66% 1.72% 1.84% 1.76%

Quantile 95% 3.37% 2.82% 2.69% 3.58% 3.64% 3.45% 3.21% 3.28% 3.01%

σ̃p̃

Exp. Value 4.15% 4.29% 2.81% 2.72% 2.93% 2.68% 2.66% 2.67% 2.33%

Quantile 5% 1.11% 1.78% 1.36% 1.47% 1.84% 1.74% 1.81% 1.89% 1.72%

Quantile 95% 9.77% 8.32% 5.09% 4.78% 4.65% 4.24% 4.04% 3.93% 3.23%

With respect to the larger insurer OMEGA, the the Mack-Bootstrap procedure leads to expected values

between 2.04% and 4.94% for σ̃q̃ , and between 2.34% and 3.16% for σ̃p̃ . Table 2 depicts the means and

quantiles of order 5% and 95% regarding the distributions of the two random variables.

Table 2: OMEGA - Expected value, 5% quantile and 95% quantile of the r.v.s σ̃q̃ and σ̃p̃ related to the his-

torical triangles with dimensions from 4×4 to 12×12.

OMEGA

Dimension 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12

σ̃q̃

Exp. Value 4.94% 3.29% 2.41% 2.25% 2.04% 2.04% 2.36% 2.80% 2.98%

Quantile 5% 1.51% 1.32% 1.06% 1.24% 1.23% 1.33% 1.52% 1.88% 2.14%

Quantile 95% 9.38% 5.92% 4.15% 3.57% 3.10% 2.98% 3.52% 4.20% 4.26%

σ̃p̃

Exp. Value 2.38% 3.16% 2.93% 3.02% 2.62% 2.67% 2.38% 2.70% 2.34%

Quantile 5% 0.62% 1.30% 1.46% 1.63% 1.48% 1.59% 1.49% 1.67% 1.61%

Quantile 95% 5.42% 6.29% 5.28% 5.27% 4.57% 4.47% 3.84% 4.43% 3.48%

Having chosen the prior distributions, the next step is to calculate the posteriors. Since the posterior dis-

tributions being examined do not have a closed-form expression, we make use of the Metropolis-Hastings

algorithm to draw samples from them. For generating a sample (commonly referred to as chain) from the

posterior distribution, this Markov Chain Monte-Carlo method requires only a function that is proportional

to the real density, rather than exactly equal to it, avoiding the calculation of the normalization factor, which

is extremely difficult in practice, especially when dealing with multi-dimensional distributions [33]. In par-

ticular, a Random Walk Metropolis algorithm has been selected; this version of the Metropolis-Hastings

design operates by proposing that the chain move to a candidate state obtained by disturbing the current

one with a noise. Under mild conditions the chain converges to its stationary distribution and posterior

quantities can be estimated from the simulation output. A comprehensive dissertation of the topic can be

found in [34].

Concerning the posterior distributions achieved via the above-mentioned algorithm, we use, for our
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purposes, the expected values to assess the r.v.s σ̃q̃ and σ̃p̃ , whose parameters are set equal to the means

of the posteriors, as shown in formula (3.2). It is to be noted that, for both insurers, the two kind of un-

informative prior distributions (uniform and Jeffreys) lead to similar results in terms of expected values

of the posteriors (see Appendix B). Posterior expected values are negligibly affected, in our model, by the

distribution type adopted as prior distributions and hence, when the r.v.s σ̃q̃ and σ̃p̃ are calibrated, their

characteristics are not significantly impacted by the prior distribution assumption. Tables 3 and 4 indicate

the expected values and coefficient of variations, for both insurers, under uniform and Jeffreys priors.

Table 3: DELTA - Uninformative priors. Expected values and coefficient of variation of σ̃q̃ and σ̃p̃ .

DELTA

Random variable σ̃q̃ σ̃p̃

Type of prior Uniform Jeffreys Uniform Jeffreys

Expected value 2.15% 2.15% 3.02% 3.03%

Coeff. of variation 12.43% 14.35% 17.63% 20.34%

Table 4: OMEGA - Uninformative priors. Expected values and coefficient of variation of σ̃q̃ and σ̃p̃ .

OMEGA

Random variable σ̃q̃ σ̃p̃

Type of prior Uniform Jeffreys Uniform Jeffreys

Expected value 2.77% 2.79% 2.69% 2.69%

Coeff. of variation 24.04% 27.69% 9.00% 10.39%

The assessment of the r.v.s σ̃q̃ and σ̃p̃ allows us to determine the moments of the structure variables

q̃ and p̃ adopted into the CRM. Taking into consideration the structural risk factors related to claim count

(identical considerations hold for p̃), we assume that q̃ ∼ Gamma

(
1
σ̃2

q̃
; 1
σ̃2

q̃

)
and σ̃q̃ ∼ Gamma

[
E

(
Ãpost

q̃

)
;E

(
B̃ post

q̃

)]
,

where E
(

Ãpost
q̃

)
and E

(
B̃ post

q̃

)
represent the expected values of the posterior distributions , E

(
Ãq̃ | σ̃q̃

)
and

E
(
B̃q̃ | σ̃q̃

)
. Moments of the structure variable depend on the parameters of the mixing variable σ̃q̃ , which

however does not affect the mean of q̃ that remains equal to 1 (see Appendix C for details). The variance is

described by the following formula:

Var
(
q̃
)= E

(
Ãpost

q̃

)[
E

(
Ãpost

q̃

)
+1

]
E

(
B̃ post

q̃

)2 .

