Packing dimension for β-shifts

Zheng Yin*, Xiucheng Hong
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, P.R.China
e-mail: zhengyinmail@126.com

Abstract

This article is devoted to the study of the packing entropy for maps with g -almost product property, a weak form of specification property. In particular, our result can be applied to the packing dimension for β-shifts.

Keywords and phrases: Packing entropy, Packing dimension, β-shifts.

1 Introduction

(X, d, T) (or (X, T) for short) is a topological dynamical system which means that (X, d) is a compact metric space together with a continuous self-map $T: X \rightarrow X$. Denote by $M(X), M(X, T)$ and $E(X, T)$ the sets of all Borel probability measures, T-invariant Borel probability measures, and ergodic measures on X, respectively. It is well known that $M(X)$ and $M(X, T)$ equipped with weak* topology are both convex, compact spaces.

For an T-invariant subset $Z \subset X$, let $M(Z, T)$ denote the subset of $M(X, T)$ for which the measures μ satisfy $\mu(Z)=1$ and $E(Z, f)$ denote those which are ergodic. For a positive integer n, define the n-th empirical measure $\mathcal{E}_{n}: X \rightarrow M(X)$ by

$$
\mathcal{E}_{n}(x)=\frac{1}{n} \sum_{k=0}^{n-1} \delta_{T^{k} x},
$$

where δ_{x} denotes the Dirac measure at x. Let $A\left(x_{n}\right)$ be the set of all limit points of sequence $\left\{x_{n}\right\}$.

[^0]This investigation uses the framework introduced and developed by Olsen $[3,4,5,6]$ and Olsen and Winter [7]. Consider the continuous and affine deformations of \mathcal{E}_{n} i.e. pairs (Y, Ξ) where Y is a vector space with linear compatible metric and $\Xi: M(X) \rightarrow Y$ is a continuous and affine map. Let

$$
\Delta_{e q u}(C)=\left\{x \in X \mid A\left(\Xi \mathcal{E}_{n}(x)\right)=C\right\}
$$

and

$$
\Delta_{\text {sup }}(C)=\left\{x \in X \mid A\left(\Xi \mathcal{E}_{n}(x)\right) \subset C\right\} .
$$

where C is a convex and closed subset of $\Xi(M(X, T))$.
There are some interesting results about the description of the structure (Hausdorff dimension or topological entropy or topological pressure) of $\Delta_{\text {equ }}(C)$ and $\Delta_{\text {sup }}(C)$. Recently, Zhou, Chen and Cheng [10] studied the packing entropy of $\Delta_{\text {equ }}(C)$ and $\Delta_{\text {sup }}(C)$ for maps with specification property. Pfister and Sullivan [8] obtained the Bowen entropy in a dynamical system with the g-almost product property which is weaker than specification. Zhou and Chen [9] gave topological pressure for maps with g -almost product property.

Motivated by the work of Zhou, Chen and Cheng (see [9, 10]), we study the packing entropy in a dynamical system with the g -almost product property. In particular, our result can be applied to the packing dimension for β-shifts.

2 Definitions and Main result

Let (X, T) be a topological dynamical system and $C(X)$ the space of continuous functions from X to \mathbb{R}. For $\mu, \nu \in M(X)$, define a compatible metric d on $M(X)$ as follows:

$$
d(\mu, \nu):=\sum_{i \geq 1} 2^{-i}\left|\int f_{i} d \mu-\int f_{i} d \nu\right|
$$

where $\left\{f_{i}\right\}_{i=1}^{\infty}$ is the subset of $C(X)$ with $0 \leq f_{i}(x) \leq 1, i=1,2, \cdots$. It is convenient to use an equivalent metric on X, still denoted by $d, d(x, y):=d\left(\delta_{x}, \delta_{y}\right)$.

