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Abstract. This article is devoted to the study of the packing entropy
for maps with g-almost product property, a weak form of specification
property. In particular, our result can be applied to the packing dimen-

sion for §-shifts.
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1 Introduction

(X,d,T) (or (X,T) for short) is a topological dynamical system which means that
(X,d) is a compact metric space together with a continuous self-map T : X — X.
Denote by M(X), M(X,T) and E(X,T) the sets of all Borel probability measures,
T-invariant Borel probability measures, and ergodic measures on X, respectively. It is
well known that M (X) and M(X,T) equipped with weak™ topology are both convex,

compact spaces.
For an T-invariant subset Z C X, let M(Z,T) denote the subset of M(X,T) for

which the measures p satisfy p(Z) = 1 and E(Z, f) denote those which are ergodic.
For a positive integer n, define the n-th empirical measure &, : X — M (X) by

n—1
1
Enlw) = — > Oria,
k=0

where §, denotes the Dirac measure at z. Let A(x,) be the set of all limit points of

sequence {x,}.
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This investigation uses the framework introduced and developed by Olsen [3, 4, 5, 6]
and Olsen and Winter [7]. Consider the continuous and affine deformations of &, i.e.
pairs (Y, E) where Y is a vector space with linear compatible metric and Z: M (X) — Y
is a continuous and affine map. Let

AepulC) = {2 € X|AEE,(2) = C}

and
(€)= { € X|AEE(2)) € C}.

where C' is a convex and closed subset of =Z(M (X, T)).

There are some interesting results about the description of the structure (Hausdorff
dimension or topological entropy or topological pressure) of A..,,(C) and Ag,,(C).
Recently, Zhou, Chen and Cheng [10] studied the packing entropy of A.,,(C) and
Agup(C) for maps with specification property. Pfister and Sullivan [8] obtained the
Bowen entropy in a dynamical system with the g-almost product property which is
weaker than specification. Zhou and Chen [9] gave topological pressure for maps with
g-almost product property.

Motivated by the work of Zhou, Chen and Cheng (see [9, 10]), we study the packing
entropy in a dynamical system with the g-almost product property. In particular, our
result can be applied to the packing dimension for §-shifts.

2 Definitions and Main result

Let (X, T) be a topological dynamical system and C'(X) the space of continuous func-
tions from X to R. For pu,v € M(X), define a compatible metric d on M(X) as

follows:
/fz’d,u_/fidy

where {f;}32, is the subset of C'(X) with 0 < f;(z) < 1,i =1,2,---. It is convenient
to use an equivalent metric on X, still denoted by d, d(z,y) := d(0, 0y).

d(p,v) = Z 27"

i>1

For every € > 0, denote by B,(z,¢€), B,(x,€) the open and closed balls of radius
€ > 0 in the metric d,, around x respectively, i.e.,

By(z,€) = {y € X : dp(,y) < e}, Bn(w,6) = {y € X : du(z,y) < ¢}
Where n € N the n-th Bowen metric d,, on X is defined by

d,(x,y) = max {d(Tkx,Tky) tk=0,1,--- ,n—1}.



2.1 Continuous affine deformation =.

Definition 2.1. [1] If Y is a vector space and d' is a metric in'Y, then d’ is linearly

compatible if
(1) For all T1,%2,Y1,Y2 € Y7 d/(‘rl + T2, Y1 + y2) S d,<$17y1) + d/(‘r27y2);

(2) For allz,y € Y and all A € R, d'(\x, \y) < |\|d'(z,y).

