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Abstract 

The present study aims at investigating unsteady hydromagnetic flow of viscous incompressible, 

conducting nanofluid over an infinite oscillating surface with Joule heating. The governing 

equations involved are transformed into dimensionless form using appropriate non-dimensional 

variables. The resulting dimensionless momentum equation is solved analytically by using the 

method of separation of variables. The Joule heating terms in the energy equation are expressed 

explicitly using this solution. With the help of the superposition principle, a complementary 

function is creatively synthesized and a particular integral is obtained by the method of 

undetermined coefficients. The complete solution is obtained by summing the two. The effects of 

magnetic field strength, oscillation frequency, nanoparticle concentration, Prandtl number and 

the Eckert number are illustrated graphically.  
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Nomenclature 

V        velocity                                                             Pr   Prandtl number 

u          velocity component in the x-direction             Ec    Eckert number 

MHD   magnetohydrodynamics                                   T     temperature 

B         magnetic field                                                       dimensionless temperature 
         density                                                                   kinematic viscosity 

E         electrical field                                                        nanopaprticle concentration 

pc    specific heat capacity at constant pressure         k    thermal conductivity 

J  electrical current                                                     dimensionless variables 

   oscillation frequency                                              infinity 

  w     surface/wall conditions                                          free stream conditions 

 

 

1. Introduction  

The movement of electrically conducting hydromagnetic flow results to flow of electrical 

current, J . This current results to a force BJF   called the Lorentz force and Joule heating 

expressed mathematically as EJ  . The heating effect is a manifestation of energy dissipation 

inform of heat due to opposition of current. This study aims at analyzing the amount of Joule 

heating which occurs as a result of nanofluid movement triggered by the oscillation of surface 

and the role played by nanofluid in removing the heat generated due to Joule heating.  Studies on 

MHD flows have received a lot of attention by researchers due to their many applications in 

areas like astrophysics, geophysics, Plasma confinement, MHD pumps etc..  Such flows over 

oscillating surfaces have been done. However, the Joule heating which occurs due to the 

oscillation of the surface has not been given the seriousness it deserves. Ostrach [1] analyzed 

aerodynamic heating of an oscillating surface. It was demonstrated that aerodynamic heating 

increases with an increase on the amplitude of oscillation and that oscillation considerably 

increases mechanical dissipation. Soundalgelar [2] studied free convection effects on MHD flow 

past an infinite vertical oscillating plate with constant heat flux. It was found that velocity 

decreases with increasing frequency of oscillation but temperature increases with an increase in 

frequency of oscillation. Muthucumaraswamy and Meena [3] theoretically studied chemical 

reaction effects on vertical oscillating plate with variable temperature. It was found that chemical 

reaction has significant effect on heat transfer. An investigation on combined heat and mass 

transfer on MHD free convection flow past an oscillating plate embedded in porous medium was 

done by Chaudhanry and Jain [4]. Here, it was discovered that cooling the oscillating plate leads 

to a decrease in velocity and vice versa. Kishore et al. [5] used finite difference method to 

investigate the effect of thermal radiation and viscous dissipation on MHD heat on mass 

diffusion flow past an oscillating vertical plate embedded in a porous medium with variable 

surface conditions. This study showed that plate oscillation, variable mass diffusion, radiation, 



viscous dissipation and porous medium affect the flow pattern significantly. Ahmed and Kalita 

[6] very recently, analytically and numerically studied MHD flow over an infinite oscillating 

vertical surface bounded by porous medium in presence of chemical reaction. In this study, it 

was illustrated that results by Laplace technique compare very well with those by Crank-

Nicolson numerical technique. It was also confirmed that an increase in chemical reaction 

parameter leads to a decrease in fluid velocity and concentration profiles. Very recently Abid et 

al. [7] investigated MHD flow of a casson fluid past an oscillating vertical plate with Newtonian 

heating. It was proved that flow separation can be controlled by increasing the value of Casson 

fluid parameter as well as increasing the Prandtl number. It was also shown that velocity 

decreases as Casson parameter increases and thermal boundary layer thickness increases with 

increasing Newtonian heating parameter. Another very recent study on MHD past a vertical 

oscillating plate with radiation and chemical reaction in a porous medium was done by Rudra 

and Nhaben [8]. It was discovered that temperature decreases with chemical parameter. This 

study also showed that concentration decreases as Schmidt and radiation parameters increases. It 

was found that velocity increases with decreasing magnetic parameter and chemical reaction. 