For every $\epsilon>0$, denote by $B_{n}(x, \epsilon), \bar{B}_{n}(x, \epsilon)$ the open and closed balls of radius $\epsilon>0$ in the metric d_{n} around x respectively, i.e.,

$$
B_{n}(x, \epsilon)=\left\{y \in X: d_{n}(x, y)<\epsilon\right\}, \bar{B}_{n}(x, \epsilon)=\left\{y \in X: d_{n}(x, y) \leq \epsilon\right\} .
$$

Where $n \in \mathbb{N}$, the n-th Bowen metric d_{n} on X is defined by

$$
d_{n}(x, y)=\max \left\{d\left(T^{k} x, T^{k} y\right): k=0,1, \cdots, n-1\right\} .
$$

2.1 Continuous affine deformation Ξ.

Definition 2.1. [1] If Y is a vector space and d^{\prime} is a metric in Y, then d^{\prime} is linearly compatible if
(1) For all $x_{1}, x_{2}, y_{1}, y_{2} \in Y$, $d^{\prime}\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \leq d^{\prime}\left(x_{1}, y_{1}\right)+d^{\prime}\left(x_{2}, y_{2}\right)$;
(2) For all $x, y \in Y$ and all $\lambda \in \mathbb{R}, d^{\prime}(\lambda x, \lambda y) \leq|\lambda| d^{\prime}(x, y)$.

2.2 Packing entropy.

Given $Z \subset X, \epsilon>0$ and $N \in \mathbb{N}$, let $\mathcal{P}^{*}(Z, N, \epsilon)$ be the collection of countable or finite sets $\left\{\left(x_{i}, n_{i}\right)\right\} \subset Z \times\{N, N+1, \cdots\}$ such that $\bar{B}_{n_{i}}\left(x_{i}, \epsilon\right) \bigcap \bar{B}_{n_{j}}\left(x_{j}, \epsilon\right)=\emptyset, \forall i \neq j$. For each $s \in \mathbb{R}$, consider the set functions

$$
\begin{aligned}
& m^{*}(Z, s, N, \epsilon)=\sup _{\mathcal{P} *(Z, N, \epsilon)} \sum_{\left(x_{i}, n_{i}\right)} \exp \left(-n_{i} s\right) \\
& m^{*}(Z, s, \epsilon)=\lim _{N \rightarrow \infty} m^{*}(Z, s, N, \epsilon) ; \\
& m^{* *}(Z, s, \epsilon)=\inf \left\{\sum_{i=1}^{\infty} m^{*}\left(Z_{i}, s, \epsilon\right): \bigcup_{i=1}^{\infty} Z_{i} \supset Z\right\} .
\end{aligned}
$$

Both of these functions are non-increasing in s, and the latter takes values ∞ and 0 at all but at most one value of s. Denoting the critical value of s by

$$
\begin{aligned}
h^{P}(Z, \epsilon) & =\inf \left\{s \in \mathbb{R}: m^{* *}(Z, s, \epsilon)=0\right\} \\
& =\sup \left\{s \in \mathbb{R}: m^{* *}(Z, s, \epsilon)=\infty\right\}
\end{aligned}
$$

leads to $m^{* *}(Z, s, \epsilon)=\infty$ when $s<h^{P}(Z, \epsilon)$, and 0 when $s>h^{P}(Z, \epsilon)$.
The packing entropy of Z is $h^{P}(Z):=\lim _{\epsilon \rightarrow 0} h^{P}(Z, \epsilon)$. The limit exists because $h^{P}(Z, \epsilon)$ increases when ϵ decreases.

2.3 g -almost property and uniform separation property.

In this section, we first present some notations to be used in the paper. Then a weak specification property and a weak expansive property are introduced. A remark about the notation is presented here for convenience.

