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Abstract 

 
 

The aim of this paper is to investigate the flow of blood through a porous 

medium with time dependent permeability, in an inclined artery having mild 

stenosis, in the presence of pulsatile pressure gradient. Here the blood flow is 

considered to be of Newtonian nature and we impose an azimuthal uniform 

magnetic field. The fluid flow takes place under body acceleration and we assume 

the existence of a slip velocity at the stenosed section of the arterial wall. By 

employing multi-parameter perturbation procedure, we derive solutions for the 

flow field and wall shear stress and their behaviors are analyzed under the 

influence of various relevant parameters concerning the magnetic field, slip 

velocity, porosity, inclination, pulsatile pressure and the periodic body 

acceleration. The results are displayed pictorially and construed. The results reveal 

that the azimuthal magnetic field, slip velocity, inclination, pulsatile pressure, 

periodic body acceleration and the time-dependent permeability of the porous 

medium play significant roles on the velocity field, and the wall shear stress. For 

instance, the imposition of the magnetic field causes a decline in the axial velocity 

of blood and the wall shear stress. On the other hand, a growth in the porosity of 

the medium leads to a rise in the axial blood velocity as well as the wall shear 

stress.   
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1 Introduction  

The studies related to blood flow through stenosed arteries have garnered wide 

interest in the field of Bio-Medical research. Stenosis or atherosclerosis may be 

defined as the formation of some constriction in the inner arterial wall owing to 

the deposition of lipoproteins and fatty acids (atherosclerotic plaques) in the 

lumen of the artery. Such constrictions lead to considerable change in the flow of 

blood, the pressure distribution and the wall shear stress, thereby impeding the 

normal circulatory processes and consequently leading to cardiovascular diseases. 

Even for mild atherosclerosis, the velocity gradient in the stenosed wall is steep 

owing to the increased core velocity. This results in comparatively large shear 

stress on the arterial wall. Mathematical models of blood flow through arteries 

under diverse physiological situations were presented by several authors like Fung 

[1], McDonald [2], Zamir [3] and David et al. [4]. Theoretical and experimental 

investigations concerning flow of blood through stenosed arteries were presented 

by Young [5], Liu et al. [6], Yao and Li [7] and Mekheimer and El-Kot [8]. The 

human body may be subjected to body accelerations (vibrations) under certain 

situations such as riding a heavy vehicle or flying in a helicopter. This may cause 

health problems like vascular disorders and increased pulse rate. Studies related to 

blood flow under the influence of body acceleration were carried out by several 

research workers such as Sud and Sekhon [9] and El-Shahed [10]. The Pulsatile 

nature of blood flow in arteries may be attributed to the heart pulse pressure 

gradient. Studies in pulsatile blood flow were carried out by researchers like [10] 

and Elshehawey et al. [11]. The possibility of velocity slip at the blood vessel wall 

was investigated theoretically by Brunn [12] and Jones [13] and experimentally by 

Bennet [14] and Bugliarello and Hayden [15]. The methods to detect and 
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determine slip experimentally at the blood vessel wall have been indicated by 

Astarita et al. [16] and Cheng [17] respectively. It was first Kolin [18] and later 

Korchevskii and Marochnik [19] who suggested the scope of electromagnetic 

fields in Bio-Medical studies. Barnothy [20] indicated that for biological systems, 

the heart rate decreases under the influence of an external magnetic field. In 

certain pathological circumstances, the distribution of fatty cholesterol and 

artery-clogging blood clots in the lumen of the coronary artery may be regarded as 

equivalent to a fictitious porous medium. Xu et al. [21] assumed the blood clot as 

a porous medium to investigate the transport characteristics of blood flow in the 

extension of multi-scale model by incorporating a detailed sub model of 

surface-mediated control of blood coagulation (Xu et al. [22, 23]). In general, 

blood is a non-Newtonian fluid. However, it has been established that human 

blood exhibits Newtonian behavior at all rates of shear for hematocrits up to about 

12% [24]. Further, in case of relatively larger blood vessels it is sensible to assume 

that blood has a constant viscosity, since the diameters of such vessels are large 

compared with the individual cell diameters and because shear rates are quite high 

for viscosity to be independent of them. Consequently, for such vessels the 

non-Newtonian character becomes unimportant and blood may be regarded as a 

Newtonian fluid. 

