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Abstract. This article is devoted to the study of the packing entropy

for maps with g-almost product property, a weak form of specification

property. In particular, our result can be applied to the packing dimen-

sion for β-shifts.
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1 Introduction

(X, d, T ) (or (X,T ) for short) is a topological dynamical system which means that

(X, d) is a compact metric space together with a continuous self-map T : X → X.

Denote by M(X),M(X,T ) and E(X,T ) the sets of all Borel probability measures,

T -invariant Borel probability measures, and ergodic measures on X, respectively. It is

well known that M(X) and M(X,T ) equipped with weak* topology are both convex,

compact spaces.

For an T -invariant subset Z ⊂ X, let M(Z, T ) denote the subset of M(X,T ) for

which the measures µ satisfy µ(Z) = 1 and E(Z, f) denote those which are ergodic.

For a positive integer n, define the n-th empirical measure En : X → M(X) by

En(x) =
1

n

n−1∑
k=0

δTkx,

where δx denotes the Dirac measure at x. Let A(xn) be the set of all limit points of

sequence {xn}.
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This investigation uses the framework introduced and developed by Olsen [3, 4, 5, 6]

and Olsen and Winter [7]. Consider the continuous and affine deformations of En i.e.

pairs (Y,Ξ) where Y is a vector space with linear compatible metric and Ξ : M(X) → Y

is a continuous and affine map. Let

∆equ(C) = {x ∈ X|A(ΞEn(x)) = C}

and

∆sup(C) = {x ∈ X|A(ΞEn(x)) ⊂ C}.

where C is a convex and closed subset of Ξ(M(X,T )).

There are some interesting results about the description of the structure (Hausdorff

dimension or topological entropy or topological pressure) of ∆equ(C) and ∆sup(C).

Recently, Zhou, Chen and Cheng [10] studied the packing entropy of ∆equ(C) and

∆sup(C) for maps with specification property. Pfister and Sullivan [8] obtained the

Bowen entropy in a dynamical system with the g-almost product property which is

weaker than specification. Zhou and Chen [9] gave topological pressure for maps with

g-almost product property.

Motivated by the work of Zhou, Chen and Cheng (see [9, 10]), we study the packing

entropy in a dynamical system with the g-almost product property. In particular, our

result can be applied to the packing dimension for β-shifts.

2 Definitions and Main result

Let (X,T ) be a topological dynamical system and C(X) the space of continuous func-

tions from X to R. For µ, ν ∈ M(X), define a compatible metric d on M(X) as

follows:

d(µ, ν) :=
∑
i≥1

2−i

∣∣∣∣∫ fidµ−
∫

fidν

∣∣∣∣
where {fi}∞i=1 is the subset of C(X) with 0 ≤ fi(x) ≤ 1, i = 1, 2, · · · . It is convenient

to use an equivalent metric on X, still denoted by d, d(x, y) := d(δx, δy).

For every ϵ > 0, denote by Bn(x, ϵ), Bn(x, ϵ) the open and closed balls of radius

ϵ > 0 in the metric dn around x respectively, i.e.,

Bn(x, ϵ) = {y ∈ X : dn(x, y) < ϵ} , Bn(x, ϵ) = {y ∈ X : dn(x, y) ≤ ϵ} .

Where n ∈ N, the n-th Bowen metric dn on X is defined by

dn(x, y) = max
{
d(T kx, T ky) : k = 0, 1, · · · , n− 1

}
.
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2.1 Continuous affine deformation Ξ.

Definition 2.1. [1] If Y is a vector space and d′ is a metric in Y, then d′ is linearly

compatible if

(1) For all x1, x2, y1, y2 ∈ Y, d′(x1 + x2, y1 + y2) ≤ d′(x1, y1) + d′(x2, y2);

(2) For all x, y ∈ Y and all λ ∈ R, d′(λx, λy) ≤ |λ|d′(x, y).

