
Portfolio Optimization using Factor Models

Abstract

We identify three possible scenarios when the optimization algorithm fails to produce a 
reasonable answer, and show the adjustments that must be made to the optimization 
input parameters in each case in order to guarantee a well behaved resulting portfolio

Portfolio optimization is an algorithm that for a given level of expected P&L, produces a
portfolio with the lowest volatility. Mathematically, optimizing a portfolio entails 

maximizing the risk-adjusted P&L given by the formula: α wT
−

1
2
λ w ΣwT  where α is a 

row vector ( 1×n ) of expected returns, w is a row vector ( 1×n ) of dollar investments in 
each asset, λ determines the importance assigned to risk vs. expected P&L, and Σ is an

n×n  co-variance matrix of asset returns. The expression αwT
−

1
2
λ w ΣwT  achieves 

maximum value when w=
1
λ

α Σ
−1

The naive approach to generating Σ is to compute historical co-variances between all 
pairs of assets. Unfortunately, not only is there a finite amount of price history, but also 
companies’ characteristics and accordingly co-variances change over time. As a 
consequence, the amount of available data is very limited. In practice, the ratio of the 
number of assets to the number of historical data points is such that the co-variance 
matrix is either singular, or close enough to being singular that computing an optimal 
portfolio using it would be like running a regression with 1000 observations and 500 
variables; a very high R2 but virtually no out of sample predictive power whatsoever.

This problem is solved in practice by using a factor model, namely, breaking down the 
co-variance matrix as follows: Σ=ΛϕΛT+Ψ . As a result of using a factor model, the 
overall portfolio risk w ΣwT can be broken down into factor risk w (Λ ϕΛT)wT and specific 
risk w Ψ wT .

Minimizing specific risk is straightforward. If we have no factor risk, then Σ=Ψ , so the 

optimal solution is going to be w=
1
λ

αΨ
−1 , but since Ψ is a diagonal matrix, it's inverse 

will simply be the reciprocal of it's diagonal elements: diag(a1 , ... ,an)
−1=diag( 1

a1

, ... ,
1
an

) . 

In other words, specific risk is minimized when the investment level in each stock is 
proportionate to it's expected return divided by it's specific variance, that is: wi∝

αi

ψi
. 

Mathematically, this creates a well diversified portfolio where the investment level is 
commensurate with the expected return, which is precisely what we want.



So under what conditions will this produce concentrated holdings rather than a well 
diversified portfolio? If all the alphas are zero (or close to zero) except for a handful of 
stocks, the portfolio won't be diversified. So most of the alphas need to be non-zero, and 
of similar magnitude. The only other way we could get concentrated holdings is if some 
of the specific risks are too close to zero. But so long as both of these conditions are 
checked for and avoided, a low-risk, diversified portfolio is guaranteed.

The situation with factor risk is a bit more complicated. If we have no specific risk, then

Σ=ΛϕΛT so the optimal solution is going to be: w=
1
λ

α (ΛϕΛ
T )

−1
. Initially, this looks 

problematic, because ΛϕΛT  is singular. Luckily, as it turns out, α (ΛϕΛ
T )

−1
is equal to 

residuals of regressing alphas on factor loadings. In other words, while ΛϕΛT  can't be 
inverted directly, if you add a small constant to the diagonal, it does become invertable 
and as this constant approaches zero, the solution approaches regression residuals 
(Appendix A). Intuitively, this makes sense because factor risk is minimized when there 
is no factor exposure (i.e. when w Λ√ϕ=0 ), and regression residuals always satisfy this 
condition (Appendix B).

Those familiar with regression are used to the idea that a high R2 is good. But in this 
case R2 measures how much P&L we have to give up in order to minimize factor risk, so
a high R2 is very bad. However, even if the R2 is 1, there's an easy way to pick how 
much P&L we want to give up in order to reduce factor risk. In order to produce a higher
P&L, but higher factor risk portfolio, scale up the specific risk; that is, instead of using
Σ=ΛϕΛT+Ψ , use Σ=ΛϕΛT+mΨ  where m > 1. If you want a lower factor risk, but 
lower P&L portfolio, make m < 1.

There's a caveat to this though. Say you use a reasonably good factor model that 
captures most of the correlation between assets to construct a well diversified portfolio 
with little or no factor risk. The probability distribution of that portfolio's P&L will be 
normal, via the central limit theorem, so variance will fully and accurately describe it's 
risk. This is not the case for portfolios with lots of factor risk, such as long only 
portfolios; it is well known that their returns are anything but normally distributed, 
making variance a flawed and potentially inappropriate risk measure in this case.