In view of the aforementioned facts, we may cite the works done by Elshehawey 

et al. [11], Nagarani and Sarojamma [25], Shehawey and EL Sebaei [26], 

Tzirtzilakis [27], etc.  

The aim of the present study is to investigate theoretically the nature of a pulsatile 

blood flow through a mildly stenosed artery under the combined influence of an 

azimuthal uniform magnetic field, slip velocity, body acceleration and time 

dependent permeability, when the artery is inclined to the vertical. The 

investigation is carried out by treating blood flow as Newtonian. The solutions 

have been obtained in terms of Bessel function, using multi-parameter 

perturbation technique. 
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2 The formulation of the Problem 
  
   For this problem, we take an axially symmetric, laminar, one-dimensional and 

fully developed blood flow through an inclined and catheterized circular artery, in 

the presence of a time-dependent pressure gradient, body acceleration and an 

azimuthally applied magnetic field of slight strength. So the induced magnetic 

field is negligible. We suppose that the boundary wall of the artery is rigid and the 

artery has a porous medium of time dependent permeability. Next, the artery is 

inclined to the vertical and a slip velocity is considered at the stenosed region of 

the arterial wall. Here, blood is considered as a Newtonian fluid and the respective 

flow is assumed to be Newtonian. The flow configuration is shown 

diagrammatically, at the end of the Result and discussion section. 

The geometry of an arterial stenosis is (Nagarani and Sarojamma [25]), as 

below: 

 
0

0

0

1 cos , for
2

, for

sd z
L z

dR z

L z

  
      

 

d

d

                      (1) 

Where  R z  is the radius of the artery in the stenosed region, L  is the constant 

arterial radius in the non-stenosed region, 0d  is the half-length of the stenosis 

and sd  is the greatest height of the stenosis such that 
sd

L
 is less than unity for a 

mild stenosis. Here the radial velocity is very small due to the low Reynolds 

number flow through the artery with mild stenosis (Nagarani and Sarojamma [25]); 

hence we do not consider the radial velocity.    

From Navier-Stokes equations of motion, the momentum equation 

governing the flow is reduced in the cylindrical coordinate system  , ,r z  as 

under: 
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 
0

22

2

1 1 1
cos

u P u u
F t g

t z r rr

u B u

K

  
  

    
       
    

        (2) 

P
g Sin

r
 

 


                                                 (3) 

Where u  denotes the velocity along the z - axis, P  the pressure,   the 

density, t  the time,  F t  the body acceleration, B  the applied magnetic field 

in azimuthal (  ) direction,   the kinematic viscosity,   the electrical 

conductivity,  the acceleration due to gravity, g   the angle of inclination of 

the artery with the vertical  and 0K  the periodic permeability of the porous 

medium, such that 
 0

1 cosk p

K
K

t 



, where k  is the amplitude of 

permeability.  

Such that the boundary conditions are: 

  atsu V r R z                                                 (4) 

0 at 0
u

r
r


 


                                                  (5)  

Where sV  is the slip velocity at the stenosed region of the arterial wall. 

When 0,t   periodic body acceleration  F t  is levied on the flow and this is 

expressed as below (Nagarani and Sarojamma [25]): 

   00 cosF t f t                                               (6)              

Where 0 2 bF  , 0f  is the amplitude of the body acceleration and bF  is the 

frequency (in Hertz) of body acceleration. Also,   is the lead angle with respect 

to the heart action. bF  is assume as very small so that the wave effect can be 

neglected (Nagarani and Sarojamma [25]).   
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Now, for 0,t   the pressure gradient is considered as: 

      0 1

,
cos P

P z t
P z P z t

z



  


                                 (7) 

Where,  0P z and  1P z are the steady state pressure gradient and the amplitude 

of the oscillatory part of the pressure gradient. Further, 2P Pf   where Pf  

is the pulse rate frequency.  