2.2 Packing entropy.

Given Z ⊂ X, ϵ > 0 and N ∈ N, let P∗(Z,N, ϵ) be the collection of countable or finite

sets {(xi, ni)} ⊂ Z × {N,N + 1, · · · } such that Bni
(xi, ϵ)

∩
Bnj

(xj, ϵ) = ∅,∀i ̸= j. For

each s ∈ R, consider the set functions

m∗(Z, s,N, ϵ) = sup
P∗(Z,N,ϵ)

∑
(xi,ni)

exp(−nis);

m∗(Z, s, ϵ) = lim
N→∞

m∗(Z, s,N, ϵ);

m∗∗(Z, s, ϵ) = inf

{
∞∑
i=1

m∗(Zi, s, ϵ) :
∞∪
i=1

Zi ⊃ Z

}
.

Both of these functions are non-increasing in s, and the latter takes values ∞ and 0 at

all but at most one value of s. Denoting the critical value of s by

hP (Z, ϵ) = inf{s ∈ R : m∗∗(Z, s, ϵ) = 0}
= sup{s ∈ R : m∗∗(Z, s, ϵ) = ∞},

leads to m∗∗(Z, s, ϵ) = ∞ when s < hP (Z, ϵ), and 0 when s > hP (Z, ϵ).

The packing entropy of Z is hP (Z) := limϵ→0 h
P (Z, ϵ). The limit exists because

hP (Z, ϵ) increases when ϵ decreases.

2.3 g-almost property and uniform separation property.

In this section, we first present some notations to be used in the paper. Then a weak

specification property and a weak expansive property are introduced. A remark about

the notation is presented here for convenience.

Remark 2.1. Let (X,T ) be a topological dynamical system.

(1) If F ⊂ M(X) is an open set, set Xn,F := {x ∈ X : Enx ∈ F}.

(2) Given δ > 0 and ϵ > 0, two points x and y are (δ, n, ϵ)-separated if #{i :

d(T ix, T iy) > ϵ, 0 ≤ i ≤ n− 1} > δn. A subset E is (δ, n, ϵ)-separated if any pair

of different points of E are (δ, n, ϵ)-separated.
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(3) Let F ⊂ M(X) be a neighborhood of ν, and ϵ > 0, and set

N(F ;n, ϵ) :=maximal cardinality of an (n, ϵ)-separated subset of Xn,F ;

N(F ; δ, n, ϵ) :=maximal cardinality of an (δ, n, ϵ)-separated subset of Xn,F .

(4) Let g : N → N be a given nondecreasing unbounded map with the properties

g(n) < n and lim
n→∞

g(n)
n

= 0. The function g is called a blow-up function. Given

x ∈ X and ϵ > 0; let

Bn(g;x, ϵ) := {y ∈ X : ∃Λ ⊂ Λn,#(Λn \ Λ) 6 g(n) and

max{d(T ix, T iy) : i ∈ Λ} ≤ ϵ},

where Λn = {0, 1, · · · , n− 1}.

Definition 2.2. ([8]) The dynamical system (X, d, T ) has the g-almost product property

with blow-up function g if there exists a non-increasing function m : R+ → N such that

for any k ∈ N, any x1 ∈ X, · · · , xk ∈ X, any positive ε1, ϵ2, · · · , εk, and any integers

n1 ≥ m(ε1), · · · , nk ≥ m(εk),

k∩
j=1

T−Mj−1Bnj
(g; xj, ϵj) ̸= ∅,

where M0 = 0,Mi = n1 + n2 + · · ·+ ni, i = 1, 2 · · · , k − 1.

Definition 2.3. ([8]) The dynamical system (X, d, T ) has the uniform separation prop-

erty if for any η, there exist δ∗ > 0 and ϵ∗ > 0 such that for µ ergodic and any

neighbourhood F ⊂ M(X) of µ, there exists n∗
F,µ,η such that for n ≥ n∗

F,µ,η,

N(F ; δ∗, n, ϵ∗) ≥ exp(n(h(T, µ)− η)),

where h(T, µ) is the metric entropy of µ.