2.2 Packing entropy.

Given Z C X,e > 0 and N € N, let P*(Z, N, €) be the collection of countable or finite
sets {(z;,1;)} C Z x {N,N +1,---} such that B, (z;,€) () By, (z;,€) = 0,Vi # j. For
each s € R, consider the set functions

m*(Z,s,N,e) = sup Z exp(—n;$);

P (Z7N)E) (xz,nz)

m*(Z,s,e) = lim m*(Z,s, N,¢);

N—o00
m*™*(Z, s, €) = inf {Zm*(Z,-,s,e) ; UZi D Z} :
i=1 i=1

Both of these functions are non-increasing in s, and the latter takes values co and 0 at
all but at most one value of s. Denoting the critical value of s by

hP(Z,e) = inf{s € R : m**(Z,s,¢) = 0}
=sup{s € R: m"(Z,s,¢e) = oo},

leads to m**(Z,s,¢) = oo when s < hf'(Z,¢), and 0 when s > h”(Z, ¢).
The packing entropy of Z is h¥(Z) := lim.,o h*(Z,€). The limit exists because

h¥(Z, €) increases when € decreases.

2.3 g-almost property and uniform separation property.

In this section, we first present some notations to be used in the paper. Then a weak
specification property and a weak expansive property are introduced. A remark about
the notation is presented here for convenience.

Remark 2.1. Let (X, T) be a topological dynamical system.
(1) If F C M(X) is an open set, set X, p:={zx € X : E,x € F}.

(2) Given 6 > 0 and € > 0, two points x and y are (J,n,€)-separated if #{i :
d(T'x, T'y) > €,0 <i<mn—1} > dn. A subset F is (J,n, €)-separated if any pair
of different points of E are (9, n, €)-separated.
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(3) Let F' C M(X) be a neighborhood of v, and € > 0, and set
N(F;n,e€) :=maximal cardinality of an (n, €)-separated subset of X, p;
N(F;0,n,€) :=maximal cardinality of an (4, n, €)-separated subset of X, p.

(4) Let g : N — N be a given nondecreasing unbounded map with the properties

g(n) <n and lim @ = 0. The function g is called a blow-up function. Given
n—oo

r € X and € > 0; let

Bn(g;x,€) :={y € X : IA C A,,#(A, \ A) < g(n) and
max{d(T'z, T"y) : i € A} < ¢},

where A, ={0,1,--+ ,n—1}.

Definition 2.2. ([8]) The dynamical system (X, d, T) has the g-almost product property
with blow-up function g if there exists a non-increasing function m : Rt — N such that
forany k € N, any 1 € X,--- ,xp € X, any positive €1, €a, -+ , €k, and any integers
ny > m(er), -+ g > m(eg),

k

m T_Mj_an]' (97 Zj, €j) 7é Q)a

j=1
where My =0,M; =ny+no+---+n,1=1,2--- k—1.

Definition 2.3. ([8]) The dynamical system (X,d,T) has the uniform separation prop-
erty if for any n, there exist 6* > 0 and € > 0 such that for p ergodic and any
neighbourhood F' C M(X) of p, there exists ny,,, such that forn >ng , .,

N(F;6%,n,€") > exp(n(M(T, p) — n)),
where h(T, u) is the metric entropy of p.

Proposition 2.1. [8] Assume that (X,d,T) has the g-almost product property and
the uniform separation property. For any n, there exists 6* and € > 0 such that for
w € M(X,T) and any neighborhood F' C M(X) of p, there exists ny , ., such that

N(F:8*n,¢) > exp(n(h(T, p) = 1)), Y0 > s,

2.4 Statement of main result.

Define

sup  A(T,p), yeZ(M(X,T));
Aly) = ¢ reM(X.T)Ep=y
—00, otherwise.

The following theorem is the main result of this paper.
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Theorem 2.1. (X, T,Z,&,,Y) satisfies the g-almost product property and the uniform
separation property. If C C Y is a convexr and closed subset of Z(M(X,T)), then
Aegu(C) # 0 and

WY (Dequ(C)) = W' (D4 (C)) = sup Ay).

yeC

3 Proof of Theorem 2.1.

In this section, we are going to prove Theorem 2.1. The upper bound of h'’(A,,(C))
holds without extra assumption. From the second part proof of Theorem 1.1 in [10],

we have
B (D p(C)) < sup Aly).

yeC

Now we prove the lower bound of h'" (A, (C)). We need the following lemma.