The coefficient of variation, equal to the square root of variance, is:

CV
(
q̃
)=

√
E

(
Ãpost

q̃

)[
E

(
Ãpost

q̃

)
+1

]
E

(
B̃ post

q̃

) .

Finally, the skewness of the structure variable is given by:

γ
(
q̃
)= 2

[
E

(
Ãpost

q̃

)
+2

][
E

(
Ãpost

q̃

)
+3

]
E

(
B̃ post

q̃

)√
E

(
B̃ post

q̃

)[
E

(
B̃ post

q̃

)
+1

] .

Tables 5 and 6 report the exact characteristics for the structure variable q̃ and p̃ for both the insurers:
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Table 5: DELTA - Expected value, coefficient of variation and skewness related to structure variables q̃ and

p̃.

DELTA

Type of prior Uniform Jeffreys

Structure variable q̃ p̃ q̃ p̃

Expected value 1 1 1 1

Coeff. of variation 2.17% 3.06% 2.18% 3.09%

Skewness 0.046 0.069 0.047 0.072

Table 6: OMEGA - Expected value, coefficient of variation and skewness related to structure variables q̃ and

p̃.

OMEGA

Type of prior Uniform Jeffreys

Structure variable q̃ p̃ q̃ p̃

Expected value 1 1 1 1

Coeff. of variation 2.85% 2.70% 2.90% 2.70%

Skewness 0.071 0.056 0.076 0.056

4 Bayesian estimation of Pearson correlation coefficient between struc-

ture variables

The Collective Risk Model assumes that claim count and claim size are mutually independent in each cell

(i , j ) of the lower run-off triangle. However, this theoretical assumption does not hold in practice due to the

dependence introduced on model parameters by the average cost method (i.e. Frequency-Severity). The

aim of this section is to evaluate, using a Bayesian procedure, the Pearson correlation coefficient between

claim count and claim cost, estimated on structure variables q̃ and p̃. It is noteworthy that the procedure

we define could be implemented with measures of rank correlation, such as Spearman’s rho and Kendall’s

tau. As opposed to Pearson correlation coefficient, these are able to capture more general monotonic re-

lationships between variables, and thus they can better detect non-linear forms of association. The user

should assess which measure of correlation is more appropriate on a case-by-case basis. In our context,

having preliminarily analysed different types of correlation measures, we considered linear correlation to

be suitable for describing the dependence between structure variables.

Similarly to Section 3, we adopt a method based on bootstrap resampling and Mack’s formula, in which,

however, the former considers the dependency between the run-off triangles of claim count and average

claim cost, by resampling pairs of data which fill the same position in the respective triangles. The scope

is to build up the distributions of the r.v.s σ̃q̃ and σ̃p̃ by implicitly allowing for the dependence, caused

by the average cost method, between the two data sets of claim count and claim cost. Hence, the esti-

mated Pearson correlation coefficient is used to calibrate a Gaussian copula with the purpose to set up a

two-dimensional random variable where the marginals are the two r.v.s q̃ and p̃ calibrated in the previous

section.

In the Bayesian framework, the Pearson correlation coefficient is interpreted as a random variable fol-

lowing a beta distribution:

ρ̃ ∼ Beta
(
C̃ ;D̃

)
.

We analysed the dependence between claim count and claim cost on the interval [0,1]; therefore, we as-

sume parameter variabilities to be positively correlated. As usual, the r.v.s C̃ and D̃ identify prior distri-

butions. According to Bayes’ rule we obtain a posterior distribution of the parameters which ρ̃ depends
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on:

f
(
C ,D | ρ̃)∝ f

(
ρ | C̃ ,D̃

)
f (C ) f (D) . (4.1)

The expected value of the posterior is used to calibrate the r.v. ρ̃:

ρ̃ ∼ Beta
(
E

(
C̃ | ρ̃)

;E
(
D̃ | ρ̃))

. (4.2)

Finally, the mean of ρ̃, calculated with the posterior expected value, is adopted to assess the Gaussian cop-

ula used to join the marginals q̃ and p̃. Likelihood function of (4.1) is performed making use of Mack’s

formula and the dependent bootstrap approach. The likelihood function based on the beta model is ex-

ecuted using the Pearson correlation coefficient calculated between the distribution of σ̃q̃ and σ̃p̃ related

the sequence of the l historical triangles. Priors, as with the analysis of structure variable standard devia-

tion, are either flat or Jeffreys. In the latter case, the prior formulation relies on the beta likelihood model

and the relevant definition can be found in [35].