The science of nanofluid and technology was introduced by Nobel prizing winning physicist 

Richard in 1959. Since then much research work has been done to this new type of material 

because of its high rated properties and behavior associated with heat transfer as reported by 

Choi [9]. Xuan and Roetfel [10] investigated conceptions for heat transfer correlation of 

nanofluids. It was proved that thermal dispersions plays a key role in increasing  heat transfer in 

the fluid and in the wall. Li and Xuan [11] examined the characteristics of Cu-water nanofluid. 

Here it was demonstrated that nanofluid thermal conductivity is superior to that of pure fluid. 

Raiskinmaki et al. [12] investigation showed that the important nanoparticles  settles slowly than 

the larger particles and this prevents channel clogging and any other destructive effect . Wen and 

Ding [13] experimentally investigated convective heat transfer of nanofluids at the entrance 

region under laminar flow conditions. By measuring, it was found that heat transfer coefficient is 

greatest at the entry and that an increase in particle concentration enhances it. Thermally 

developing electroosmotic (with Joule heating) transport of nanofluids in a micro channels was 

investigated by  Chakraborty and Roy [14]. It was demonstrated that pressure gradient as well as 

Joule heating affects velocity profile and temperature profile of the fluid significantly.Very 

recently, Ghasemi and Aminossadati [15] investigated mixed convection in a lid driven 

triangular enclosure filled with nanofluids. It was shown that addition of AL2O3 nano particles 

enhances heat transfer rate for every value of Richardson number and for each sliding wall 

motion. Chad [16] investigated the thermal instability of rotating nanofluid. The effects of the 

Taylor number, concentration Rayleigh number, Prandtl number and Lewis number were 

investigated for stability purposes. A Study on heat exchangers was done by Mehta [17]. This 

study gave a detailed description of heat exchangers, properties of nanofluids together with their 

preparation. A very important background of nanonfluids is also given.  Anindya and Ashok 

[18], numerically analyzed heat transfer characteristics of combined electroosmotic (with Joule 

heating) and pressure-driven fully developed flow of power law nano-fluid in microchannels. 



Through this study it was observed that Nusset number decreases with decreasing viscosity ratio 

and increasing permittivity ratio but it increases with increasing resistivity ratio. Hady [19] 

studied the flow and heat transfer characteristics of a viscous nanofluid over a non linearly 

stretching sheet in the presence of thermal radiation. In this study it was found that an increase in 

solid volume and Eckert number yields an increment in the nanofluids temperature. In addition, 

an increase in the thermal radiation parameter and the non linear stretching sheet parameter 

yields a decrease in the nanofluids temperature. Very recently Mohammed [20] studied 

magnetohydrodynamic free convention of nanofluid over a vertical flat plate taking into account 

Newtonian heating boundary condition. It was found that dimensionless velocity and temperature 

distributions increase with the increase of Newtonian heating parameter. Ferdows and Khan [21] 

studied MHD boundary layer flow of a nanofluid over an exponentially stretching sheet. It was 

found that momentum, thermal and concentration boundary layer thickness increase as the 

viscous ratio parameter increases. On the other hand skin-friction coefficient, surface heat and 

mass transfer rate decreases. It was also observed that an increase in Eckert number results to 

increase in momentum and thermal boundary layer. Bakr and Raizah [22] investigated 

analytically MHD mixed convection flow of a viscous dissipating micropolar nanofluids in a 

bounding layer slip flow with Joule heating. The obtained results showed that physical 

parameters such as thermal Grashof number influence velocity, temperature and the 

concentration profiles.  This literature review shows that, studies on MHD flow of nanofluid over 

oscillating surface have not been done yet. In this study we shall take the nanofluid as Copper 

water nanofluid. The properties this type of nanofluid are found in Anjali and Julie [23]. 
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Figure  1: Physical configuration. 