Lemma 3.1. ([2]) Let (X,T) be a topological dynamical systems. If K C X is non-
empty and compact, then

BP(T, K) = sup{ Bu(T) : € M(X), u(K) = 1},
where

hu(T) = /EN(T, z)dp(z), hy (T, z) = lim lim sup —% log (B (x,€)).

=0 nooo

For any 1 > 0, there exists sufficiently small € > 0 (see below) and p € C' such that

sup A(q) —n < A(p).

qeC

Let n € N\{0}. Since C'is compact and connected, it is possible to choose ¢, 1, * , Gn., €
C such that
M, 1
Cc B nyigy )
o ()

1 .
\d' (Gni — Gnyi+1)] < - Vi, |d' (quat, — qnira)] <

?

S|

InM, =P V.
Let {CY/f7 0/2/7 Oég, s } = {C]1,17 q1,2," " ,4q91,M1,92,1,92,2," " * }; then for any n € N\ {0}»

] JeN\(0}.j=n}=C

: U " 1 _
and jli)rglod (af,af,,) = 0.

We will construct a subset F' CAcqy (C) such that for each z € F, {Z&,(x)} has

the same limit-point set as the sequence {a}} and h'’(F) > sup A(z).
zeC



For 1 and o) € C, there exists a, € Z7'CNM (X, T) such that A(af)—2 < h(T, o).
By Proposmon 2.1, it is easy to see that for § > 0, there exist 0* > 0 and € > 0, such
that for any neighborhood F” C Z(M (X)) of o} (choose F" = B(a4,&))), there exist

B(ag, &) € E71F" and ni . satisfying

(ks €k )sks g

N(B(ag,&);0%,n,€") > exp <n (h(T, ag) — g)) , (3.1)

where n > n} B( 7 and &, & will be determined later.

€k ) stk )
We choose strictly decreasmg sequences {&}e, {& Hr and {eg}x such that hm & =
0, h;l;n & = 0 with €1 < €*. From (3.1), we deduce the existence of n; and a (§*, nk, €*)-

separated subset I'y, C Xy, Bay.&) C© Xnyz-1B(ayep) With

I, > exp (nk <h(T, ag) — g)) > exp (ng(A(a)) — 1)) .
We may assume that ny satisfies

g(ne) _

(5*nk > 2g(nk) + 1, < €.
n

We choose a strictly increasing sequence { Ny}, with Ny =0 and Ny, € N\ {0} such
that

k
N1 < & E n;jN;
=1

and

k-1 k
j=1 j=1

We enumerate the points in the set I';, and consider the set Ffvi,i =1,2,---,
Let a; = (v1, -+ ,ak,) € TV, for any (z1,--- ,2;,) € T x -+ x [}, by g-almost
product property, we have

i—1

kN
- E Niny—(j—1)n; i
B(@p"' >£k):ﬂﬂ Bni(g;xj7€j)
is a non-empty closed set. We define F}, by

Fk:U{B(gla 7£k):(£17"' ,@k)EFfﬁ ergk}

Note that Fy is compact and Fiyy C Fj. Define F' = (2, F. Let t; = Zle n;N;.
The proof of the following lemma is same as the proof of Lemma 3.2 in [9].

6



Lemma 3.2. Let € be such that 4¢ = €*, then
(1) Let z;,y; € Ty with x; # y;. If x € By, (g;x:,€;) and y € By, (g; s, €), then

dp,(z,y) = max{d(T?z, T’y) : j =0,1,--+ ,n; — 1} > 2e.

(2) F C DAegu(C).

For each (z,,--- ,z,) € M x ... x T we choose one point z = z(z,, - - - ,x,,) such
that z € B(zy,--- ,x;). Let Ly be the set of all points constructed in this way. From
Lemma 3.2, we have §L; = TV 45> - .. ljF]kV’“. We define for each £, an atomic measure
centred on L. Precisely, let

v, = Z ..

z€Ly

We normalise v, to obtain a sequence of probality measure py, i.e. we let

1

He = myk-

Lemma 3.3. Suppose p is a limit point of the sequence of probability measures py,
then p(F) = 1.