Below are the results of the previous Bayesian approach adopted to estimate correlation between struc-

ture variables, concerning the two insurers introduced in Section 3. As usual, the analyses are based on

10,000 iterations carried out with the dependent bootstrap technique. Table 7 exhibits values of Pearson

correlation coefficient computed on the 9 historical triangles via the Mack’s formula and dependent boot-

strap approach. The linear correlation of the small insurer, DELTA, is included between 0.014 and 0.333,

whereas OMEGA shows values between 0.075 and 0.415.

Table 7: Pearson correlation coefficient for both insurers between r.v.s σ̃q̃ and σ̃p̃ related to the historical

triangles with dimension from 4×4 to 12×12.

Pearson Correlation Coefficient

Dimension 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12

DELTA 0.231 0.333 0.127 0.014 0.098 0.065 0.154 0.194 0.087

OMEGA 0.289 0.174 0.220 0.415 0.289 0.324 0.175 0.106 0.075

The posterior is achieved via Monte Carlo method through Metropolis-Hasting algorithm; the mean of the

posterior (see Appendix D) is used to assess parameters of the r.v. ρ̃ as shown in formula (4.2). Finally,

we adopt the expected value of ρ̃ as an estimate of the Pearson correlation coefficient between structure

variables q̃ and p̃. Table 8 reports the correlation between structural risk factors estimated under uniform

and Jeffreys priors.

Table 8: Uninformative priors: estimated Pearson correlation coefficient between the structure variables

for both insurers.

Estimated expected values of ρ̃

Insurer Type of prior Uniform Jeffreys

DELTA E
(
ρ̃

)
0.139 0.144

OMEGA E
(
ρ̃

)
0.237 0.241

Concerning the Collective Risk Model, the structure variables are modeled with a two-dimensional

meta-Gaussian distribution, where a Gaussian copula, with parameter the Pearson correlation coefficient

estimated as shown above, joins the two marginals of q̃ and p̃ calibrated as explained in the previous sec-

tion.

5 Case study

The estimates related to structure variables acquired in Sections 3 and 4 are deployed here into the Collec-

tive Risk Model in order to evaluate the claims reserve distribution concerning both a total run-off and a

10



one-year time horizon. By adapting the re-reserving method we obtain the "one-year" reserve distribution

of insurer obligations. Reserve risk is assessed by calculating the Solvency Capital Requirement (SCR) as the

difference between the quantile at 99.5% confidence level of the distribution of the insurer obligations at

the end of the next accounting year, opportunely discounted at time zero, and the best estimate at present

time.

As explained in Section 1, model parameters related to claim size and claim count are estimated through

the deterministic Frequency-Severity method (run-off triangles are reported in Appendix A); moreover, to

calibrate cumulants of severity we consider the variability coefficient of claim cost for each development

year and we assume that Z̃i , j follows a gamma distribution in each cell of the triangle.

The deterministic method leads DELTA and OMEGA to a claims reserve of approximately 228 and 2,807

million Euro; these values match the expected values (best estimates) attained with the CRM. The anal-

yses shown below are based on 100,000 simulations; moreover, model parameters acquired via Bayesian

approaches are based only on uniform priors. Under the assumption of uncorrelated structure variables,

we verify that simulated moments of the claims reserve are close to the exact ones, proving that the num-

ber of simulations is adequate. Table 9 refers to the two analysed insurers and reports the mean, standard

deviation, coefficient of variation and skewness of the claims reserve evaluated both under a total run-off

and a one-year time horizon, assuming ρ
(
q̃ , p̃

)= 0.

Table 9: Mean, standard deviation, coefficient of variation and skewness of claims reserve assessed under

total run-off and one-year time horizon for both insurers under the assumption of no correlation between

q̃ and p̃. Monetary amounts are expressed in thousands of Euro.

Insurer Time horizon Mean Std. dev. Coeff. of Var. Skewness

DELTA
Tot. run-off 228,389 13,009 5.70% 0.137

One-year 228,570 11,721 5.13% 0.214

OMEGA
Tot. run-off 2,807,275 117,500 4.19% 0.098

One-year 2,805,602 84,922 3.03% 0.121

The relative variability of the reserve assessed under a total run-off time horizon is higher compared to

the one-year time horizon for both insurers; on the other hand, the claims reserve is more skewed under

a one-year evaluation. It is to be noted that the coefficient of variation of the one-year reserve, compared

to the total run-off value, is approximately around the 90% and 70% for DELTA and OMEGA respectively.