We define the following non-dimensional substitutions: 

 
  0

0
2

4
, , , , , ,P

P

s
s

R zz r d
z R z r t t d u

L L L L P L

  


       ,
u

 

01
0

0 00 0

0

0

2
2

2

2 2

2

4 2
, , , , ,

, , , ,
8

Ps
s

E
E

V fPg L
B V B

P PP L P L

B L K d
M K d

LL

     


 
   

      

   

0

,
P

           (8) 

Where , ,M K  and sd  are respectively the Pulsatile Reynolds number or the 

Womersley frequency parameter, Hartmann number or magnetic parameter, the 

permeability parameter and the dimensionless height of the stenosis. The 

remaining quantities relevant to this problem are described at their appropriate 

places.                                                                         

We use the quantities of (8) into (1), (2), (4), (5), (6) and (7) and then simplifying, 

we get the following in non-dimensional forms: 

Non-dimensional form of the geometry of arterial stenosis is: 

     0
0

0

1 1 cos , for
2

1, for

sd z
z d

dR z

z d

  
    

   
 

                           (9) 

 

Momentum equation: 
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   0
2 4 cos cos 1 cos

1 cos1 k

u
B t B t

t

tu
r M u

r r r K

    



     


              

                      (10)             

Subject to the following non-dimensional boundary conditions: 

atsu V r R                                                     (11)            

0 at 0
u

r
r


 


                                                  (12)            

 

2.3 Method of Solution  

We have solved the problem with the aid of multiparameter perturbation 

technique. For perturbation technique, let the Pulsatile Reynolds number   to be 

extremely small, as a consequence the velocity  may be represented by the 

following series: 

u

     0 1
2, , , , , , .......u z r t v z r t v z r t                                (13) 

Putting (13) in (10), using the boundary condition (11) and (12) and 

equating the similar coefficients of   and then neglecting the terms having 

higher powers of  , we get: 

  0
0

1 cos1
0 4 kv

h t r M v
r r r K

            

t 
                         (14)        

0 1
1

1 cos1 kv v
r M

t r r r K

            

t
v

                              (15)  

Where      0cos cos 1 cosh t B t B t        . 

Taking k as perturbation parameter, we assume: 

                                                 (16) 
0 00 kv v 01v 

1 10 1kv v v 1                                                     (17) 

Putting (16) and (17) in (14), (15) and equating the coefficients of 0
k  and 1

k  

and then neglecting the terms containing higher powers of k ,  we get 
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  00
00

1
0 4

v
h t r M v

r r r K

             

1
                             (18) 

01
00 01

1 cos
0

v t
r v M

r r r K K

          
1

v


      
                          (19) 

00 10
10

1v v
r M

t r r r K

              

1
v                                  (20) 

01 11
10 11

1 cosv v t
r v M

t r r r K K

                

1
v

                        (21) 

The subsequent boundary conditions are: 

00 01 10 11, 0, 0, 0 atsv V v v v r R                                    (22) 

00 01 10 110 , 0, 0 , 0 at 0
v v v v

r
r r r r

   
   

   
                           (23) 

The solution of the equations (18), (19), (20) and (21) with respect to the boundary 

conditions (22), (23) are as follows: 

   00 1 0 1
1

4
v c J r i K h t

K

 
  
 

, where 
 
 

1
1

0 1

4sV
h t K

c
J Ri K

 
 

  , 

   10v V r h t , where  represents the derivative of  h t  h t with respect to ; t

     1 0 1 2
1

2

2

4

4

r
V r c J r i K r c

K


 
   