Remark 2.1. Let (X, T) be a topological dynamical system.
(1) If $F \subset M(X)$ is an open set, set $X_{n, F}:=\left\{x \in X: \mathcal{E}_{n} x \in F\right\}$.
(2) Given $\delta>0$ and $\epsilon>0$, two points x and y are (δ, n, ϵ)-separated if $\#\{i$: $\left.d\left(T^{i} x, T^{i} y\right)>\epsilon, 0 \leq i \leq n-1\right\} \geqslant \delta n$. A subset E is (δ, n, ϵ)-separated if any pair of different points of E are (δ, n, ϵ)-separated.
(3) Let $F \subset M(X)$ be a neighborhood of ν, and $\epsilon>0$, and set $N(F ; n, \epsilon):=$ maximal cardinality of an (n, ϵ)-separated subset of $X_{n, F}$; $N(F ; \delta, n, \epsilon):=$ maximal cardinality of an (δ, n, ϵ)-separated subset of $X_{n, F}$.
(4) Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a given nondecreasing unbounded map with the properties $g(n)<n$ and $\lim _{n \rightarrow \infty} \frac{g(n)}{n}=0$. The function g is called a blow-up function. Given $x \in X$ and $\epsilon>0$; let

$$
\begin{aligned}
B_{n}(g ; x, \epsilon):=\left\{y \in X: \exists \Lambda \subset \Lambda_{n},\right. & \#\left(\Lambda_{n} \backslash \Lambda\right) \leqslant g(n) \text { and } \\
& \left.\max \left\{d\left(T^{i} x, T^{i} y\right): i \in \Lambda\right\} \leq \epsilon\right\},
\end{aligned}
$$

where $\Lambda_{n}=\{0,1, \cdots, n-1\}$.
Definition 2.2. ([8]) The dynamical system (X, d, T) has the g-almost product property with blow-up function g if there exists a non-increasing function $m: \mathbb{R}^{+} \rightarrow \mathbb{N}$ such that for any $k \in \mathbb{N}$, any $x_{1} \in X, \cdots, x_{k} \in X$, any positive $\varepsilon_{1}, \epsilon_{2}, \cdots, \varepsilon_{k}$, and any integers $n_{1} \geq m\left(\varepsilon_{1}\right), \cdots, n_{k} \geq m\left(\varepsilon_{k}\right)$,

$$
\bigcap_{j=1}^{k} T^{-M_{j-1}} B_{n_{j}}\left(g ; x_{j}, \epsilon_{j}\right) \neq \emptyset
$$

where $M_{0}=0, M_{i}=n_{1}+n_{2}+\cdots+n_{i}, i=1,2 \cdots, k-1$.
Definition 2.3. ([8]) The dynamical system (X, d, T) has the uniform separation property if for any η, there exist $\delta^{*}>0$ and $\epsilon^{*}>0$ such that for μ ergodic and any neighbourhood $F \subset M(X)$ of μ, there exists $n_{F, \mu, \eta}^{*}$ such that for $n \geq n_{F, \mu, \eta}^{*}$,

$$
N\left(F ; \delta^{*}, n, \epsilon^{*}\right) \geq \exp (n(h(T, \mu)-\eta)),
$$

where $h(T, \mu)$ is the metric entropy of μ.
Proposition 2.1. [8] Assume that (X, d, T) has the g-almost product property and the uniform separation property. For any η, there exists δ^{*} and $\epsilon^{*}>0$ such that for $\mu \in M(X, T)$ and any neighborhood $F \subset M(X)$ of μ, there exists $n_{F, \mu, \eta}^{*}$, such that

$$
N\left(F ; \delta^{*}, n, \epsilon^{*}\right) \geq \exp (n(h(T, \mu)-\eta)), \forall n \geqslant n_{F, \mu, \eta}^{*} .
$$

2.4 Statement of main result.

Define

$$
\Lambda(y)=\left\{\begin{array}{lr}
\sup _{\mu \in M(X, T), \Xi \mu=y} h(T, \mu), & y \in \Xi(M(X, T)) ; \\
-\infty, & \text { otherwise } .
\end{array}\right.
$$

The following theorem is the main result of this paper.

