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Abstract 
In practice it is often of interest to compare the means of several populations that are not assumed to have 

equal variances. A method is proposed that depends on the over-mean-rank function that is defined as the 

percentage of the ranks over the global mean rank in each group. Chi-square distribution is found to give a 

very good fit for this function until for small sample sizes. The main advantages for the proposed method are: 

does not require normality and equal variance assumptions; stables in terms of Type I error; and can be shown 

graphically. Comparison with Kruskal-Wallis, Welch and ANOVA methods are given for unbalanced designs 

and not equal variances from normal and non-normal populations in terms of Type I error. The simulation 

results are shown that the proposed method improves the Type I error and its performance exhibits superior 

robustness over the studied methods.  

 Keywords: ANOVA; F-distribution; Hypothesis testing; Kruskal-Wallis test; Welch-test. 

 

1 Introduction 

The seminal work by [1] provided us a robust rank-based test for comparison of several means, 

complementing the parametric approaches. [2], [3] and [4] among others (see [5] and [6]) have 

presented approximate test statistics for testing for mean equality when there are more than two 

groups and when population variances are not presumed to be equal. Unfortunately, these procedures 

have not proven to be uniformly successful in controlling test size when data are heterogeneous as 

well as non-normal, particularly in unbalanced designs. Although there are parametric solutions have 

been presented by [7] and [8], it will be only focused on the nonparametric approach especially rank-

approach. 

To compare for means under heterogeneity using nonparametric approach a method is derived based 

on over-mean-rank function that is defined as the percentage of the ranks more than the global mean 

rank in each group. Chi-square distribution is found to give a very good fit for this function until for 

small sample sizes. This method does not require normality and equal variance assumptions, stables 

in terms of Type I error and is shown graphically. Comparison with Kruskal-Wallis, Welch and 

ANOVA methods are given for unbalanced designs and not equal variances from symmetric and 

asymmetric populations in terms of Type I error. The simulation results are shown that the proposed 

method improves the Type I error and its performance exhibits superior robustness over the studied 

methods. 

Over-mean-rank function and over-mean-rank plot are introduced in Section 2. The simulation 

results are presented in Section 3 . An application is given in Section 4. Section 5 is devoted for 

conclusion. 
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2 Comparison of several means or medians 

2.1 Over-mean-rank function approach 

Suppose independent random observations                                       are 

obtained from a continuous population with mean    and variance   
 .   is the number of groups or 

treatments and    is the sample size in each group. Then, let            
  
   

 and    

     
  
   

 
      are the group and overall means. The model is  

 

             

  is the global mean of the data,   the difference to the mean of the  -th group and     is the 

residual error. Thus the null hypothesis can be expressed as 

 

                
versus at least two means are not equal.  

The rank function can be defined as  

 

                                          

and the ranks in each group is 

 

                            

The     has a discrete uniform distribution with probability mass function  

 

         
 

 
                    

with 

             

If all means are equal,   will have average equals to the average for each group. On the other hand, 

if the means are not equal the averages of at least two groups are not equals.  

Therefore, under    the average of ranks in each group equal to the overall average as  

 

                                   

The over-mean-rank functions can be defined as   
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It is clearly that under    
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Therefore the null hypothesis  

 



                
is equivalent to 

 

                    
Consequently, the proposed test for equal means is 

 

     
       

        
 

  

   

 

Since     is a sample mean, if    is large, the central limit theorem allows to approximate  

 

  
       

        
        

Consequently,    can be approximated by chi-square distribution with     degrees of freedom, 

therefore, 

 

           
The approximate size   rejection is          
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To prove this let 
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Hence, 

  
          

    
 

  

   

                     

Under    

  
       

        
 

  

   

         

The estimated over-mean-rank function for each group can be obtained as 

 

    
               

  
            

For          .  Note that, when   is even, it can use      instead of    in a group that 

contains rank         . Also if there are ties only equal          it can make half of them less 

than          and other half more than         .    



Table 1 gives the empirical four moments of    using data simulated from normal and exponential 

distributions with different sample sizes and variances along with the first theoretical four moments 

of chi square distribution. Actually, the chi square distribution gives a very good fit to   . 