Comparing the two insurers, the coefficient of variation is lower for OMEGA than for DELTA, due to a bigger

number of reserved claims that leads to a higher diversification of pooling risk, namely the variability not

ascribable to structure variables. Similarly, the reserve of the bigger insurer is less skewed in respect of the

obligations distribution of DELTA.

Table 10 refers to the one-year claims reserve and gives the mean, standard deviation, quantile and Tail

VaR at level 99.5% and 99% respectively; moreover, the Solvency Capital Requirement and its ratio respect

to the best estimate, the so-called SCR ratio, are reported.

Table 10: One-year reserve: mean, standard deviation, quantile and TVaR at level 99.5% and 99% respec-

tively, SCR and SCR ratio under the assumption of no correlation between q̃ and p̃. Monetary amounts are

expressed in thousands of Euro.

Insurer Mean Std. dev. q99.5% TVaR99% SCR SCR ratio

DELTA 228,570 11,721 261,332 262,604 37,762 14.33%

OMEGA 2,805,602 84,922 3,036,234 3,046,723 230,632 8.22%

OMEGA shows a smaller SCR ratio than DELTA, due to lower values of both relative variability and skew-

ness. The larger claims size allows the pooling risk to be diversified with a higher degree: OMEGA indeed

displays lower values of standard deviation and skewness than DELTA ones. This aspect leads to a smaller

SCR ratio.

11



In what follows, we investigate the impact that dependence between structure variables has on claims

reserve; in addition to the correlation value estimated via the Bayesian approach, we impose perfect neg-

ative and positive linear correlations between q̃ and p̃. When considering the claims reserve evaluated

according to a total run-off time horizon, under the assumption of no correlation between the structural

risk factors, it is possible to calculate the coefficient of variation of the reserve in respect of the average

Pearson correlation coefficient (ρ̄) affecting the cells of the lower triangle,

Var
(
R̃

)= [ ∑
i , j∈B

Var
(
X̃i , j

)](
1− ρ̄

)+ ρ̄

[ ∑
i , j∈B

SD
(
X̃i , j

)]2

,

where, to simplify the notation, B = {
X̃i , j ; i + j > N +1

}
identifies cells of the lower run-off triangle. It is

worth noting that the average Pearson correlation coefficient affecting n ≥ 3 random variables has the

lower bound [36]:

ρ̄mi n ≥− 1

n −1
.

In the triangle of dimension 12× 12 the number of lower cells is 66: this leads to a theoretical value of

ρ̄mi n equal to -0.015. It is worth emphasising that insurer DELTA shows higher values of relative variability

being equal values of ρ̄. Later, through simulation, the coefficient of variation of the reserve is calculated

using the correlation between structure variables estimated via the Bayesian approach, and values ±1. This

allows us to indirectly quantify the equivalent average Pearson correlation coefficient induced in the cells

of the triangle under the assumption of no correlation between the r.v.s q̃ and p̃.
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Figure 1: Average Pearson correlation coefficient induced by the dependence between structure variables.

The impact that the dependence between structure variables has on ρ̄ is higher for the larger insurer: in-

deed the claims reserve distribution of OMEGA is affected mainly by the structure variables, due to its

higher number of reserved claims which allows the pooling risk to be almost entirely diversified. According

to the previously considered values of Pearson correlation between q̃ and p̃, Tables 11 and 12 compare the

characteristics of the total run-off and a one-year reserve.
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Table 11: DELTA - Mean, standard deviation, coefficient of variation and skewness for both total run-off

and one-year claims reserve for different levels of dependence between q̃ and p̃. Monetary amounts are

expressed in thousands of Euro.

DELTA

Pearson correlation coeff. Time horizon Mean Std. dev. Coeff. of Var. Skewness

ρ
(
q̃ , p̃

)=−1
Tot. run-off 228,192 10,014 4.39% 0.116

One-year 228,409 10,078 4.41% 0.194

ρ
(
q̃ , p̃

)= 0.139
Tot. run-off 228,437 13,359 5.85% 0.137

One-year 228,588 11,922 5.22% 0.233

ρ
(
q̃ , p̃

)=+1
Tot. run-off 228,568 15,514 6.79% 0.162

One-year 228,720 13,135 5.74% 0.238

Table 12: OMEGA - Mean, standard deviation, coefficient of variation and skewness for both total run-off

and one-year claims reserve for different levels of dependence between q̃ and p̃. Monetary amounts are

expressed in thousands of Euro.