Theorem 2.1. $\left(X, T, \Xi, \mathcal{E}_{n}, Y\right)$ satisfies the g-almost product property and the uniform separation property. If $C \subset Y$ is a convex and closed subset of $\Xi(M(X, T))$, then $\Delta_{\text {equ }}(C) \neq \emptyset$ and

$$
h^{P}\left(\Delta_{\text {equ }}(C)\right)=h^{P}\left(\Delta_{\text {sup }}(C)\right)=\sup _{y \in C} \Lambda(y) .
$$

3 Proof of Theorem 2.1.

In this section, we are going to prove Theorem 2.1. The upper bound of $h^{P}\left(\Delta_{\text {sup }}(C)\right)$ holds without extra assumption. From the second part proof of Theorem 1.1 in [10], we have

$$
h^{P}\left(\Delta_{\text {sup }}(C)\right) \leq \sup _{y \in C} \Lambda(y) .
$$

Now we prove the lower bound of $h^{P}\left(\Delta_{\text {equ }}(C)\right)$. We need the following lemma.
Lemma 3.1. ([2]) Let (X, T) be a topological dynamical systems. If $K \subset X$ is nonempty and compact, then

$$
h^{P}(T, K)=\sup \left\{\bar{h}_{\mu}(T): \mu \in M(X), \mu(K)=1\right\} .
$$

where

$$
\bar{h}_{\mu}(T)=\int \bar{h}_{\mu}(T, x) d \mu(x), \bar{h}_{\mu}(T, x)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(B_{n}(x, \varepsilon)\right) .
$$

For any $\eta>0$, there exists sufficiently small $\epsilon>0$ (see below) and $p \in C$ such that

$$
\sup _{q \in C} \Lambda(q)-\eta \leq \Lambda(p)
$$

Let $n \in \mathbb{N} \backslash\{0\}$. Since C is compact and connected, it is possible to choose $q_{n, 1}, \cdots, q_{n, M_{n}} \in$ C such that

$$
\begin{gathered}
C \subset \bigcup_{i=1}^{M_{n}} B\left(q_{n, i}, \frac{1}{n}\right) \\
\left|d^{\prime}\left(q_{n, i}-q_{n, i+1}\right)\right| \leq \frac{1}{n} \forall i,\left|d^{\prime}\left(q_{n, M_{n}}-q_{n+1,1}\right)\right| \leq \frac{1}{n}, \\
q_{n, M_{n}}=p \quad \forall n .
\end{gathered}
$$

Let $\left\{\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime \prime}, \alpha_{3}^{\prime \prime}, \cdots\right\}=\left\{q_{1,1}, q_{1,2}, \cdots, q_{1, M_{1}}, q_{2,1}, q_{2,2}, \cdots\right\}$; then for any $n \in \mathbb{N} \backslash\{0\}$,

$$
\overline{\left\{\alpha_{j}^{\prime \prime}: j \in \mathbb{N} \backslash\{0\}, j \geq n\right\}}=C
$$

and $\lim _{j \rightarrow \infty} d^{\prime}\left(\alpha_{j}^{\prime \prime}, \alpha_{j+1}^{\prime \prime}\right)=0$.
We will construct a subset $F \subset \Delta_{\text {equ }}(C)$ such that for each $x \in F,\left\{\Xi \mathcal{E}_{n}(x)\right\}$ has the same limit-point set as the sequence $\left\{\alpha_{k}^{\prime \prime}\right\}$ and $h^{P}(F) \geq \sup _{x \in C} \Lambda(x)$.

For $\frac{\eta}{2}$ and $\alpha_{k}^{\prime \prime} \in C$, there exists $\alpha_{k} \in \Xi^{-1} C \cap M(X, T)$ such that $\Lambda\left(\alpha_{k}^{\prime \prime}\right)-\frac{\eta}{2}<h\left(T, \alpha_{k}\right)$. By Proposition 2.1, it is easy to see that for $\frac{\eta}{2}>0$, there exist $\delta^{*}>0$ and $\epsilon^{*}>0$, such that for any neighborhood $F^{\prime \prime} \subset \Xi(M(X))$ of $\alpha_{k}^{\prime \prime}\left(\right.$ choose $F^{\prime \prime}=B\left(\alpha_{k}^{\prime \prime}, \xi_{k}^{\prime \prime}\right)$), there exist $B\left(\alpha_{k}, \xi_{k}\right) \subseteq \Xi^{-1} F^{\prime \prime}$ and $n_{B\left(\alpha_{k}, \xi_{k}\right), \alpha_{k}, \frac{n}{2}}^{*}$ satisfying