 
 ; 

Where,  
 

 
2

1 1 1 1

1 0 1

1

2 2

r i K J r i K r K
r

K J r i K


 
   
 
 

, 

   2

1 1 0 1

2

2

4

4

R
c R

K c J Ri K
   , 

   
01 cos

V r
v t h t

K

 
  
 

,  
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      11 0 1

1
3

4
( ) 2cos sinv J r i K z r t h t h t

K K

 
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 
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Where 1

1
K M

K
  , 

 

      

1 1 2 1 1 2 1

1

1 1 1 11

1 1

4 2 2

2

2 3

( )
32 4 4 2

,
2 4 4

c r c c r c r c c c
z r r

K K K K K K

c i K c i Kc
r r r

K K K K K



  

        
  

   


B

   

And  

   

      

1 1 2 1 1 2 1

10 1

1 1 1 11

1 1

2

1

2 3

4 2

3

2

4

32 4 4 2

,
2 4 4

c R c c R c R c c c
B R

K K K K K KK K J Ri K

c i K c i Kc
R R R

K K K K K



  

         
 

   


 

       
2

1
2 0 1 0

1 01

2
,

ri Kr i
r Log J r i K x Log J xi K dx

KK
1       

 
 
    

  

2 2
1 1

3 0

11 0 1

0 1

01

2

22

2 r

i r J r i K i r
r Lo

KK J r i K

i
x Log J xi K dx

K

1g J r i K   

 

. 

Consequently, the non-dimensional axial velocity  , ,u z r t  is given by: 

   00 01 10 11
2, , k ku z r t v v v v       

 

3.1 Non-dimensional Wall Shear Stress 
 
Assuming a rigid arterial wall, the dimensionless wall shear stress   at  is 

as under: 

r R
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0

2

P L

  , 

Where 
r R

u

r
  



 
   

 
 is the dimensional wall shear stress at r R .  

Consequently, we get: 

200 01 10 1121 1

2 2 k k

r R r R

u v v v v

r r r r r
   

 

              
                              

 , 

 Where     00
1 1 1 1 ,

v
c i K J r i K h t

r


 


 

And        10 ,
v

h t V r
r

  


  

Where      1
1 2 1 1 1 0 12

c
V r c c i K J r i K r J r i K      

. 

Again    01 cos
V rv

t h t
r K





, 

And         11
0 1 1 1 12cos sin ( ) ( ) ,

v
t h t h t t r J r i K r i K J r i K

r
z z     
  

Where 
 
 

2
1 11 2 1 2 1

2
1 0 1

( )
2 2 4

r J r i Kc c r c c c
r

K K K K J r i K
z

 
   

 
 . 

 
3.2 Non-dimensional Volumetric Flow Rate 
 

The non-dimensional volumetric flow rate  ,Q z t  may be defined as follows: 

 
 

0
4

8 ,
,

Q z t
Q z t

L P

 


 , where  ,Q z t   is the dimensional volumetric flow rate 

and is given by    
0

, 2 , ,
R

Q z t r u z r t d r  . 
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Consequently, ,       2 2
00 01 10 11

0

, 4 , , 4 k k

R

Q z t r u z r t dr Q Q Q Q       

Where we define the following: 

      2
1 1 1 1

00 00
1 10

2R c h t Ri K J Ri K h t R
Q r v dr

K K
    ; 

     1 2 1

01 01 2
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K K

        
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 1 1 1 1

1

3

4

c R i K J Ri K

K






; 

     1 2 1

10 10 2
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22 1

2 2

R c R J Ri KR V R
Q r v dr h t c

K

        
  

                  
 1 1 1 1

1

3

4

c R i K J Ri K

K






; 

      1 1 1

11 11
10

( )
2cos sin

R R Ri K J Ri K
Q r v dr t h t h t t

K

z
   



  

                                    
 1

1 1

2
4

3
2i K R R

K K K

 
  


, 

Where, 

 
   

 
1 2 1 1 1 1

2 2
1 11 1 0 1

2 2

4
1 1

22 2

c R i J Ri K c R i J Ri K
R c c

K KK K K K J Ri K

2

    
      

   
.  