 

Table 1 empirical mean, variance, skewness and kurtosis fo    using data simulated from normal and 

exponential distributions with different sample sizes and variances. 

            

 Parameters   normal   |Exponential  

                                                    
(5,7,9,10) 31 (25,49,64,144) 3.21 6.02 1.26 5.10  3.20 6.05 1.27 5.08 

(10,15,17,20) 62 (25,49,64,144) 3.11 6.17 1.59 6.82  3.17 6.55 1.50 6.17 

(20,26,29,30) 105 (25,49,64,144) 3.09 6.08 1.60 6.85  3.16 6.50 1.58 6.53 

            

(5,7,9,10) 31 (144,64,49,25) 3.19 5.97 1.38 5.36  3.22 6.11 1.36 5.50 

(10,15,17,20) 62 (144,64,49,25) 3.10 6.13 1.62 7.33  3.20 6.60 1.51 6.15 

(20,26,29,30) 105 (144,64,49,25) 3.07 6.10 1.59 6.82  3.19 6.55 1.57 6.34 

   First four    
  moments    

   3 6 1.63 7      

 

2.2 Graphical display (Over-mean-rank plot) 

This is a graph for each group and consists of:  

1. X-axis represents the index for group size.  

2. Y-axis represents the ranks in each group. 

3. The middle line at          
This graph should reflect the following information 

1.     the percentage of ranks above the middle line in each group. If this value is more than 

have 0.5 that is indication of the shifting up in mean of this group and vice versa.  

2. The    value that gives the contribution of each group in the test.  

3. Patterns among the groups. 

Figure 1 shows over-mean-rank plot for simulated data from normal distribution with four groups, 

same means (0,0,0,0) and different variances:  

1. Values of     are near from each other and    . 

2.  The    values are very small and group 2 has the most contribution in the test 0.06. 

3. The four groups have almost the same patterns. It might conclude there are no significance 

differences among groups. 

While Figure 2 shows over-mean-rank plot for simulated data from normal distribution with four 

groups, means           and different variances:  

1. The highest value of     is 0.8 for group 3 and the lowest value is 0.35 for group 4. 

2.  The    value for group 3 has the highest contribution in the test followed by group 4. 

3. Groups 1 and 2 similar in patterns while groups 3 and 4 are in reverse pattern. 

  

 

 



 
Figure 1 over-mean-rank plot with the over-mean line using simulated data from normal distribution 

with mean           and variances (9,49,64,100) and the sample sizes are (15,17,20,23). 

 

 

 

 
Figure 2 over-mean-rank plot using simulated data from normal distribution with mean           and 

variances (9,49,64,100) and the sample sizes are (15,17,20,23). 

 



3 Simulation results  

The Welch-statistic can be defined as   

 

   
           

 
       

   

  
      

      
 

        
 

    
 
   

 

where         
 ,          
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The test statistic is approximately distributed as an F variate and is referred to the critical value 

                 
 

  
      

  
        

 

    
 
   

 

See; for example, [9] and [10]. 

It is well known that the test statistic for one-way fixed effect ANOVA is 
 

  
         

         
 

   

   
 

Where SSB is sum of squares between groups, SSW is the sum of squares within treatments, (   ) 

and (   ) are the degrees of freedom, between and within treatments, respectively; see, [11]. 

The Kruskal-Wallis test is defined as 

 

   
                

  
   

          
   

   
 
   

 
  

      
   

 

   

     
   

 
 

 

 

where     
    
  
   

  
 and            . 

This is distributed as        ; See, [12] and [1]. 

The random variable   is said to have Variance-Gamma (VG) with parameters      ,      , if 

it has probability density function given by   

 

             
  

      

  

     
 

   
 

 
 
 
 
 
 
     

 
   

 
   

 
 
 
 

 

 
  

  

 
 
 

 

 
 
 
       

   

 
   

  

 
 
 
 

     

Where       is a modified Bessel function of the third kind; see, for example, [13] and [14].  