$$
\begin{equation*}
N\left(B\left(\alpha_{k}, \xi_{k}\right) ; \delta^{*}, n, \epsilon^{*}\right) \geq \exp \left(n\left(h\left(T, \alpha_{k}\right)-\frac{\eta}{2}\right)\right) \tag{3.1}
\end{equation*}
$$

where $n \geq n_{\left.B\left(\alpha_{k}, \xi_{k}\right), \alpha_{k}\right), \frac{n}{2}}^{*}$ and $\xi_{k}, \xi_{k}^{\prime \prime}$ will be determined later.
We choose strictly decreasing sequences $\left\{\xi_{k}\right\}_{k},\left\{\xi_{k}^{\prime \prime}\right\}_{k}$ and $\left\{\epsilon_{k}\right\}_{k}$ such that $\lim _{k} \xi_{k}=$ $0, \lim _{k} \xi_{k}^{\prime \prime}=0$ with $\epsilon_{1}<\epsilon^{*}$. From (3.1), we deduce the existence of n_{k} and a $\left(\delta^{*}, n_{k}, \epsilon^{*}\right)$ separated subset $\Gamma_{k} \subseteq X_{n_{k}, B\left(\alpha_{k}, \xi_{k}\right)} \subseteq X_{n_{k}, \Xi^{-1} B\left(\alpha_{k}^{\prime \prime}, \xi_{k}^{\prime \prime}\right)}$ with

$$
\sharp \Gamma_{k} \geq \exp \left(n_{k}\left(h\left(T, \alpha_{k}\right)-\frac{\eta}{2}\right)\right) \geq \exp \left(n_{k}\left(\Lambda\left(\alpha_{k}^{\prime \prime}\right)-\eta\right)\right) .
$$

We may assume that n_{k} satisfies

$$
\delta^{*} n_{k}>2 g\left(n_{k}\right)+1, \frac{g\left(n_{k}\right)}{n_{k}} \leq \epsilon_{k}
$$

We choose a strictly increasing sequence $\left\{N_{k}\right\}_{k=0}^{\infty}$ with $N_{0}=0$ and $N_{k} \in \mathbb{N} \backslash\{0\}$ such that

$$
n_{k+1} \leqslant \xi_{k} \sum_{j=1}^{k} n_{j} N_{j}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{k-1} n_{j} N_{j} \leq \xi_{k} \sum_{j=1}^{k} n_{j} N_{j} \tag{3.2}
\end{equation*}
$$

We enumerate the points in the set Γ_{k} and consider the set $\Gamma_{i}^{N_{i}}, i=1,2, \cdots$,
Let $\underline{x}_{i}=\left(x_{1}^{i}, \cdots, x_{N_{i}}^{i}\right) \in \Gamma_{i}^{N_{i}}$, for any $\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right) \in \Gamma_{1}^{N_{1}} \times \cdots \times \Gamma_{k}^{N_{k}}$, by g-almost product property, we have

$$
B\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right)=\bigcap_{i=1}^{k} \bigcap_{j=1}^{N_{i}} T^{-\sum_{l=0}^{i-1} N_{l} n_{l}-(j-1) n_{i}} B_{n_{i}}\left(g ; x_{j}^{i}, \varepsilon_{j}\right)
$$

is a non-empty closed set. We define F_{k} by

$$
F_{k}=\bigcup\left\{B\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right):\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right) \in \Gamma_{1}^{N_{1}} \times \cdots \times \Gamma_{k}^{N_{k}}\right\} .
$$

Note that F_{k} is compact and $F_{k+1} \subseteq F_{k}$. Define $F=\bigcap_{i=1}^{\infty} F_{k}$. Let $t_{k}=\sum_{i=1}^{k} n_{i} N_{i}$.
The proof of the following lemma is same as the proof of Lemma 3.2 in [9].