 
3.3 Dimensionless Effective Viscosity 
      

The effective viscosity E  in dimensional form may be defined as under, 

following Pennington and Cowin [28]: 
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    
 

4,

,
E

P z t
R z

z

Q z t





 
 
 
   

 
 

0
41 cos

,E

t R

Q z t





   

Where E  is the non-dimensional effective viscosity.  

4 Result and discussion 

In order to get an insight into the biological and physical aspects of this 

problem, we obtain the profiles of the axial velocity, wall shear stress, volumetric 

flow rate and the effective viscosity, and we examine their behaviors under the 

influence of the various non-dimensional parameters relevant to this problem. The 

data-tabulation involved in this problem is carried out with the aid of Wolfram 

Mathematica. Unless otherwise indicated, for the data-tabulation, we take 

,0.2,z  0 0.3d  0.2  , 0k .2  ,
3

  , 0.5,B   ,
8

    

Clearly, 

0.25,sd 

0.9375R  , 3,t  0 0.5  , 0.5.B   0, Rr  and using (9) and then 

noting that 0dz   for the aforementioned choice of , we find that 

. Thus, for our choice of , 

0,z d

0.9375R  0d,z  0, 0.9375r . It may be mentioned 

that the values of  (involved in the following figures 5 to 15, and then from the 

figures 17 to 19 and in the table 1) range from 0 to 

t

2 . This is done to 

incorporate one complete period (full cycle) of the pulsatile pressure gradient 

and the periodic body acceleration. 
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Figure 4: Velocity  against , under the effect of  for u

M
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From the figures 1 to 4, it is evident that the blood flow speed increases as 
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the porosity and the slip velocity rises. Thus, the possible imposition of slip 

velocity at the stenosed wall and greater porosity may enhance the blood flow 

through the stenosed section of the artery. These observations agree with well 

known results and this validates our flow model as physically realizable.   

Again, it is seen that the blood flow speed decreases with the imposition of 

the magnetic field and an increase in the angle of inclination. The application of 

the azimuthal magnetic field leads to the development of Lorentz force that in turn 

decelerates the flow. Hence, the azimuthal magnetic field can be used to control 

the blood flow through stenosed artery. Moreover, it is obvious from the flow 

figure that a rise in   (inclination) would imply lesser assistance from gravity 

towards the blood flow that is occurring in the downward direction along the 

z-axis. Naturally then, a rise in   (inclination) will cause a reduction in the 

blood flow speed.  
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Figure 5: Shear stress   against  under the effect of M, for t
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Figure 6: Shear stress   against  under the effect of K, for t
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Figure 7: Shear stress   against t  under the effect of  , for 

,,1 1M K  0.04SV  . 
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t    0.01SV     0.04SV     0.07SV   

0 1.6064 1.59376 1.58113 

2

7


 

1.34861 1.33639 1.32417 

4

7


 

0.905096 0.893745 0.882394 

6

7


 

0.516211 0.505537 0.494863 

8

7


 

0.401152 0.390351 0.37955 

10

7


 

0.583814 0.572294 0.560774 

12

7


 

0.878957 0.866647 0.854337 

2  1.05463 1.04197 1.02931 

Table 1: Shear stress   against  under the effect of , for 

,

t SV

,1 1M K 
4

  . 

The figures 5, 6 and 7 and the table 1 respectively show the behavior of 

wall shear stress under the influence of magnetic field, porosity, inclination and 

the slip velocity. It is observed from figure 6 that a rise in the porosity of the 

medium leads to an increase in the wall shear stress at the stenosed section of the 

arterial wall. This may be attributed to the fact that the blood flow speed registers 

a rise as the porosity increases. Consequently, the shear stress also increases.   