Note that there are other versions of this distribution available but this version is chosen because 

there is a software package in R called gamma-variance based on this version that be used to obtain 

all the simulations. The moments of this distribution are 
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This distribution is defined over the real line and has many distributions as special cases or limiting 

distributions such as Gamma distribution in the limit     and    , Laplace distribution as     

and     and normal distribution as    ,       and    .  

All the simulation results use the variance gamma distribution with different choices of parameters 

where it can control the skewness and kurtosis by different choices of its parameters. Table 2 gives 

the parameters of the variance-gamma distribution used in this study.  

  

Table 2 variance-gamma distribution parameters used in the study 

  Parameters    

         skewness Kurtosis 

0 0 variances 0.001     
0 0 Variances 4 0 15 

0 0 variances 6 0 21 

0 3 Variances 0.90 1 6 

0 2 Variances 12 6 12 

 

Four variables were manipulated in the study: (a) number of groups (4 and 5), (b) sample size (small-

medium- large), (c) population distribution (variance-gamma distribution), and (d) degree/pattern of 

variance heterogeneity (moderate and large/all (mostly) unequal). Variances and group sizes were 

both positively and negatively paired. For each design size, three sample size cases were 

investigated. In our unbalanced designs, the smaller of the three cases investigated for each design 

has an average group size of less than 10, the middle has an average group size less than 20 while the 

larger case in each design had an average group size less than 30. With respect to the effects of 

distributional shape on Type I error, we chose to investigate conditions in which the statistics were 

likely to be prone to an excessive number of Type I errors as well as a normally distributed case. For 

positive (negative) pairings, the group having the smallest number of observations was associated 

with the population having the smallest (largest) variance, while the group having the greatest 

number of observations was associated with the population having the greatest (smallest) variance. 

These conditions were chosen since they typically produce distrorted Type I error rates; see, [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3 empirical rates of type I error (   ),    for    test,    for Kurskal-Wallis test,   for 

Welch test and ANOVA for analysis of variance test. 

           

Sample sizes   Group variances (       )       Welch ANOVA 

   Symmetric    

(5,7,10,13) 35 (100,324,400,625) (0,3) 0.052 0.030 0.046 0.030 

(5,7,10,13) 35 (625,400,324,100)  (0,3) 0.054 0.077 0.057 0.118 

(15,17,20,23) 75 (100,324,400,625)  (0,3) 0.053 0.042 0.047 0.041 

(15,17,20,23) 75 (625,400,324,100)  (0,3) 0.054 0.065 0.051 0.078 

(25,27,31,34) 117 (100,324,400,625) (0,3) 0.053 0.055 0.052 0.051 

(25,27,31,34) 117 (625,400,324,100)  (0,3) 0.057 0.059 0.049 0.056 

        

