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ABSTRACT 
We prove theorems that delineate the upper and lower outlier boundaries for an arbitrary 

distribution of real numbers as twice the means of the positive and negative sets derived 

from the distribution, respectively. The essence of the work is based on a theorem on 

categories. The derived method of detecting outlier boundaries is independent of data 

sampling. 
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1. INTRODUCTION 
An outlier is a data point that is dissimilar to the overall pattern of the data and it is a 

point that is distinct from the representative observations [1]. When an outlier occurs 

within a distribution, it may be due to experimental error or to the presence of a 

combination of different statistical sources [2], [3]. A convenient definition of an outlier 

is a point which falls more than 1.5 times the interquartile range above the third quartile 

or below the first quartile [4], [5]. Another popular definition is based on Chebyshev’s 

Inequality that guarantees that for any distribution, no more than 1 / k2  of the 

distribution’s values can be more than k  standard deviations away from the mean [6], 

[7].  

 

Outliers can occur by chance in any distribution, but they are often indicative either of 

measurement error or that the population has a heavy-tailed distribution [8]. In the former 

case one wishes to discard them or use statistics that are robust to outliers [e.g. the 

median], while in the latter case they indicate that the distribution has high kurtosis and 

that one should be very cautious in using tools or intuitions that assume a normal 

distribution [9]. A frequent cause of outliers is a mixture of two distribution, which may 

be two distinct sub-populations, or may indicate ‘correct trial’ versus ‘measurement 

error’; this is modeled by a mixture model [10], [11]. 

 

In most larger samplings of data, some data points will be farther away from the sample 

mean than what is deemed reasonable. This can be due to incidental systematic error or 

flaws in the theory that generated an assumed family of probability distributions, or it 

may be that some observations are far from the center of the data [12]. Outlier points can 

therefore indicate faulty data, erroneous procedures, or areas where a certain theory might 

not be valid. However, in large samples, a small number of outliers is to be expected (and 

not due to any anomalous condition) [13]. 

 

Outliers, being the most extreme observations, may include the sample maximum or 

sample minimum, or both, depending on whether they are extremely high or low. 
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However, the sample maximum and minimum are not always outliers because they may 

not be unusually far from other observations.  

 

Estimators capable of coping with outliers are said to be robust: the median is a robust 

statistic, while the mean is not. We prove in this paper that the susceptibility of the mean 

to outliers is the key to defining the outlier [14], [15]. 

 

Methods for detecting outliers either have a complex implementation, like the modified 

Thompson Tau test or Principal Component Analysis or they rely on interpretation [16], 

[17], like the interquartile method or they depend upon the sampling of the data set, like 

the Chebyshev method. The method presented in this paper that we refer to as the mean 

method is simple to implement, objective and independent of the sampling of the data set. 

The derivation of the method is purely mathematical and rigorous. 

 

A distribution has frequency and spacing. By extracting the set from the distribution, we 

remove frequency as a variable. That leaves spacing, which we assert to be the 

determining factor of an outlier. The essence of the derivation is a novel theorem on 

categories. Using this theorem, we are able to categorize an outlier boundary for one data 

spacing and extend that categorization to other spacing’s. We point out that this theorem 

has no formal connection to Category Theory [18]. 

 

2. OUTLIER MATHEMATICS 

The Necessary Theorems: 
THEOREM I. Given a continuous function f (x)with a real domain, if !  a category C  

that is valid for f (x ') , then it is valid for f (x) !x . 

Proof. Because f (x) is continuous, we must have C : f (x ') = C : f (x '+ !) , where ! is an 

infinitesimal real number. That is, there is no basis to categorize f (x ')  differently from 

f (x '+ !) . This can be repeated successively to yield: C : f (x ') = C : f (x '+ !+ !+...) .  
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THEOREM II. Given a continuous operator  O(
!x)with a real vector domain, if !  a 

category C  that is valid for  O(
!x ') , then it is valid for  O(

!x)   !
!x . 

Proof. Because  O(
!x)  is continuous, we must have  C :O(

!x ') = C :O(!x '+ !!) , where  
!! is 

an infinitesimal real vector. That is, there is no basis to categorize  O(
!x ')  differently from 

 O(
!x '+ !!) .This can be repeated successively to yield:  C :O(

!x ') = C :O(!x '+ !!+ !!+...) .  

 

AXIOM I. A distribution has no outliers if the data are uniformly spaced. 

 

THEOREM III. If the data are uniformly spaced, then the outlier boundaries must be near 

the extremes of the data. 