OMEGA

Pearson correlation coeff. Time horizon Mean Std. dev. Coeff. of Var. Skewness

ρ
(
q̃ , p̃

)=−1
Tot. run-off 2,804,619 40,291 1.44% 0.005

One-year 2,803,575 45,314 1.62% 0.073

ρ
(
q̃ , p̃

)= 0.237
Tot. run-off 2,807,968 129,231 4.60% 0.109

One-year 2,805,983 91,958 3.28% 0.133

ρ
(
q̃ , p̃

)=+1
Tot. run-off 2,809,701 161,137 5.74% 0.154

One-year 2,807,209 111,329 3.97% 0.184

Moreover, taking into consideration the distribution of insurer obligations at the end of the next accounting

year, Tables 13 and 14 report the mean, standard deviation, some risk measures (i.e. quantile and Tail VaR at

99.5% and 99% confidence level respectively), the Solvency Capital Requirement and the SCR ratio. Figure

2 refers to the claims development result distribution; this distribution, by construction, has mean equal to

zero since it is obtained as difference between the distribution of insurer obligations at the end of the next

accounting year and the current expected value of the claims reserve.

Table 13: DELTA - One-year reserve: mean, standard deviation, quantile and TVaR at level 99.5% and 99%

respectively, SCR and SCR ratio for different levels of dependence between structure variables. Monetary

amounts are expressed in thousands of Euro.

DELTA

Pearson correlation coeff. Mean Std. dev. q99.5% TVaR99% SCR SCR ratio

ρ
(
q̃ , p̃

)=−1 228,409 10,078 256,332 257,386 27,923 12.23%

ρ
(
q̃ , p̃

)= 0.139 228,588 11,922 262,193 263,562 33,605 14.70%

ρ
(
q̃ , p̃

)=+1 228,720 13,135 265,905 267,515 37,186 16,26%
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Table 14: OMEGA - One-year reserve: mean, standard deviation, quantile and TVaR at level 99.5% and 99%

respectively, SCR and SCR ratio for different levels of dependence between structure variables. Monetary

amounts are expressed in thousands of Euro.

OMEGA

Pearson correlation coeff. Mean Std. dev. q99.5% TVaR99% SCR SCR ratio

ρ
(
q̃ , p̃

)=−1 2,803,575 45,314 2,922,753 2,927,557 119,178 4.25%

ρ
(
q̃ , p̃

)= 0.237 2,805,983 91,958 3,059,477 3,069,512 253,494 9.03%

ρ
(
q̃ , p̃

)=+1 2,807,209 111,329 3,125,179 3,140,281 317,970 11.33%
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Figure 2: One-year time horizon: distribution of the Claims Development Result for both insurers.

Both insurers show an increasing value of the SCR ratio in respect of the linear correlation between struc-

ture variables. When dependence between structural risk factors augments, the standard deviation and

the quantile at level 99.5% of the claims reserve increase, leading to a greater solvency capital charge. It is

to be pointed out that for both insurers a value of linear correlation between q̃ and p̃ equal to -1 leads to

a particular situation where the coefficient of variation of the one-year reserve is higher than the relative

variability of the total run-off distribution. The ratio between the coefficients of variation of the one-year

reserve and the total run-off reserve are 100.55% and 112.51% for DELTA and OMEGA respectively.

To investigate this unique circumstance we focus on the variance of the reserve evaluated under the

two time horizons (since the one-year and the total run-off distributions have the same mean) expressed

in terms of the average Pearson correlation coefficient:

∑
i , j∈B

Var
(

X̃ OY
i , j

)
+ ρ̄OY

∑
i , j∈B

∑
h,k∈B(h 6=i∨k 6= j )

SD
(

X̃ OY
i , j

)
SD

(
X̃ OY

h,k

)
> ∑

i , j∈B
Var

(
X̃ Tot

i , j

)
+ ρ̄Tot

∑
i , j∈B

∑
h,k∈B(h 6=i∨k 6= j )

SD
(

X̃ Tot
i , j

)
SD

(
X̃ Tot

h,k

) (5.1)

The left side of Equation (5.1) refers to the variance of the one-year reserve, whereas the right side refers

to the total run-off reserve (here superscripts "OY" and "Tot" indicate the one-year and the total run-off

time horizon). The terms
∑

i , j∈B Var
(

X̃ OY
i , j

)
and

∑
i , j∈B Var

(
X̃ Tot

i , j

)
include the variance of each single cell

of the lower triangle; the variances relative to the first diagonal (the forthcoming accounting year) match

by construction in the total run-off and in the one-year evaluations, thus it can be neglected. We show by

simulation that the variability of each single cell of the one-year reserve is lower than the one of the to-

tal run-off reserve. Therefore, the inequality of formula (5.1) is imputable to the covariance terms; hence,

the average Pearson correlation coefficient of the one-year reserve exceeds the one related to a total run-

off time horizon. The modeling explanation of this circumstance is ascribable to the use of two different
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approaches to assess the reserve under a total run-off and a one-year time horizon. When the whole life-

time of obligations is considered, we adopt the CRM, whereas when only the next 12 months are taken

into account, the reserve is determined according to the re-reserving approach. The latter imposes the

calculation, at each simulation step, of the first diagonal that it is adopted to estimate, in line with the un-

derling deterministic model, the lower residual cells of the triangle. With regards to the Frequency-Severity

method, at each iteration, according to the first simulated diagonal, the one-year approach calculates the

Chain-Ladder development factors to estimate the remaining lower triangle. Therefore, by construction,

the re-reserving approach induces a not negligible dependence between cells of the lower triangle; the av-

erage Pearson correlation coefficient affecting the triangle for the one-year reserve is higher than the one

for the total run-off view, which, in our case study, is almost zero due to the perfect negative dependence

between q̃ and p̃. The logical explanation related to a higher variability under a one-year time horizon eval-

uation, in respect of the total run-off, lies of course in the different time horizon taken into consideration.