2. Mathematical formulation of the problem 

We shall consider unsteady, forced convective MHD flow of incompressible and electrically 

conducting viscous nanofluid taking place over a doubly infinite surface oscillating in the x  

direction at a velocity  tUu R cos  as shown in figure 1. At 0t  the surface and the fluid are 



at the same temperature T  everywhere. Also, a magnetic field of uniform strength is applied 

perpendicularly to the surface. A combination of the Navier-Stoke’s (N-S) equations of fluid 

dynamics and Maxwell’s equations of electromagnetism gives the general governing equations 

of this flow.  Since the surface is doubly infinite, the velocity and the temperature of the fluid can 

be visualized in the tyu and tyT D3  geometries respectively. Since there is no motion in the 
y

 direction 0v  . 
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And the Joule heating term is expressed as; 

    220,0,0,0, BuuBuB  EJ
.   

Since, the surface is double infinity, all gradients with respect to x and z of velocity components 

must varnish. 

In view of the above discussion the governing equations which describe the flow become
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Subject to: 

 

0u ,    0v ,      TT ,        for all   y ,  0t  

tUu R cos
,     

wTT             at   0y ,   0t                                            (3) 

0u
,              , TT         as  ,y     0t  

Here , 



 uB 2

   is the MHD term and  
pc

uB



 22

  represents Joule heating.                                  

3. Solution of the problem 

To seek the solution the following dimensionless variables are introduced: 
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In view of this variables equation (1) becomes 
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Multiply both sides of equation (5) by 3
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By making use of the dimesionless variables as in (4), (6) becomes 
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Equation (7) is the momentum equation in dimensionless form. 

 

In view of equation(4) equation (2) becomes 
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Dividing both sides by 
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Putting the relevant dimensionless variables in (9) gives 
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EcM   accounts for Joule heating. 

Equation (10) is the energy equation in dimensionless form.                                                                          

The ICS together with the BCS in dimensionless form are: 

,0u    ,0    for all    
y  ,   0t                                                               

  tu cos ,   1       at 0y                                             

 (11) 

0u ,              ,0    as ,y  0t                                                          

Let the solution of the momentum equation be 

 

       tTyYtyu , or simply  YTu 
.
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Since the LHS is a function of independent variable 
t  and RHS is a function of independent  

variable 
y , and the two cannot be equal to each other unless both reduce to a constant value. 

Let the constant be 
2k  so that 
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   tMkAT 2

1 exp   and      kyAkyAY expexp 32 . It follows that  

         .expexpexp, 2   tMkkyBkyAtyu                                                    (13)  

Now since   0,   tu , we must have 0A . The solution reduces to  

      tMkkyBtyu 2exp)exp(,
.                                                                           (14) 

Applying the boundary condition      ttu cos,0  we have 

       tMkkyBti 2exp)exp(expRe   meaning that 

1B  and 
  iMk 2
  or  

  iMk . 

The unique solution becomes,     
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Replacing 
2u  and in equation (10) in view of (16)  we have, 
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equation (17) may be written in compact form as 

 

 
 














ay

EcM

yt nf

2exp
2Pr

1
2

2
    



bytay
MEc

22cos2exp
2

  

     bytayabEc 22sin2exp 
.
                                                                                   (18) 

Where      
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Now,  
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Where nf  and nf  are the kinematic viscosity and thermal diffusivity of the nanofluid 

respectively. The kinematic viscosity is given by, 
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And the thermal diffusivity is given by, 
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Thus the Prandtl number may be expressed as, 
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Equation (4.31) may be written as: 
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Whereby,    
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Assume a particular integral of the form
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                                                    (25 



It follows that 
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Substituting equation (26) and (27) into equation  (24) and equating coefficients we get
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After solving for B  and  C  in equation (28) we get 

 

   2222

22

4482

44
2

baab

ba
EcM

B











  

 

   
.