Appendix A

Prove: resid (lm(α∼−1+Λ))=lim
m→∞

1
m

α(ΛϕΛ
T
+

1
m

I )
−1

where
α is a row vector ( 1×n )
Λ is an n×k  matrix
ϕ  is a k×k  matrix
m is a single value

Regression coefficients are given by the formula β=(XT X )−1 XT y where y is a column 
vector. Regression fitted values, and consequently residuals, don't depend on rotation of 
the xs; in other words resid (lm(α∼−1+Λ))=resid (lm(α∼−1+Λ√ϕ)) . Mathematically, let z 
be any square invertable matrix. Regressing a variable y on matrix X will produce fitted 
values equal to: Xβ=X (XT X )−1 XT y . The fitted values of regressing y on X multiplied by 
z only requires us to replace X with (X z) in the formula above as follows:
(X z)((X z)T (X z))−1(X z)T y=X z (zT XT X z)−1 zT XT y=X z z−1(XT X )−1( zT )−1 zT X T y=
X I (XT X )−1 I XT y=X (XT X )−1 XT y=X β

Therefore, if we let L=Λ√ϕ , it is sufficient to prove that (αT
−Lβ )

T
=lim

m→∞

1
m

α(L LT
+

1
m

I )
−1

 

Transposing both sides of the equation we get: α
T
−Lβ=lim

m→∞

1
m [(L LT

+
1
m

I )
−1

]
T

α
T . Because 

the L LT
+

1
m

I matrix is symmetrical, so is its inverse, and we need to prove that

α
T
−Lβ=lim

m→∞

1
m (L LT

+
1
m

I )
−1

α
T  where β=(LT L)−1 LT αT

Start with the Woodbury matrix identity, (A+UCV )−1=A−1−A−1U (C−1+V A−1U )−1V A−1 , 
and plug the following values into it: A=I n×n , U=L√m , C=I k×k , and V =(L√m)

T

The left side of the identity becomes:

(A+UCV )
−1

=( I n×n+(L√m) I k×k(L√m)
T )

−1
=( I+m L LT

)
−1

=[m( 1
m

I+L LT )]
−1

=
1
m (L LT

+
1
m

I )
−1

The right side becomes:
A−1−A−1U (C−1+V A−1U )−1V A−1=

I n×n
−1

−I n×n
−1 L√m( I k×k

−1
+(L√m)

T
I n×n

−1 L√m)
−1

(L√m)
T

In×n
−1=

I−(L√m)( I k×k+(L√m)
T
(L√m))

−1
(L√m)

T
=  (factoring out √m )

I−m L ( I k×k+m LT L )
−1

LT
=I−m L(m [

1
m

I k×k+LT L])
−1

LT
=I−m L

1
m ( 1

m
I k×k+LT L)

−1

LT =

I−L( 1
m

I k×k+LT L)
−1

LT



We combine the left and right sides of the identity,
1
m (L LT

+
1
m

I )
−1

=I−L( 1
m

I k×k+LT L)
−1

LT

and multiply both sides of the resulting equation by αT :
1
m (L LT

+
1
m

I )
−1

α
T
=( I−L( 1

m
I k×k+LT L)

−1

LT)αT
=α

T
−L( 1

m
I k×k+LT L)

−1

LT
α

T

Using the above equation, we can re-write the limit we're trying to prove as follows:

lim
m→∞

1
m (L LT

+
1
m

I )
−1

α
T
=lim

m→∞ [αT
−L( 1

m
I k×k+LT L)

−1

LT
α

T ]=α
T
−L lim

m→∞ [( 1
m

I k×k+LT L)
−1

]LT
α

T

Now, ( 1
m

I k×k+LT L)
−1

 is a continuous function of m, because each element of the inverse 

(row i, column j) will be the determinant of (i,j) minor (which is just a sum of products, 

no discontinuity there) divided by determinant of 1
m

I k×k+LT L  and

|1
m

I k×k+LT L|≥|1
m

I k×k|+|LT L| , so no discontinuity there either, therefore:

lim
m→∞

( 1
m

I k×k+LT L)
−1

=(LT L)
−1

and therefore

α
T
−L lim

m→∞ [( 1
m

I k×k+LT L)
−1

]LT
α

T
=α

T
−L(LT L)

−1 LT
α

T

Substituting β=(LT L)−1 LT αT  into the equation above, we see that indeed

lim
m→∞

1
m (L LT

+
1
m

I )
−1

α
T
=α

T
−Lβ

Appendix B

Recall that w Λ√ϕ=w L=(LT wT )T  and given that wT=αT−L(LT L)−1 LT αT ,
LT wT=LT (αT−L(LT L)−1 LT αT)=LT αT−LT L(LT L)−1 LT αT=LT αT−I LT αT=0

In English, it means that one of the properties of regression residuals is that when they 
are multiplied by X's, the result is always a vector of zeros, in other words, regression 
residuals always produce a zero factor risk portfolio (i.e. satisfy the condition w Λ√ϕ=0 )