Lemma 3.2. Let ϵ be such that $4 \epsilon=\epsilon^{*}$, then
(1) Let $x_{i}, y_{i} \in \Gamma_{i}$ with $x_{i} \neq y_{i}$. If $x \in B_{n_{i}}\left(g ; x_{i}, \epsilon_{i}\right)$ and $y \in B_{n_{i}}\left(g ; y_{i}, \epsilon_{i}\right)$, then

$$
d_{n_{i}}(x, y)=\max \left\{d\left(T^{j} x, T^{j} y\right): j=0,1, \cdots, n_{i}-1\right\}>2 \epsilon
$$

(2) $F \subset \triangle_{\text {equ }}(C)$.

For each $\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right) \in \Gamma_{1}^{N_{1}} \times \cdots \times \Gamma_{k}^{N_{k}}$, we choose one point $z=z\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right)$ such that $z \in B\left(\underline{x}_{1}, \cdots, \underline{x}_{k}\right)$. Let L_{k} be the set of all points constructed in this way. From Lemma 3.2, we have $\sharp L_{k}=\sharp \Gamma_{1}^{N_{1}} \sharp \Gamma_{2}^{N_{2}} \cdots \sharp \Gamma_{k}^{N_{k}}$. We define for each k, an atomic measure centred on L_{k}. Precisely, let

$$
\nu_{k}=\sum_{z \in L_{k}} \delta_{z} .
$$

We normalise ν_{k} to obtain a sequence of probality measure μ_{k}, i.e. we let

$$
\mu_{k}=\frac{1}{\sharp L_{k}} \nu_{k} .
$$

Lemma 3.3. Suppose μ is a limit point of the sequence of probability measures μ_{k}, then $\mu(F)=1$.

Proof. Suppose $\mu=\lim _{k \rightarrow \infty} \mu_{l_{k}}$ for $l_{k} \rightarrow \infty$. For any fixed l and all $p \geq 0, \mu_{l+p}\left(F_{l}\right)=1$ since $F_{l+p} \subset F_{l}$. Thus, $\mu\left(F_{l}\right) \geq \lim \sup _{k \rightarrow \infty} \mu_{l_{k}}\left(F_{l}\right)=1$. It follows that $\mu(F)=1$.

Lemma 3.4. Let μ be limit point of the sequence of probability measure μ_{k} and $\varepsilon=\frac{1}{4} \epsilon^{*}$. For any $x \in F$ and $\delta>0$, there exists a increasing sequence $\left\{l_{i}\right\}$ with $\lim _{i \rightarrow \infty} l_{i}=\infty$ such that for sufficiently large i, we have

$$
\mu\left(B_{l_{i}}(x, \epsilon)\right) \leq e^{-l_{i}}(\bar{s}-\delta)
$$

where $\bar{s}=\sup _{x \in C} \Lambda(x)-2 \eta$.
Proof. Choose $l_{i}=t_{M_{1}+\cdots+M_{i}}$. Let $\underline{s}=\inf _{x \in C} \Lambda(x)-\eta$. First we show that

$$
\mu_{M_{1}+\cdots+M_{i}+p}\left(B_{l_{i}}(x, \varepsilon)\right) \leq \sharp L_{M_{1}+\cdots+M_{i}}^{-1}, \forall p \in \mathbb{N} \backslash\{0\} .
$$

If $\mu_{M_{1}+\cdots+M_{i}+p}\left(B_{l_{i}}(x, \varepsilon)\right)>0$, then $L_{M_{1}+\cdots+M_{i}+p} \cap B_{l_{i}}(x, \varepsilon) \neq \emptyset$. Let $z=z(\underline{x}, \underline{y}) \in$ $L_{M_{1}+\cdots+M_{i}+p} \cap B_{l_{i}}(x, \varepsilon), z^{\prime}=z\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right) \in L_{M_{1}+\cdots+M_{i}+p} \cap B_{l_{i}}(x, \varepsilon)$, where

$$
\begin{gathered}
\underline{x}, \underline{x}^{\prime} \in \Gamma_{1}^{N_{1}} \times \cdots \times \Gamma_{M_{1}+\cdots+M_{i}}^{N_{M_{1}+\cdots+M_{i}}} \\
\underline{y}, \underline{y}^{\prime} \in \Gamma_{M_{1}+\cdots+M_{i}+1}^{N_{M_{1}+\cdots+M_{i}+1}}, \times \cdots \times \Gamma_{M_{1}+\cdots+M_{i}+p}^{N_{M_{1}+\cdots+M_{i}+p}}
\end{gathered}
$$