When we consider the whole lifetime of obligations, the random variables related to the cells of the lower

triangle tend to compensate each other, especially thanks to the negative dependence of the structure vari-

ables, thus reducing the reserve variability. On the other hand, when the reserve is evaluated taking only

the next 12 months into account, the random variables are not able to offset one another as much as they

do over their whole lifetime, leading to a higher variability in respect of the one related to the total run-off

time horizon. Indeed, the one-year evaluation of the reserve disregards the stochastic claims process over

the next 12 months, not allowing the matching among the r.v.s X̃i , j , driven by the negative dependence

between q̃ and p̃, to get completely displayed. Moreover, under the Frequency-Severity method based on

Chain-Ladder mechanics, the re-reserving approach stresses this particular case when the triangle is small

due to the higher impact that the first simulated diagonal has on the residual lower triangle. In Table 15 we

report the Pearson correlation coefficient estimated by simulation between the first diagonal of the lower

triangle and the residual cells.

Table 15: Pearson correlation coefficient for both insurers between first diagonal and the remaining lower

cells of triangle.

Dimension 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12

DELTA
Tot. run-off 0.013 0.018 0.016 0.021 0.013 0.014 0.016 0.020 0.024

One-year 0.854 0.821 0.761 0.775 0.647 0.644 0.689 0.738 0.586

OMEGA
Tot. run-off 0.003 0.008 0.004 0.008 0.010 0.011 0.012 0.008 0.014

One-year 0.890 0.841 0.804 0.775 0.714 0.719 0.743 0.687 0.630

With regards to the different dimensions of the run-off triangle, Table 16 shows the SCR ratio and the ratio

between the coefficient of variation of the reserve evaluated under a one-year time horizon and the one

related to the total run-off reserve.

Table 16: Coefficient of variation of the one-year reserve in respect of the one related to the total run-off

reserve and SCR ratio for both insurers.

Dimension 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12

DELTA
CVOY /CVTot 112.01% 108.96% 108.79% 103.15% 107.10% 104.05% 97.30% 92.69% 100.55%

SCR ratio 15.75% 14.73% 14.52% 13.23% 15.23% 14.68% 12.97% 12.20% 12.23%

OMEGA
CVOY /CVTot 113.89% 113.78% 111.85% 110.38% 117.32% 110.79% 103.66% 105.71% 112.54%

SCR ratio 6.03% 5.76% 5.55% 5.22% 6.06% 5.33% 4.55% 4.51% 4.31%

As expected, the ratio between the coefficients of variation is higher for triangles with low dimension due to

the higher correlation induced by the re-reserving approach. When the triangle dimension increases, the

weight of the one-year coefficient of variation over the total run-off relative variability tends to decrease,

but not necessarily in a monotonic way. Also the SCR ratio exhibits, in general, a decreasing trend in respect
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of the triangle dimension caused by the increasing number of reserved claims that highlights the diversi-

fication effect. If we compare the two insurers, the ratio between the coefficient of variation is higher for

OMEGA, due to the greater impact that structure variables have on the total run-off reserve. On the other

hand, the SCR ratio is lower for OMEGA because of the greater number of reserved claims that allow the

insurer to diversify mainly the component of pooling risk.

In sum, the coefficient of variation of the one-year reserve in respect of the one assessed under a total

run-off time horizon depends on three factors: the run-off triangle dimension, namely the impact that

the future diagonal has on the remaining cells to be estimated, the level of dependence between structure

variables and, in general, the characteristics of the data set. It is to be pointed out that from a mathematical

point of view, it is not possible a priori to know the direction of the inequality between the coefficients of

variation of the one-year and total run off reserve in respect of the value of correlation between q̃ and p̃.

6 Conclusions

As shown in [22] the estimation of structure variables embedded into the Collective Risk Model to stochas-

tically evaluate the claims reserve is a key issue. In the present work, we developed a Bayesian approach

to quantify the variability of structure variables implementing the Bayes’ rule through uninformative prior

distributions and data obtained by applying a bootstrapping-based procedure to run-off triangles inte-

grated via Mack’s formula. In addition, the dependence between structural risk factors has been investi-

gated in a Bayesian manner: we proposed a joined resampling scheme aimed at capturing the inherent

dependency of data. Through a case study we showed the impact that the dependence between structure

variables has on claims reserve distribution, evaluated with respect to both the entire liability settlement

period, the so-called total run-off approach, and the one-year time horizon, in order to assess the reserve

risk capital requirement. When perfect negative linear dependence is addressed on structural risk factors,

we come across a unique situation where the coefficient of variation of the one-year reserve exceeds the

relative variability of the total run-off reserve. Starting from this circumstance, we analysed both the mod-

eling connection and the logical link between the coefficient of variation of reserve appraised under the

two time horizons.