Proof. Axiom I.                 

Theorems I. and II. are analogous for functions and operators. We can demonstrate 

applications of Theorem I. for the following cases. 

(case 1): 

f (x) = iix ,  x !! .                                      (1) 

Since  C : f (0)!! , by Theorem I., we must have 
 
C : f (x)!! "x . We can confirm this 

by evaluating f (x) . Euler’s formula is 

eiy = cos y + i sin y .                                      (2) 

Therefore, 

ei! /2 = i .                                       (3) 

f (x) = iix = ei! /2( )ix = e"(! /2)x .                                     (4) 

(case 2): 

f (x) = !1 x"# $% ,  x !!+ .                                      (5) 

The function f (x)  is not continuous, so Theorem I. does not apply. For example, 

C : f (0) > 0  does not imply C : f (x) > 0,!x . 
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(case 3): 

f (x) = !12 x"# $% ,  x !!+ .                          (6) 

The function f (x)  is continuous, so Theorem I. does apply. For example, C : f (0) > 0  

does imply C : f (x) > 0,!x . 

 

The Derivation of the Upper Outlier Boundary: 

Given a distribution of data D  consisting of positive real numbers, derive the set yi{ } by 

removing redundancy from D . Consider the following: 

D! yi{ } ,  yi !!
+ .                                      (7) 

yi{ } = xi{ }! z0{ } , z0 > xmax .                                     (8)  

 
! m "!+  such that  10

m yi !!
+ . Including set ordering, we write  

!x ! xi{ }  and 

 
!y ! yi{ } . Let 2 yi  represent twice the mean of yi{ } . Then we can write: 

 
2 10m yi = O(!x) =

2 10m xi +10
m z0

i=1

N

!"#$
%
&'

N +1
.                        (9) 

Consider equation (9) for a one-element vector that we denote with  
!x1 : 

 O(
!x1) = 10

m (x1 + z0 ) ! 1+10
m z0 .            (10) 

The distribution that generates the two elements 10m x1{ }! 10m z0{ }  must have uniform 

spacing. Therefore, by Theorem III. and equation (10), we can categorize  O(
!x1)  as an 

upper outlier boundary. Since  O(
!x)  is continuous and  

!x  is a real vector, by Theorem II., 

we can categorize  O(
!x)  as an upper outlier boundary for all  

!x . From this result, it 

follows that 2 yi  is an upper outlier boundary for all  
!x . 

 

The Outlier Boundaries for Real Numbers: 

Given a distribution D  of real numbers, derive the set wi{ }  from the distribution. We 

have  wi
+{ }!!+  and  wi

!{ }"!! . Define the operation v  as the magnitude of v  if v  is a 
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number and the cardinality of v  if v  is a set. Then, 2 wi
+  and !2 wi

!  are the upper 

and lower outlier boundaries, respectively. 

 

The Outlier Boundary for a Symmetric Distribution: 

THEOREM IV. Given xi{ } = xi
+{ }! xi

"{ } ,  xi !! , if xi{ }  is symmetric, then  

xi
+ = xi

! = xi . 

Proof. xi =
xi

i=1

2N

!
2N

=
xi
+ + xi

"( )
i=1

N

!
2N

=
1
2

xi
+ + xi

"( ) . 

xi{ }  symmetric implies xi
+ = xi

! = a . ! xi =
1
2
2a( ) = a .           

 

A Graph of Outlier Behavior: 
Using equation (9), we can derive the relation: 

 
O(!x) =

2 10m xi +10
m z0

i=1

N

!"#$
%
&'

N +1
(
2 i +10m z0

i=1

N

!"#$
%
&'

N +1
.                (11) 

Letting z0 ' = 10
m z0 , we find: 

 
O(!x) ! N +

2z0 '
N +1

.         (12) 

This provides a model of the outlier boundary as a function of N. If we write: 

g(u) = u + 2z0 '
u +1

,N ! u ,        (13) 

we can examine  g(u),u !!
+ , umax < z0 '  graphically as an interpolation of the lower 

bound of  O(
!x) . 

This is shown in Figure 1 for z0 ' = 100 . Observe that the function is asymmetric and the 

outlier boundary is minimal for u ! 30 . The outlier boundary is larger as the sample size 

increases above u ! 30 . Also observe that the outlier boundary is near umax  for the 

extremes with uniform spacing, consistent with Theorem III. 
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Fig. 1. A graph of g(u) = u + 2z0 '
u +1

,N ! u  , umax < z0 '  for z0 ' = 100 . 