(5,7,10,13) 35 (100,324,400,625) (0,15) 0.051 0.035 0.019 0.021 

(5,7,10,13) 35 (625,400,324,100)  (0,15) 0.049 0.055 0.017 0.090 

(15,17,20,23) 75 (100,324,400,625)  (0,15) 0.053 0.043 0.030 0.036 

(15,17,20,23) 75 (625,400,324,100)  (0,15) 0.047 0.056 0.028 0.069 

(25,27,31,34) 117 (100,324,400,625) (0,15) 0.055 0.046 0.037 0.041 

(25,27,31,34) 117 (625,400,324,100)  (0,15) 0.050 0.052 0.036 0.064 

   Asymmetric    

(5,7,10,13) 35 (150,75,60,50)  (1,6) 0.054 0.064 0.043 0.091 

(5,7,10,13) 35 (50,60,75,150)  (1,6) 0.051 0.035 0.035 0.030 

(15,17,20,23) 75 (150,75,60,50) (1,6) 0.048 0.054 0.043 0.072 

(15,17,20,23) 75 (50,60,75,150) (1,6) 0.052 0.045 0.042 0.041 

(25,27,31,34) 117 (150,75,60,50) (1,6) 0.055 0.054 0.045 0.066 

(25,27,31,34) 117 (50,60,75,150) (1,6) 0.052 0.047 0.045 0.045 

(5,7,10,13) 35 (150,75,60,50)  (6,60) 0.049 0.058 0.008 0.057 

(5,7,10,13) 35 (50,60,75,150)  (6,60) 0.057 0.041 0.009 0.025 

(15,17,20,23) 75 (150,75,60,50) (6,60) 0.055 0.065 0.025 0.049 

(15,17,20,23) 75 (50,60,75,150) (6,60) 0.057 0.056 0.021 0.035 

(25,27,31,34) 117 (150,75,60,50) (6,60) 0.058 0.069 0.044 0.055 

(25,27,31,34) 117 (50,60,75,150) (6,60) 0.056 0.064 0.039 0.042 

 

To evaluate the particular conditions under which a test was insensitive to assumption violations, the 

idea of Bradley's (1978) of robustness criterion was employed. According to this criterion, in order 

for a test to be considered robust, its empirical rate of Type I error   must be contained in the 

interval    . The choice of Bradley is        and this makes the interval is liberal. Therefore, in 

this study the choice of        a something in the middle between nothing and 0.25. Therefore, for 

the five percent level of significance used in this study, a test was considered robust in a particular 

condition if its empirical rate of Type I error fell within the interval             . 

Correspondingly, a test was considered to be nonrobust if, for a particular condition, its Type I error 

rate was not contained in this interval. Nonetheless, there is no one universal standard by which tests 

are judged to be robust, so different interpretations of the results are possible. In the tables, boldfaced 

entries are used to denote these latter values.  

 

 

 

 

 

 



Table 4 empirical rates of type I error (   ),    for    test,    for Kurskal-Wallis test,   for 

Welch test and ANOVA for analysis of variance test 

           

Sample sizes   Group variances (     )    KW W ANOVA 

   Symmetric    

(5,7,10,13,14) 49 (150,75,60,51,50)  (0,15) 0.044 0.048 0.018 0.086 

(5,7,10,13,14) 49 (50,51,60,75,150)  (0,15) 0.048 0.038 0.018 0.029 

(15,17,20,23,24) 99 (150,7 5,60,51,50)  (0,15) 0.052 0.057 0.030 0.068 

(15,17,20,23,24) 99 (50,51,60,75,150)  (0,15) 0.052 0.044 0.027 0.040 

(25,27,31,33,34) 150 (150,75,60,51,50)  (0,15) 0.049 0.052 0.042 0.056 

(25,27,31,33,34) 117 (50,51,60,75,150)  (0,15) 0.049 0.048 0.036 0.049 

   Asymmetric    

(5,7,10,13,14) 49 (150,75,60,51,50)  (6,60) 0.053 0.065 0.005 0.063 

(5,7,10,13,14) 49 (50,51,60,75,150)  (6,60) 0.054 0.045 0.007 0.029 

(15,17,20,23,24) 99 (150,75,60,51,50)  (6,60) 0.058 0.064 0.029 0.055 

(15,17,20,23,24) 99 (50,51,60,75,150)  (6,60) 0.057 0.059 0.024 0.038 

(25,27,31,33,34) 150 (150,75,60,51,50)  (6,60) 0.058 0.072 0.046 0.056 

(25,27,31,33,34) 117 (50,51,60,75,150)  (6,60) 0.059 0.067 0.038 0.043 

  Symmetric with very small sizes    

(5,6,7,8,9) 35 (225,144,25,9,4) (0,3) 0.066 0.101 0.056 0.121 

(5,6,7,8,9) 35 (4,9,25,144,225) (0,3) 0.075 0.044 0.051 0.051 

(5,6,7,8,9) 35 (1,2,3,4,5) (0,3) 0.052 0.033 0.052 0.037 

(5,6,7,8,9) 35 (5,4,3,2,1) (0,3) 0.049 0.063 0.056 0.091 

(5,6,7,8,9) 35 (225,144,81,49,36) (0,3) 0.052 0.071 0.060 0.121 

(5,6,7,8,9) 35 (225,144,81,49,36) (0,21) 0.046 0.045 0.011 0.060 

(5,6,7,8,9) 35 (5,4,3,2,1) (0,21) 0.048 0.044 0.009 0.052 

(5,5,5,5,5) 25 (10,10,10,10,10) (0,3) 0.055 0.038 0.047 0.052 

(5,5,5,5,5) 25 (10,10,10,10,10) (0,21) 0.056 0.037 0.008 0.025 

 

Tables 3 and 4 contain empirical rates of Type I error for a design containing four and five groups, 

respectively. The tabled data indicates that  

1. When the observations were obtained from normal distributions (Table 3, sk.=0 and ku.=3), 

rates of Type I error were controlled by EE, KW and W methods while were not controlled 

by ANOVA  where the variances were not equals. 