Proposition 2.1. [8] Assume that (X, d, T ) has the g-almost product property and

the uniform separation property. For any η, there exists δ∗ and ϵ∗ > 0 such that for

µ ∈ M(X,T ) and any neighborhood F ⊂ M(X) of µ, there exists n∗
F,µ,η, such that

N(F ; δ∗, n, ϵ∗) ≥ exp(n(h(T, µ)− η)),∀n > n∗
F,µ,η.

2.4 Statement of main result.

Define

Λ(y) =

 sup
µ∈M(X,T ),Ξµ=y

h(T, µ), y ∈ Ξ(M(X,T ));

−∞, otherwise.

The following theorem is the main result of this paper.
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Theorem 2.1. (X,T,Ξ, En, Y ) satisfies the g-almost product property and the uniform

separation property. If C ⊂ Y is a convex and closed subset of Ξ(M(X,T )), then

∆equ(C) ̸= ∅ and

hP (∆equ(C)) = hP (∆sup(C)) = sup
y∈C

Λ(y).

3 Proof of Theorem 2.1.

In this section, we are going to prove Theorem 2.1. The upper bound of hP (∆sup(C))

holds without extra assumption. From the second part proof of Theorem 1.1 in [10],

we have

hP (∆sup(C)) ≤ sup
y∈C

Λ(y).

Now we prove the lower bound of hP (∆equ(C)). We need the following lemma.

Lemma 3.1. ([2]) Let (X,T ) be a topological dynamical systems. If K ⊂ X is non-

empty and compact, then

hP (T,K) = sup{ hµ(T ) : µ ∈ M(X), µ(K) = 1}.

where

hµ(T ) =

∫
hµ(T, x)dµ(x), hµ(T, x) = lim

ϵ→0
lim sup
n→∞

− 1

n
log µ(Bn(x, ε)).

For any η > 0, there exists sufficiently small ϵ > 0 (see below) and p ∈ C such that

sup
q∈C

Λ(q)− η ≤ Λ(p).

Let n ∈ N\{0}. Since C is compact and connected, it is possible to choose qn,1, · · · , qn,Mn ∈
C such that

C ⊂
Mn∪
i=1

B

(
qn,i,

1

n

)
,

|d′(qn,i − qn,i+1)| ≤
1

n
∀i, |d′(qn,Mn − qn+1,1)| ≤

1

n
,

qn,Mn = p ∀n.

Let {α′′
1, α

′′
2, α

′′
3, · · · } = {q1,1, q1,2, · · · , q1,M1 , q2,1, q2,2, · · · }; then for any n ∈ N \ {0},

{α′′
j : j ∈ N \ {0}, j ≥ n} = C

and lim
j→∞

d′(α′′
j , α

′′
j+1) = 0.

We will construct a subset F ⊂△equ (C) such that for each x ∈ F , {ΞEn(x)} has

the same limit-point set as the sequence {α′′
k} and hP (F ) ≥ sup

x∈C
Λ(x).
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For η
2
and α′′

k ∈ C, there exists αk ∈ Ξ−1C∩M(X,T ) such that Λ(α′′
k)−

η
2
< h(T, αk).

By Proposition 2.1, it is easy to see that for η
2
> 0, there exist δ∗ > 0 and ϵ∗ > 0, such

that for any neighborhood F ′′ ⊂ Ξ(M(X)) of α′′
k (choose F ′′ = B(α′′

k, ξ
′′
k)), there exist

B(αk, ξk) ⊆ Ξ−1F ′′ and n∗
B(αk,ξk),αk,

η
2
satisfying

N(B(αk, ξk); δ
∗, n, ϵ∗) ≥ exp

(
n
(
h(T, αk)−

η

2

))
, (3.1)

where n ≥ n∗
B(αk,ξk),αk),

η
2
and ξk, ξ

′′
k will be determined later.