Proof. Suppose p = limy_, py, for I — oco. For any fixed [ and all p > 0, y4,(F;) =1
since Fjy, C Fj. Thus, p(F;) > limsup,_, . wu, (F7) = 1. It follows that pu(F)=1. O

Lemma 3.4. Let p be limit point of the sequence of probability measure p, and € = 4116*'
For any x € F and 6 > 0, there exists a increasing sequence {l;} with lim l; = oo such
1—00

that for sufficiently large i, we have
/L(Bli(l', 6)) < e_li (§ - 5)7
where 5 = sup,cc A(z) — 2n.

Proof. Choose l; =ty 4..+n,- Let s = infyec A(x) — 7. First we show that

MM1+~--+Mi+p(Bli (z,€)) < ﬁL]T411+...+Mi:\V/p € N\ {0}.

If pongy4ogrtip(Byy (2, €)) > 0, then Loy t.qnsqp N By (w,6) # 0. Let 2 = 2(z,y) €
Loty yisip N By (w,€), 2" = 2(2',y') € Lty ati+p N By (2, €), where

XF 1+ +M;

/ Ny
z,T € Fl X Mi+-+M; »

N ) N, )
/ Myt Ml My 4+ M;+p
Y8 € Dppbgnr s X X Do vy



Since dj,(z, 2') < 2, from Lemma 3.2, we have z = 2’. Thus we have

[ty Mip (B (%, €))

NM1+-~+1W,L+1 NM1+-»-+M,L-+p
LBy s X X8y

8L My o Myt
1

AL onriat,

This leads to

w(By,(z,e)) < likm inf pg (B, (x,¢€))
—00
1

Ny N: Nty 40
AN gD

1
< —
exp{niN1s + naNas - - - + nagy oty —1 Nty o0, —18 + Taty o0ty Nty 4404,

NNy + -+ nan e n— 1Ny -1 N At M M M
=exp —I[; ; s+ l S .

It follow from (3.2),we have

fig TNt a1 N e M1

lim VLA A e N =1.
Thus for sufficiently large i, we have u(By,(z,€) < e~lG9), -

Applying Lemma 3.1, we have

hP(F) > 35— 8 =supA(x) — 21— 6.

zeC

Since n and § are arbitrary, we have

WY (Dequ (C)) = WP (C) > sup A(x).

zeC

Thus the proof of Theorem 2.1 is completed.

4 Application

In this section, we apply our result to the packing dimension for S-shift. Let n = [f3].
Let 8 > 1 be fixed. For t € R, we define

[t] =max{i € Z:i <t},[t] :=min{i € Z:i > t}.



Consider the [-expansion of 1,

[e.9]

1= Zciﬂ_ja

=1

which is given by the algorithm
ro=1,¢ciy1 = [Bri] — 1, m01 = Bri — ¢, 1€ Ly

For sequences {a;};>1 and {b;};>; the lexicographical order is defined by {a;} < {b;} if
and only if for the least index ¢ with a; # b;, a; < b;. The (-shift is the subshift of the
full shift on the alphabet with n characters, A :={0,1,--- ,n — 1}, which is given by

Xﬁ = {w = {wi}i21 Tw; € A,Tk{w,} S {CZ}\V/]C - Z+},

where T(wy,wq, w3, ++) = (wo,ws,---). Pfister and Sullivan [8] proved that (X7 T)
satisfies g-almost product property and uniform separation property.

Endow X? with the metric d(z,y) = ™" for = (2;)%°, and y = (y;)2,, where n is
the largest integer such that z; = y;,1 < i < n. It is easy to check that for any Z C X7,
h¥(Z) = dimp(Z), where dimp(Z) denotes the packing dimension of Z. Hence, if C is
a closed and convex subset of Z(M(X?,T)), then

dimp {z € X°|A(EL,2) = C} = dimp {2 € X|A(EL,z) C C} =supA(y).

yeC
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