Since $d_{l_{i}}\left(z, z^{\prime}\right) \leq 2 \epsilon$, from Lemma 3.2, we have $\underline{x}=\underline{x}^{\prime}$. Thus we have

$$
\begin{aligned}
& \mu_{M_{1}+\cdots+M_{i}+p}\left(B_{l_{i}}(x, \varepsilon)\right) \\
\leq & \frac{1 \times \sharp \Gamma_{M_{1}+\cdots+M_{i}+1}^{N_{M_{1}}+\cdots+M_{i}+1}, \times \cdots \times \sharp \Gamma_{M_{1}+\cdots+M_{i}+p}^{N_{M_{1}}+\cdots+M_{i}+p}}{\sharp L_{M_{1}+\cdots+M_{i}+p}} \\
= & \frac{1}{\sharp L_{M_{1}+\cdots+M_{i}}} .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
& \mu\left(B_{l_{i}}(x, \varepsilon)\right) \leq \liminf _{k \rightarrow \infty} \mu_{k}\left(B_{l_{i}}(x, \varepsilon)\right) \\
= & \frac{1}{\sharp \Gamma_{1}^{N_{1}} \sharp \Gamma_{2}^{N_{2}} \cdots \sharp \Gamma_{M_{1}+\cdots+M_{i}}^{N_{M_{1}+\cdots+M_{i}}}} \\
\leq & \frac{\exp \left\{n_{1} N_{1} \underline{s}+n_{2} N_{2} \underline{s} \cdots+n_{M_{1}+\cdots+M_{i}-1} N_{M_{1}+\cdots+M_{i}-1} \underline{s}+n_{M_{1}+\cdots+M_{i}} N_{M_{1}+\cdots+M_{i}} \bar{s}\right\}}{N_{i}} \\
= & \exp \left\{-l_{i}\left(\frac{n_{1} N_{1}+\cdots+n_{M_{1}+\cdots+M_{i}-1} N_{M_{1}+\cdots+M_{i}-1}}{l_{i}}+\frac{n_{M_{1}+\cdots+M_{i}} N_{M_{1}+\cdots+M_{i}}}{l_{i}}\right)\right\} .
\end{aligned}
$$

It follow from (3.2), we have

$$
\begin{gathered}
\lim _{i \rightarrow \infty} \frac{n_{1} N_{1}+\cdots+n_{M_{1}+\cdots+M_{i}-1} N_{M_{1}+\cdots+M_{i}-1}}{l_{i}}=0 . \\
\lim _{i \rightarrow \infty} \frac{n_{1} N_{1}+\cdots+n_{M_{1}+\cdots+M_{i}} N_{M_{1}+\cdots+M_{i}}}{l_{i}}=1 .
\end{gathered}
$$

Thus for sufficiently large i, we have $\mu\left(B_{l_{i}}(x, \epsilon) \leq e^{-l_{i}(\bar{s}-\delta)}\right.$.
Applying Lemma 3.1, we have

$$
h^{P}(F) \geqslant \bar{s}-\delta=\sup _{x \in C} \Lambda(x)-2 \eta-\delta
$$

Since η and δ are arbitrary, we have

$$
h^{P}\left(\triangle_{e q u}(C)\right) \geqslant h^{P}(C) \geq \sup _{x \in C} \Lambda(x) .
$$

Thus the proof of Theorem 2.1 is completed.