We choose strictly decreasing sequences {ξk}k, {ξ′′k}k and {ϵk}k such that lim
k

ξk =

0, lim
k

ξ′′k = 0 with ϵ1 < ϵ∗. From (3.1), we deduce the existence of nk and a (δ∗, nk, ϵ
∗)-

separated subset Γk ⊆ Xnk,B(αk,ξk) ⊆ Xnk,Ξ−1B(α′′
k ,ξ

′′
k )

with

♯Γk ≥ exp
(
nk

(
h(T, αk)−

η

2

))
≥ exp (nk(Λ(α

′′
k)− η)) .

We may assume that nk satisfies

δ∗nk > 2g(nk) + 1,
g(nk)

nk

≤ ϵk.

We choose a strictly increasing sequence {Nk}∞k=0 with N0 = 0 and Nk ∈ N \ {0} such

that

nk+1 6 ξk

k∑
j=1

njNj

and

k−1∑
j=1

njNj ≤ ξk

k∑
j=1

njNj. (3.2)

We enumerate the points in the set Γk and consider the set ΓNi
i , i = 1, 2, · · · ,

Let xi = (xi
1, · · · , xi

Ni
) ∈ ΓNi

i , for any (x1, · · · , xk) ∈ ΓN1
1 × · · · × ΓNk

k , by g-almost

product property, we have

B(x1, · · · , xk) =
k∩

i=1

Ni∩
j=1

T
−

i−1∑
l=0

Nlnl−(j−1)ni

Bni
(g;xi

j, εj)

is a non-empty closed set. We define Fk by

Fk =
∪{

B(x1, · · · , xk) : (x1, · · · , xk) ∈ ΓN1
1 × · · · × ΓNk

k

}
.

Note that Fk is compact and Fk+1 ⊆ Fk. Define F =
∩∞

i=1 Fk. Let tk =
∑k

i=1 niNi.

The proof of the following lemma is same as the proof of Lemma 3.2 in [9].
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Lemma 3.2. Let ϵ be such that 4ϵ = ϵ∗, then

(1) Let xi, yi ∈ Γi with xi ̸= yi. If x ∈ Bni
(g;xi, ϵi) and y ∈ Bni

(g; yi, ϵi), then

dni
(x, y) = max{d(T jx, T jy) : j = 0, 1, · · · , ni − 1} > 2ϵ.

(2) F ⊂ △equ(C).

For each (x1, · · · , xk) ∈ ΓN1
1 ×· · ·×ΓNk

k , we choose one point z = z(x1, · · · , xk) such

that z ∈ B(x1, · · · , xk). Let Lk be the set of all points constructed in this way. From

Lemma 3.2, we have ♯Lk = ♯ΓN1
1 ♯ΓN2

2 · · · ♯ΓNk
k . We define for each k, an atomic measure

centred on Lk. Precisely, let

νk =
∑
z∈Lk

δz.

We normalise νk to obtain a sequence of probality measure µk, i.e. we let

µk =
1

♯Lk

νk.

Lemma 3.3. Suppose µ is a limit point of the sequence of probability measures µk,

then µ(F ) = 1.

Proof. Suppose µ = limk→∞ µlk for lk → ∞. For any fixed l and all p ≥ 0, µl+p(Fl) = 1

since Fl+p ⊂ Fl. Thus, µ(Fl) ≥ lim supk→∞ µlk(Fl) = 1. It follows that µ(F ) = 1.

Lemma 3.4. Let µ be limit point of the sequence of probability measure µk and ε = 1
4
ϵ∗.

For any x ∈ F and δ > 0, there exists a increasing sequence {li} with lim
i→∞

li = ∞ such

that for sufficiently large i, we have

µ(Bli(x, ϵ)) ≤ e−li(s− δ),

where s = supx∈C Λ(x)− 2η.

Proof. Choose li = tM1+···+Mi
. Let s = infx∈C Λ(x)− η. First we show that

µM1+···+Mi+p(Bli(x, ε)) ≤ ♯L−1
M1+···+Mi

, ∀p ∈ N \ {0}.