In our opinion, the methodology developed in the present paper, making use of only historical data, al-

lows us to estimate the magnitude and the dependence between structure variables both avoiding any sort

of expert judgment and providing a coherent approach with the Collective Risk Model to assess structural

risk factors. Moreover this approach fills a gap in existing research literature that is lacking methodologies

designed to calibrate structure variables related to Collective Risk Theory models for reserve risk. Never-

theless, the use of Bayes’ rule based on a selected parametric model turns to be a hard assumption to prove;

further developments may consider likelihood-free frameworks, where the statistical model is defined in

terms of a stochastic generating mechanism of data.
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Appendix A

DELTA

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12

1993 38,364 76,319 91,669 97,769 100,947 103,649 105,152 106,513 107,521 108,419 108,707 110,502

1994 41,475 85,940 101,878 108,718 112,018 114,748 115,757 116,909 117,675 118,143 118,599

1995 46,520 94,099 109,195 116,103 119,495 120,885 122,223 123,409 124,331 124,890

1996 47,925 99,792 117,390 123,696 126,570 128,694 130,927 132,135 133,008

1997 51,420 103,505 120,796 126,816 129,536 132,573 133,893 135,017

1998 57,586 111,736 131,345 138,876 142,986 145,766 148,032

1999 55,930 110,872 131,819 142,318 148,182 151,495

2000 51,005 104,197 126,016 134,380 139,095

2001 51,693 103,266 121,933 130,767

2002 54,954 106,565 125,169

2003 59,763 113,506

2004 60,361

Table 17: DELTA - Cumulative paid amounts (thousands of Euro).

DELTA

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12

1993 34,433 48,229 49,819 50,387 50,665 50,816 50,920 50,975 51,004 51,036 51,053 51,108

1994 35,475 49,193 50,693 51,241 51,451 51,584 51,635 51,679 51,706 51,726 51,742

1995 37,004 50,824 52,351 52,788 52,981 53,053 53,099 53,128 53,145 53,162

1996 37,038 50,669 52,131 52,631 52,795 52,875 52,938 52,977 53,003

1997 36,849 50,265 51,828 52,251 52,432 52,539 52,620 52,662

1998 39,171 51,772 53,364 53,924 54,197 54,372 54,527

1999 37,492 49,774 51,831 52,571 52,961 53,248

2000 34,188 46,433 48,371 49,132 49,427

2001 31,308 42,051 43,958 44,597

2002 30,357 40,474 42,085

2003 30,717 41,799

2004 30,590

Table 18: DELTA - Cumulative number of paid claims.

OMEGA

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12

1993 193,474 366,091 453,292 499,090 528,858 548,653 568,435 585,750 599,122 611,674 620,504 648,446

1994 199,854 368,820 449,363 490,019 519,072 540,193 560,158 574,406 585,126 598,810 604,818

1995 225,578 412,343 505,692 553,301 584,272 610,562 628,183 646,594 661,255 668,846

1996 256,398 493,076 598,692 649,864 687,202 711,287 732,041 744,122 758,260

1997 282,956 546,152 666,535 730,224 767,444 796,684 819,804 835,313

1998 292,428 576,829 718,229 774,619 814,814 842,770 872,756

1999 312,350 597,857 729,544 804,796 851,345 890,076

2000 327,673 635,665 797,182 875,147 927,842

2001 339,899 666,179 852,090 953,363

2002 371,275 757,122 950,128

2003 388,025 778,762

2004 398,686

Table 19: OMEGA - Cumulative paid amounts (thousands of Euro).
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OMEGA

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12

1993 284,236 395,010 407,622 412,348 414,554 415,754 416,509 417,012 417,415 417,820 418,070 418,767

1994 274,524 367,933 379,865 383,968 385,970 387,096 387,811 388,278 388,747 389,065 389,285

1995 284,017 374,422 386,345 390,312 392,114 393,119 393,780 394,370 394,770 395,011

1996 299,605 400,289 412,734 416,404 417,964 418,849 419,473 419,855 420,157

1997 308,092 411,618 426,850 431,376 433,420 434,608 435,384 435,926

1998 295,813 391,103 405,954 410,705 413,070 414,337 415,277

1999 288,418 381,906 399,078 405,364 408,304 410,063

2000 285,940 387,422 407,558 415,654 419,682

2001 290,023 386,767 409,717 418,962

2002 280,008 374,305 396,095

2003 277,412 369,192

2004 252,239

Table 20: OMEGA - Cumulative number of paid claims.