Again, it is inferred from the figures 5, 7 and table 1 respectively that the 

wall shear stress at the stenosed section exhibits a decrease with the increase in 

each of magnetic field, inclination and slip velocity. We may recall that the blood 

flow speed registers a fall with the imposition of the azimuthal magnetic field and 

an increase in the inclination angle. Subsequently, the wall shear stress decreases 

too. Moreover, it is seen from figures 5, 6 and 7 and table 1 that the wall shear 

stress first decreases and then again increases against dimensionless time t. This is 
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due to the periodic nature of the pulsatile pressure gradient associated with this 

blood flow model.  
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Figure 8: Volumetric flux  against  under the effect of M, for Q t
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Figure 9: Effective viscosity E  against t  under the effect of M,  

for ,
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1K

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Figure 10: Volumetric flux  against  under the effect of K, for Q t
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Figure 11: Effective viscosity E  against t  under the effect of K, 

 for ,
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Figure 12: Volumetric flux  against t  under the effect of Q  , for 

,V,M K1 1  0.04S  . 
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Figure 13: Effective viscosity E  against t  under the effect of  , for 

,,M K 1 1 0.04SV  . 
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Figure 14: Volumetric flux  against  under the effect of , for 
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Figure 15: Effective viscosity E  against  under the effect of , for 
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The figures 8 to 15 portray how the dimensionless volumetric flux Q and 

the non-dimensional effective viscosity E  are affected by the magnetic field 

(M), porosity (K), inclination (  ) and the velocity slip ( ). From these figures, 

it is observed that the imposition of the azimuthal magnetic field or an increase in 

the inclination 

SV

  decreases the volumetric flux but increases the effective 

viscosity. On the other hand, a growth in the porosity or the slip velocity leads to a 

rise in the volumetric flux but causes the effective viscosity to decrease. The 

perturbed nature of the profiles for the effective viscosity and the volumetric flux 

against  may be attributed to the pulsatile nature of blood flow owing to the 

presence of a time dependent pressure gradient. 

t

For the following figures 16 to 19, unless otherwise indicated, we assume 

that ,00.2, 0.3z d  0.2  , 0.2k  , 
3

  , ,
8

  0.25,sd  0.9375,R   

  3, 0 0.5. t 
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Figure 16: Velocity  versus r , under u ,B B  for 

,
4

1K


  ,V M0.04 1,,S   3t  . 
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Figure 17: Volumetric flux  versus , under Q t ,B B  for 
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Figure 18: Effective viscosity E  versus , under t ,B B  for 
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Figure 19: Shear stress   versus , under t ,B B  for 
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The figures 16 to 19 exhibit the influence of the parameters  and  

on the axial velocity , the volumetric flux , the effective viscosity 

B B

u Q E  and 

the shear stress  respectively.  It may be noted from the non-dimensional 

substitutions that  denotes the relative effect of body acceleration over the 

steady state pressure force. Further, 

B

B  signifies the relative effect of 

gravitational body force (per unit volume of blood) over the steady state pressure 

force. We observe from figure 16 that the axial velocity decreases as 

increases, whereas  exhibits a growth when 

u

B u B  rises. From figure 17 we 

note that the volumetric flux  increases for small time  and decreases for 

large time  as  rises. The same figure indicates a growth in  as  

increases for all time .  Figure 18 shows that a rise in leads to a fall in 

effective viscosity 

Q t

B

t B Q B

t

E for small time , but t E  increases for large values of . 

The same figure also depicts a decay in 

t

E  as B  registers a growth for all 

values of time . Figure 19 portrays decay in shear stress t  for large time  and t
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a growth in  for small time t  as increases. However, B   registers a growth 

for all time , as t B  increases.   