2. When the observations were obtained from symmetric distributions with kurtosis more than 3 

(Table 3 and Table 4, sk.=0 and ku.=15), rates of Type I error were controlled by EE and KW 

methods while were not controlled by W and ANOVA methods. 

3. When the observations were obtained from non-normal distributions (Table 3 and Table 4, 

sk.=1 and 6 and ku.=6 and 60), rates of Type I error were controlled by EE, KW while were 

not controlled by W and ANOVA methods.  

4. When the observations were obtained from normal with equal variances and sample sizes are 

equal the rates of Type I error was controlled by ANOVA method (Table 4).  

5.  In small sample sizes, the EE method rates of Type I error were controlled by EE better than 

KW method, Table 4.  

6. Rates of Type I error were controlled by EE for all cases studied except two cases out of 45 

cases, while rates were controlled by KW for all cases studied except seven cases out of 45.  

 



4 Application 

The RS company provides several services. It currently operates in four regions (M1, M2, M3 and 

M4) . recently, RW manager questioned whether the mean billing amount for the services differed by 

region. Simple random samples of employees served in these regions have been selected. The data 

are given in Table 5 

 

Table 5 billing amount for the services in four regions with ranks in brackets  

 M1 M2 M3 M4 

 102.3 (36) 95.5 (21) 103.5 (39) 70.6 (2) 

 101.5 (34) 99.3 (25) 103.1 (37) 69.7 (1) 

 100.7 (29) 101.5 (34) 117.6 (47) 83.8 (9) 

 98.1 (23) 100.3 (27) 87.9 (10) 91.9 (15) 

 101.4 (32) 101.5 (34) 100.4 (28) 109.8 (45) 

 100.9 (30) 93.1 (18) 104.7 (42) 88.6 (11) 

 92.9  (17) 92.7 (16) 83.4 (8) 98.6 (24) 

 101.3 (31) 94.4 (19) 91.7 (14) 74.4 (3) 

 100.2 (26) 109.9 (46) 88.9 (12) 94.6 (20) 

 104.7 (41) 96.6 (22) 103.2 (38) 75.9 (4) 

  104.3 (40) 108.3 (44) 83.1 (7) 

  105.5 (43)  81.3 (6) 

    89.2 (13) 

    80.1 (5) 

     

sizes 10 12 11 14 

Mea. 100.4 99.5 99.3 85.1 

Var. 9.6 28.5 104.2 126.9 

 

Table 5 gives the data and its ranks. Figure 3 shows the over-mean-rank plot for the data and in can 

conclude the following: 

1. The lowest value of     is 0.08 for group 4 that showing shifting down in this group and the 

heist     is 0.80 for group 1 that showing up in this group. 

2.  Group 4 has the highest contribution in the test where its    value 9.17, followed by group 1 

that has 3.6. 

3. Group 4 is different in patterns with groups 1, 2 and 3. Groups 2 and 3 are nearest in patterns. 

To test for equal mean the null hypothesis is  

 

                
 

Where                         ,  therefore,    is rejectd. 

 

 

 



 
Figure 3 over-mean-rank plot for RW company data 

 

5 Conclusion 

Comparison of several means under heterogeneity is studied using over-mean-rank approach. The 

sampling distribution for this function was obtained and found that the chi square distribution had 

given a very good fit for this function until for small sample sizes. 

Comparison with Kruskal-Wallis, Welch and ANOVA methods had been given for unbalanced 

designs and not equal variances from normal and non-normal populations in terms of Type I error 

and the simulation results were shown that the proposed method improved the Type I error and its 

performance had better robustness than the studied methods.   