Appendix B

DELTA

Type of prior Uniform Jeffreys

E
(

Ãq̃ | σ̃q̃

)
64.726 48.576

E
(
B̃q̃ | σ̃q̃

)
3,008.640 2,254.114

E
(

Ãp̃ | σ̃p̃

)
32.160 24.164

E
(
B̃p̃ | σ̃p̃

)
1,066.136 798.222

Table 21: DELTA - Uninformative priors: expected values of posterior distributions.

OMEGA

Type of prior Uniform Jeffreys

E
(

Ãq̃ | σ̃q̃

)
17.305 13.039

E
(
B̃q̃ | σ̃q̃

)
623.993 467.282

E
(

Ãp̃ | σ̃p̃

)
123.468 92.717

E
(
B̃p̃ | σ̃p̃

)
4,597.385 3,449.045

Table 22: OMEGA - Uninformative priors: expected values of posterior distributions.

Appendix C

Let X̃ be a generic random variable following a gamma distribution with parameters α> 0 and β> 0. The

density function is:

f x̃ (X ) = βαxα−1

Γ(α)
e−βx , x ∈R+,

where Γ(α) = ∫ ∞
0 tα−1e−t d t is the gamma function. The j -th moment about zero is

E
(

X̃ j
)
= α(α+1) . . . (α+ j −1)

β j
,

whereas the j -th cumulant is
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K j
(
X̃

)= ( j −1)!α

β j
.

We here compute the characteristics of the structure variable q̃ (similar considerations hold for p̃). The

structure variable related to the claim count follows a gamma distribution with same parameters:

q̃ ∼ Gamma

(
1

σ̃2
q̃

;
1

σ̃2
q̃

)
,

where σ̃2
q̃ is itself a random variable. In general it is possible to compute the moments of the structure

variable q̃ without knowing the distributional form of the r.v. σ̃q̃ . The expected value is given by

E
(
q̃
)= Eσ̃q̃

[
E q̃

(
q̃ | σ̃q̃

)]= Eσ̃q̃

[
σ̃2

q̃

σ̃2
q̃

]
= 1,

therefore, the mean of the structure variable remains equal to 1. With regards to the variance, it can be

compute as:

Var
(
q̃
)=Eσ̃q̃

[
Varσ̃q̃

(
q̃ | σ̃q̃

)]+Varσ̃q̃

[
Eσ̃q̃

(
q̃ | σ̃q̃

)]
Eσ̃q̃

(
σ̃2

q̃

)
+Varσ̃q̃ (1) = Eσ̃q̃

(
σ̃2

q̃

)
,

showing that the second raw moment of the r.v. σ̃q̃ represents the variance of q̃ . The relative variability is

equal to the square root of the variance:

CV
(
q̃
)=√

Eσ̃q̃

(
σ̃2

q̃

)
.

Finally, the skewness equals:

γ
(
q̃
)= µ3

(
q̃
)

[
Var

(
q̃
)] 3

2

= E
(
q̃3

)−3E
(
q̃
)

Var
(
q̃
)−E

(
q̃
)3[

Var
(
q̃
)] 3

2

1+3Eσ̃q̃

(
σ̃2

q̃

)
+2Eσ̃q̃

(
σ̃4

q̃

)
−3Eσ̃q̃

(
σ̃2

q̃

)
−1[

Var
(
q̃
)] 3

2

=
2Eσ̃q̃

(
σ̃4

q̃

)
[
Var

(
q̃
)] 3

2

,

where it holds that E
(
q̃3

) = Eσ̃q̃

[
Eσ̃q̃

(
q̃3 |σq̃

)] = Eσ̃q̃

(
1+3σ̃2

q̃ +2σ̃4
q̃

)
. It is to be noted that the third cu-

mulant of q̃ , i.e. the numerator of skewness, depends only on the 4-th central moment of σ̃q̃ . Under the

assumption that the r.v. σ̃q̃ follows a gamma distribution of parameters α and β, σ̃q̃ ∼ Gamma
(
α;β

)
, the

characteristics of the structure variable can be rewritten as follow.

Variance:

Var
(
q̃
)= α (α+1)

β2 .

Coefficient of variation:

CV
(
q̃
)= p

α (α+1)

β
.

Skewness:

γ
(
q̃
)= 2(α+2)(α+3)

β
p
α (α+1)

.
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Appendix D

Posterior expected values

Insurer Type of prior Uniform Jeffreys

DELTA
E

(
C̃ | ρ̃)

2.272 1.752

E
(
D̃ | ρ̃)

14.049 10.411

OMEGA
E

(
C̃ | ρ̃)

4.031 3.102

E
(
D̃ | ρ̃)

12.987 9.779

Table 23: Uninformative priors: expected values of posterior distributions for both insurers.

22