If µM1+···+Mi+p(Bli(x, ε)) > 0, then LM1+···+Mi+p ∩ Bli(x, ε) ̸= ∅. Let z = z(x, y) ∈
LM1+···+Mi+p ∩Bli(x, ε), z

′ = z(x′, y′) ∈ LM1+···+Mi+p ∩Bli(x, ε), where

x, x′ ∈ ΓN1
1 × · · · × Γ

NM1+···+Mi
M1+···+Mi

,

y, y′ ∈ Γ
NM1+···+Mi+1

M1+···+Mi+1 ,× · · · × Γ
NM1+···+Mi+p

M1+···+Mi+p .
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Since dli(z, z
′) ≤ 2ϵ, from Lemma 3.2, we have x = x′. Thus we have

µM1+···+Mi+p(Bli(x, ε))

≤
1× ♯Γ

NM1+···+Mi+1

M1+···+Mi+1 ,× · · · × ♯Γ
NM1+···+Mi+p

M1+···+Mi+p

♯LM1+···+Mi+p

=
1

♯LM1+···+Mi

.

This leads to

µ(Bli(x, ε)) ≤ lim inf
k→∞

µk(Bli(x, ε))

=
1

♯ΓN1
1 ♯ΓN2

2 · · · ♯ΓNM1+···+Mi
M1+···+Mi

≤ 1

exp{n1N1s+ n2N2s · · ·+ nM1+···+Mi−1NM1+···+Mi−1s+ nM1+···+Mi
NM1+···+Mi

s}

=exp

{
−li

(
n1N1 + · · ·+ nM1+···+Mi−1NM1+···+Mi−1

li
s+

nM1+···+Mi
NM1+···+Mi

li
s

)}
.

It follow from (3.2),we have

lim
i→∞

n1N1 + · · ·+ nM1+···+Mi−1NM1+···+Mi−1

li
= 0.

lim
i→∞

n1N1 + · · ·+ nM1+···+Mi
NM1+···+Mi

li
= 1.

Thus for sufficiently large i, we have µ(Bli(x, ϵ) ≤ e−li(s−δ).

Applying Lemma 3.1, we have

hP (F ) > s− δ = sup
x∈C

Λ(x)− 2η − δ.

Since η and δ are arbitrary, we have

hP (△equ (C)) > hP (C) ≥ sup
x∈C

Λ(x).

Thus the proof of Theorem 2.1 is completed.

4 Application

In this section, we apply our result to the packing dimension for β-shift. Let n = ⌈β⌉.
Let β > 1 be fixed. For t ∈ R, we define

⌊t⌋ = max{i ∈ Z : i ≤ t}, ⌈t⌉ := min{i ∈ Z : i ≥ t}.

8



Consider the β-expansion of 1,

1 =
∞∑
i=1

ciβ
−j,

which is given by the algorithm

r0 = 1, ci+1 = ⌈βri⌉ − 1, ri+1 = βri − ci+1, i ∈ Z+.

For sequences {ai}i≥1 and {bi}i≥1 the lexicographical order is defined by {ai} < {bi} if

and only if for the least index i with ai ̸= bi, ai < bi. The β-shift is the subshift of the

full shift on the alphabet with n characters, A := {0, 1, · · · , n− 1}, which is given by

Xβ = {ω = {ωi}i≥1 : ωi ∈ A, T k{ωi} ≤ {ci}∀k ∈ Z+},

where T (ω1, ω2, ω3, · · · ) = (ω2, ω3, · · · ). Pfister and Sullivan [8] proved that (Xβ, T )

satisfies g-almost product property and uniform separation property.

Endow Xβ with the metric d(x, y) = e−n for x = (xi)
∞
i=1 and y = (yi)

∞
i=1, where n is

the largest integer such that xi = yi, 1 ≤ i ≤ n. It is easy to check that for any Z ⊂ Xβ,

hP (Z) = dimP (Z), where dimP (Z) denotes the packing dimension of Z. Hence, if C is

a closed and convex subset of Ξ(M(Xβ, T )), then

dimP

{
x ∈ Xβ|A(ΞLnx) = C

}
= dimP

{
x ∈ Xβ|A(ΞLnx) ⊂ C

}
= sup

y∈C
Λ(y).
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