This approach might be extended to a multiple comparisons procedure. For example, the pair 

comparisons of averages can be obtained as 

 

                    

or equivalently 

 

         

The first approach is Behrens-Fisher approach. Following [15] procedures, the paired comparisons 

might be done using    
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where   comparison and             is studentized range statistics; see, [16].   

Another approximation is a family wise error rate as 

 

    
       

 
          

  
 

          

  

 

 and comparing it to               , the           upper standard normal quantile. The quantity 

           called the experiment wise error rate or the overall significant level, which is the 

probability of at least one erroneous rejection among the          pairwise comparisons; see, 

[17], [19] and [20].     

These approaches need more study and comparisons with other methods and it will be left to another 

research. 

 

References 
[1] W.H. Kruskal, and W.A. Wallis, “Use of ranks in one-criterion variance analysis”  Journal of American 

Statistical Association, 47, 1952,583–621. 

[2] B.L.Welch,“On the comparison of several mean values: an alternative approach” Biometrika, 38, 1951 

933-943. 

[3] G.S. James, “The comparison of several groups of observations when the ratios of the population variances 

are unknown. Biometrika, 38, 1951, 324-329. 

[4] G.S. James, “Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the 

population variances are unknown”  Biometrika, 41, 1954, 19-43. 

[5] J. Gamage, and S. Weerahandi, “Size performance of some tests in one-way ANOVA” Communications in 

Statistics-Simulation and Computation, XX, 1998, 625-639. 

[6] L.M. Lix, and H.J. Keselman, “Approximate degrees of freedom tests: A unified perspective on testing for 

mean equality,” Psychological Bulletin, 117, 1995,547-560. 

[7] S. Weerahandi, ”ANOVA under unequal error variances,” Biometrics, 51, 1995, 589-599. 

[8] S., Chen and H.J. Chen, H.J., “Single-stage analysis of variance under heteroscedasticity,” 

Communications in Statistics-Simulation and Computation, XX, 1998, 641-666. 

[9] L.M. Lix, and H.J. Keselman, “To trim or not to trim: Tests of mean equality under heteroscedasticity and 

nonnormality” Educational and Psychological Measurement, 58, 1998,409-429 (Errata:58, 853). 

 [10] R. Wilcox, H. Keselman, and R. Kowalchuk “Can tests for treatment group equality be improved?: The 

bootstrap and trimmed means conjecture,” British Journal of Mathematical and Statistical Psychology, 51, 

1998, 123-134. 

[11] J. Neter, H. Kutner, C. Nachtsheim and W. Wasserman, “Applied linear statistical models” 4
th
 ed., 

McGraw-Hill, 1996. 

[12] W.H. Kruskal, “A nonparametric test for the several sample problem,” Annals of Mathematical Statistics, 

23, 1952,525–540. 

[13] E. Seneta,“Fitting the variance-gamma model to financial data” Journal of Applied Probability. 41A, 

2004,177-187. 

[14] S. Kotz, T.J. Kozubowski, and K. Podgórski, “The Laplace Distribution and Generalizations” Birkhauser, 

Boston, 2001. 

[15] P.A. Games, and J.F. Howell, “Pairwise multiple comparison procedures with unequal n’s and/or 

variances: a Monte Carlo study” Journal of Educational Statistics,1, 1976, 113-125. 

[16] E.J. Dudewicz,Y. Ma,, E. Mai and H.Su, “Exact solutions to the Behrens–Fisher Problem: 

Asymptotically optimal and finite sample efficient choice among” Journal of Statistical Planning and 

Inference. 137, 2007, 1584 – 1605. 

[17] O.J. Dunn,  “Multiple comparisons using rank sums” Technometrics, 6, 1964, 241-252. 

[18] R. Rosenthal, and R.L. Rosnow, “Contrast analysis: focused comparisons” Boston: Cambridge University 

Press; 1985. 

[19] H. Abdi, “The Bonferonni and Šidák corrections for multiple comparisons” In: Neil Salkind (Ed.), 

Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage, 2007. 