4482

28
2

2222
baab

ab
EcM

C













 

The particular integral becomes 
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We shall creatively synthesize the complementary function of equation (24) from some solution 

of the homogeneous part of the equation so that the boundary conditions are satified. Some of 

these solutions include:
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2cosexp , is a solution if the temperature of a stationary surface is 

 

 specified to be harmonic of time. 
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2sinexp , is a solution if the temperature of a stationary surface is  

specified to be harmonic of time. 
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By the principle of superposition  the complementary function may be written as, 
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The sum of equation (29) and (30) gives us the complete solution
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 Where the error function  erf  is defined as 
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 and has the properties 

 

  00 erf  and    1erf . 

 

4. Results and Discussions 

Below are graphs of velocity and temperature profiles in connection to the parameters of interest. 
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Figure 2: Velocity profiles for different values of  when M=2 and t=0.8. 
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Figure 3: Velocity profiles for different values of  M when 2/pi  and t=0.8. 
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Figure 4: Temperature profiles for different values of t when M=2, t=10, E=0.3, Pr=7.02. 
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Figure 5: Temperature profiles for different values of M when pi4 , t=10, E=0.4, Pr=2.60. 
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Figure 6: Temperature profiles for different values of Ec when 2/pi , M=2, Pr=7.02 and 

                 t=5. 
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Figure 7: Temperature profiles for different values of v (nanoparticle concentration) 

                when 2/pi ,  M=2, Ec=0.1 and t=5. 
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Figure 8: Temperature profiles for different values of Pr when 2/pi ,  M=2, Ec=0.1 and t=5. 

Figure 2 shows the variation of temperature with  . Here, it can be seen that velocity decreases 

with an increase in  . Figure 3 depicts the effect of M on velocity. Evidently, velocity 

decreases with an increase in M. increasing M leads to an increase of the Lorentz force which 

opposes the flow of the nanofluid. Figure 4 illustrates the relationship between temperature and 

oscillations frequency  . It is observed that temperature increases with the increase of 

oscillation frequency. Figure 5 shows that temperature increases with a decrease in M which is 

attributed to the fact that smaller M corresponds to higher velocity which in turn leads to high 

electrical current hence the increase in Joule heating. Figure 6 indicates that temperature 

increases with an increase in Ec. Figure 7 demonstrates the effects of nanoparticle concentration 

on temperature. Clearly, the higher the concentration the higher the temperature. This is due to 

the fact that nanoparticles improves the thermal conductivity of the fluid. From figure 8 it is 

observed that temperature decreases with an increase in Pr. This is because Pr reduces the 

thermal conductivity of the nanofluid.  

From figures 4-8 it can be observed that the temperature of the nanofluid over a stationary 

surface is the lowest as compared to that of over oscillating surface. This means that oscillation 

of the surface leads movement of the nanofluid which in turn leads to flow of electrical current 

which results to Joule heating hence the increase in temperature. 

 

5. Conclusion 

 

Studies on MHD flow of nanofluid over an oscillating surface have been carried out. It was 

found out that velocity decreases with the frequency of oscillation as well as with magnetic 

parameter. It was also observed that temperature increases with an increase in Erkert number 



(Ec), nanoparticle concentration and the frequency of oscillation but decreases with an increase 

in magnetic parameter (M) and the Prandtl number (Pr). In summary, oscillation of the surface 

over which a nanofluid flows increases Joule heating depending on the applied magnetic field 

strength, oscillation frequency of the surface. Increasing nanoparticle concentration increases the 

thermal conductivity of the nanofluid and this improves the potential to remove heat added into 

the fluid as a result of Joule heating.  
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