4 Application

In this section, we apply our result to the packing dimension for β-shift. Let $n=\lceil\beta\rceil$.
Let $\beta>1$ be fixed. For $t \in \mathbb{R}$, we define

$$
\lfloor t\rfloor=\max \{i \in \mathbb{Z}: i \leq t\},\lceil t\rceil:=\min \{i \in \mathbb{Z}: i \geq t\} .
$$

Consider the β-expansion of 1 ,

$$
1=\sum_{i=1}^{\infty} c_{i} \beta^{-j}
$$

which is given by the algorithm

$$
r_{0}=1, c_{i+1}=\left\lceil\beta r_{i}\right\rceil-1, r_{i+1}=\beta r_{i}-c_{i+1}, \quad i \in \mathbb{Z}_{+}
$$

For sequences $\left\{a_{i}\right\}_{i \geq 1}$ and $\left\{b_{i}\right\}_{i \geq 1}$ the lexicographical order is defined by $\left\{a_{i}\right\}<\left\{b_{i}\right\}$ if and only if for the least index i with $a_{i} \neq b_{i}, a_{i}<b_{i}$. The β-shift is the subshift of the full shift on the alphabet with n characters, $A:=\{0,1, \cdots, n-1\}$, which is given by

$$
X^{\beta}=\left\{\omega=\left\{\omega_{i}\right\}_{i \geq 1}: \omega_{i} \in A, T^{k}\left\{\omega_{i}\right\} \leq\left\{c_{i}\right\} \forall k \in \mathbb{Z}_{+}\right\}
$$

where $T\left(\omega_{1}, \omega_{2}, \omega_{3}, \cdots\right)=\left(\omega_{2}, \omega_{3}, \cdots\right)$. Pfister and Sullivan [8] proved that $\left(X^{\beta}, T\right)$ satisfies g -almost product property and uniform separation property.

Endow X^{β} with the metric $d(x, y)=e^{-n}$ for $x=\left(x_{i}\right)_{i=1}^{\infty}$ and $y=\left(y_{i}\right)_{i=1}^{\infty}$, where n is the largest integer such that $x_{i}=y_{i}, 1 \leq i \leq n$. It is easy to check that for any $Z \subset X^{\beta}$, $h^{P}(Z)=\operatorname{dim}_{P}(Z)$, where $\operatorname{dim}_{P}(Z)$ denotes the packing dimension of Z. Hence, if C is a closed and convex subset of $\Xi\left(M\left(X^{\beta}, T\right)\right)$, then

$$
\operatorname{dim}_{P}\left\{x \in X^{\beta} \mid A\left(\Xi L_{n} x\right)=C\right\}=\operatorname{dim}_{P}\left\{x \in X^{\beta} \mid A\left(\Xi L_{n} x\right) \subset C\right\}=\sup _{y \in C} \Lambda(y) .
$$

References

[1] E. Chen, T. Küpper \& L. Shu, Topological entropy for divergence points, Ergod. Th. \& Dynam. Sys. 25 (2005), 1173-1208.
[2] D.J. Feng \& W. Huang, Variational principles for topological entropies of subsets, Journal of Functional Analysis 263(8) (2012), 2228-2254.
[3] L. Olsen, Divergence points of deformed empirical measures, Mathematical Research Letters 9 (2002), 1-13.
[4] L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl. 82 (2003), 1591-1649.
[5] L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. III, Aequationes Math. 71 (2006), 29-58.
[6] L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV: Divergence points and packing dimension, Bull. Sci. Math. 132 (2008), 650-678.
[7] L. Olsen \& S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, Jour. London Math. Soc. 67 (2003), 103-122.
[8] C.E. Pfister \& W.G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems 27 (2007), 929-956.
[9] X. Zhou \& E. Chen Multifractal analysis for the historic set in topological dynamical systems, Nonlinearity 26 (2013), 1975-1997.
[10] X. Zhou, E. Chen \& W. Cheng, Packing entropy and divergence points, Dyam. Systems 27(3) (2012) 387-402.

[^0]: * Corresponding author

 2010 Mathematics Subject Classification: 37D35, 37A35