 

 

 

Flow configuration: Schematic figure of an inclined stenosed artery with 

azimuthal magnetic field 

5 Conclusions 

In order to elucidate the significance of our flow model and in view of the 

results obtained, we may conclude the following points: 

1. The imposition of the magnetic field causes a decrease in each of axial 

velocity of blood and the wall shear stress at the stenosed section. This 

shows that the applied azimuthal magnetic has considerable scope in the 

field of treating cardiovascular diseases resulting from stenosis. The use of 

an azimuthal magnetic field can aid in effectively controlling the blood 

velocity and minimizing the large shear stress on the stenosed arterial wall. 

2. The application of the slip velocity at the stenosed section leads to a 

growth in the axial velocity of blood. Thus, the blood flow rate in the 


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stenosed section may be enhanced by the imposition of slip velocity. But, 

the wall shear stress decreases with the imposition of the slip velocity. 

Hence, slip inducing medical drugs may be beneficial in effectively 

controlling the wall shear stress in a stenosed artery. 

3. As the angle of inclination increases, the blood velocity and the wall shear 

stress decreases. 

4. A growth in the permeability of the medium causes each of axial blood 

velocity and the wall shear stress to increase. 

In certain pathological conditions, the distribution of fatty cholesterol and 

artery-clogging blood clots in the lumen of the coronary artery may be 

represented by a fictitious porous medium. Therefore, an augmentation in 

the permeability of such porous media can enhance the blood flow rate in a 

stenosed artery. This may be achieved through the development of proper 

medical procedures and by developing medical drugs that enhance the 

permeability in a stenosed / clogged artery. 

5. It is clear that the blood flow rate in stenosed arteries may be enhanced by 

imposing velocity slip at the stenosed regions and by increasing the 

porosity in the arteries. Thus, medical drugs that induce velocity slip at the 

stenosed walls and drugs that enhance the porosity in the arteries are 

efficient in the treatment of heart diseases induced by arterial stenosis. 

6. The azimuthal magnetic field may prove to be effective in regulating the 

volumetric flow rate of blood in stenosed arteries.    
7. An augmentation in the ratio of amplitude of body acceleration to the mean 

pressure causes decay in the axial velocity. However, the axial velocity 

registers a growth as the ratio of gravitational body force to the steady state 

pressure increases.  

8. A rise in the ratio of amplitude of body acceleration to the mean pressure 

leads to a growth in the volumetric flux for small values of time and causes 

a fall in the volumetric flux for larger values of time. This takes place 
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within one full time cycle from 0 to 2 . Thus, the above behavior is 

attributable to the periodic natures of the body acceleration and the 

pulsatile pressure gradient. 

9. Within one full time cycle from 0 to 2 , an increase in the ratio of 

gravitational body force to the steady state pressure causes the volumetric 

flux rate to rise.  

10. Within one full time cycle from 0 to 2 , a rise in the ratio of amplitude 

of body acceleration to the mean pressure leads to a fall in the effective 

viscosity for small time and causes the effective viscosity to increase for 

large time. Clearly, it is a consequence of the periodic natures of the body 

acceleration and the pulsatile pressure gradient. 

11. The effective viscosity registers a fall as the ratio of gravitational body 

force to the steady state pressure increases.  

12. For one complete time cycle from 0 to 2 , the shear stress increases for 

small time and then again decreases for large time, as the ratio of 

amplitude of body acceleration to the mean pressure increases. Evidently, 

this effect is brought about by the periodic natures of the body acceleration 

and the pulsatile pressure gradient. 

13. The shear stress exhibits a growth as the ratio of gravitational body force 

to the steady state pressure rises. This also indicates that an increase in the 

density of blood may lead to a rise in the arterial wall shear stress. 

14. It follows from the preceding conclusion that the arterial wall shear stress 

(i.e. the so called high “blood pressure”) may be minimized (i.e. 

effectively controlled) by lowering the density of blood in the body. This 

calls for the development of suitable medical procedures and drugs to 

achieve the same. 
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