 

 

3. APPLICATIONS 
(case1): synthetic data 

(a) D = !0.3,!0.3,!0.5,!0.5,0.5,0.8,0.8,10{ } , D! wi{ } .                          (14) 

wi
+{ } = 0.3,0.5,0.8,10{ } .                        (15) 

wi
!{ } = !0.3,!0.5{ } .              (16) 

The mean of D is 

µ = 1.3125 .               (17) 

We can estimate the standard deviation ! by using the equation: 

! "
(Di # µ)2

i=1

N

$
N #1

= 3.55 .             (18) 

µ + 2! = 8.41.              (19) 

So µ + 2!  is greater than 88% of the data. 
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Using the ‘mean’ method presented in this paper, we have 

wi
+ =

0.5 + 0.8 +10
3

= 3.77 .            (20) 

or the upper outlier boundary is: 

2 wi
+ = 7.54 .              (21) 

Similarly, we have 

wi
! =

0.3+ 0.5
2

= 0.4 .             (22) 

or the lower outlier boundary is: 

!2 wi
! = !0.8 .              (23) 

Consequently, based on the Chebyshev method, that places the outlier boundary at 

µ + 2!  for small data sets and µ + 3!  for larger data sets, there are no outliers. Based 

on the ‘mean’ method, 10 is the outlier. Observe that 2 wi
+  is greater than 75% of the 

positive data in D . 

(b) D = 500{ } ,      D! wi{ }  .           (24) 

wi
+{ } = 500{ } .                         (25) 

wi
!{ } = "{ } .                          (26) 

The mean of D  is 

µ = 500 .                          (27) 

The standard deviation cannot be estimated because there is only on sample. Therefore, 

we cannot use the Chebyshev method to detect an outlier boundary. However, with the 

mean method, we find the upper outlier boundary to be 

2 wi
+ = 1000 .                         (28) 

The lower outlier boundary is 

!2 wi
! = 0 .                          (29) 
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(case 2): real data-a set of sizes of arbitrary email messages in kilobytes 

D = yi{ } = {5,165,84,536,14,3,464,37,11,89,2,12,19,18,17,76,7,15,56,16,67,4,28,26,6, 

29,86,30,181,46,8,10,169,35,2000,51,405} 

N = 37, µ = 130.46 .              (30) 

We can use equation (18) to estimate ! : 

! = 340 .                                     (31) 

µ + 2! = 810.46 .              (32) 

µ + 3! = 1150.46 .                                    (33) 

Both µ + 2!  and µ + 3!  are greater than 97% of the data. Using the mean method, the 

upper outlier boundary is: 

2 yi = 260.9 .                                    (34) 

Consequently, based on the Chebyshev method, 2000 is an outlier. Based on the mean 

method, the outliers are 405,464,536,2000{ } . The percentage of the data that is less 

than 2 yi  is 89%. 

 

Comments on Applications 
For a normal distribution, the outlier boundaries predicted by the Chebyshev method are 

75% of the data for less than 22 samples and 89% of the data for greater than 22 samples 

[19]. This corresponded to the results of the mean method for the arbitrary distributions 

presented as example applications. However, we were unable to measure a !  that 

yielded  reasonable outlier boundaries based on the Chebyshev method. In the case of one 

sample point, the Chebyshev method cannot be applied because there is no way to 

estimate ! . However, in this case, the mean method gives definitive results. 

 

4. CONCLUSION 
We base our derivation of a specific outlier boundary on the assertion that an outlier 

depends on the spacing and not the frequency of the data. Using this Axiom, we prove 

theorems that define an outlier boundary as twice the mean of the set derived from a 

distribution. This result is simple to implement, but based on rigorous mathematics. We 
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use the lack of robustness of the mean to detect an outlier in contrast to methods that seek 

to avoid outliers by using robust estimators like the median. The essential result is based 

on a powerful theorem on categories that is not formally connected to Category Theory. 

We also present examples that indicate the broad applicability of the category theorem. In 

this paper, we present various examples of the application of the outlier boundary 

detection method (i.e. the mean method) and get results that are consistent with a visual 

interpretation of the data and the results of the two sigma and three sigma statistics for 

normal distributions based on the Chebyshev Inequality. We demonstrate the 

effectiveness of the method on data from which a good estimate of sigma is not derivable, 

so that outlier detection methods that rely on sigma are unsuccessful. This is important 

because there are many situations in which data samples may be too small or irregularly 

sampled to get a proper estimate of sigma, but outliers are still present. 
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