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Abstract

In this paper, we discuss inverse eigenvalue problems for singular
Hermitian matrices. In particular, we investigate how to construct n×
n singular Hermitian matrices of rank 2 and 3 from a given prescribed
spectral data. It is found that given the spectrum and the multipliers
ki where i = 1, 2, · · ·n − r, the inverse eigenvalue problem for n × n
singular Hermitian matrices of rank r is solvable. Numerical examples
are presented in each case.

1 Introduction

An Inverse Eigenvalue Problem (IEP) is to reconstruct a matrix which
possesses both a prescribed eigenvalue and desired structure. Inverse eigen-
value problems arise in broad application areas such as control design, system
identification, principle component analysis, structure analysis etc. There are
many different types of inverse eigenvalue problems and despite of a great
deal of research effort being put into this topic many of them are still open
and are hard to be solved.

In [1] Gyamfi studied the solution to the Inverse Eigenvalue Problems
(IEP) for a class of singular symmetric and singular Hermitian matrices. On
the case of singular Hermitian matrices he presented results up to rank 1.
In this paper, we extend earlier results found by Gyamfi [1] on the solution
to the IEP for a class of singular Hermitian matrices of rank 1 to ranks 2
and 3. The paper is organised as follows: In section 2 we review basics on
how to reconstruct singular Hermitian matrices of rank 1 from prescribed
spectrum. Our main work on the solution to inverse eigenvalue problem for
singular Hermitian matrices of ranks 2 and 3 is presented in section 3. We
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give conclusion and recommendations in the fourth section. Readers are re-
ferred to Gyamfi [1] for the details on inverse eigenvalue problem for singular
symmetric matrices.

2 Background

In this section we review previous results obtained by Gyamfi [1] in respect
of the inverse eigenvalue problems for singular Hermitian matrices of rank 1.
We begin with 2 × 2 singular symmetric matrix of rank 1 and extend it to
n× n singular Hermitian matrices of rank 1.

Lemma 1: Let A be a non-traceless, symmetric matrix of rank r with
non-vanishing elements. Then there exits an isomorphism between the ele-
ments of A and its distinct non-zero eigenvalues if and only if r = 1.

Corollary 2: The inverse eigenvalue problem has a unique solution for
singular symmetric matrices of rank 1 with prescribed linear dependence re-
lation.

Specific case 1:

Given n = 2, r = 1, we begin by consider A(2,1). By definition, A(2,1) has
the form:

A(2,1) =

(
a11 ka11
ka11 k2a11

)
= a11

(
1 k
k k2

)
Let Λ2 = {λ1, λ2}. Since A(2,1) is singular of rank 1, it means that λ2 = 0.

We have: tr(A(2,1)) = λ = a11 + k2a11 = a11(1 + k2). Therefore a11 =
λ

1 + k2
.

Hence

A(2,1) =
λ

1 + k2

(
1 k
k k2

)
.

Thus A(2,1) has been reconstructed for a given λ and prescribed scalar k.

We see from this formula that for any given λ and parameter k, we can
generate any 2 × 2 singular matrix of rank 1. For example if k = 3, λ = 10
we have

A(2,1) =

(
1 3
3 9

)
.
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2.1 Extension to Hermitian matrices

We now extend the above to Hermitian matrices of dimension 2 × 2. A is
Hermitian implies that a21 = a12. Linear dependence of rows is given by
a21 = ka11 and a22 = ka12, so that a21 = a12 = ka11. Then a22 = k(ka11) =
|k|2a11. We now write the matrix as

A(2,1) =

(
a11 ka11
ka11 |k|2a11

)
= a11

(
1 k
k |k|2

)
.

Hence tr(A(2,1)) = λ = a11 + |k|2a11 = a11(1 + |k|2) ⇒ a11 =
λ

1 + |k|2
. From

this, we see that any 2×2 Hermitian matrix which has a parameter with the
same value as the modulus k satisfies the above formula.

Example: Let k = 1 + 2i, λ = 3 and k = 1− 2i. We have a11 =
1

2
and

A(2,1) =
1

2

(
1 1− 2i

1 + 2i 5

)
.

We use numerical example to illustrate small singular Hermitian matrices
of size 3 ≤ n ≤ 4 of rank 1.

Example: For n = 3, r = 1, A(3,1) is of the form:

A(3,1) = a11

 1 k1 k1k2
k1 |k1|2 |k1|2k2
k1k2 |k1|k2 |k1|2|k2|2


where a11 =

λ

1 + |k1|2 + |k1|2|k2|2
. Any parameter which has the same value

as the modulus of k1 and k2 generates the 3 × 3 Hermitian matrix. Suppose

λ = 3, k1 = 2i, k1 = −2i, k2 = 1 + i, k2 = 1− i, we have a11 =
3

13
and

A(3,1) =
3

13

 1 −2i −2− 2i
2i 4 4− 4i

−2 + 2i 4 + 4i 8

.

Example: For n = 4, r = 1. Given k1, k2 and k3 we obtain the following
singular Hermitian matrix:

A(4,1) = a11


1 k1 k1k2 k1k2k3
k1 |k1|2 |k1|2k2 |k1|2k2k3
k1k2 |k1|k2 |k1|2|k2|2 |k1|2|k2|2k3
k1k2k3 |k1|2k2k3 |k1|2|k2|2k3 |k1|2|k2|2|k3|2

.
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In this case a11 = λ
1+|k1|2+|k1|2|k2|2+|k1|2|k2|2|k3|2 . When λ = 2, k1 = 2i, k2 =

2 + i, k3 = i, we have a11 = 2
45

and hence

A(4,1) =
2

45


1 −2i −2− 4i −4 + 2i
2i 4 8− 4i −4− 8i

−2 + 4i 8 + 4i 40 −20i
−4− 2i −4 + 8i 20i 20

.

Proposition 3: If the row dependence relations for a Hermitian or
anti-Hermitian matrix of rank 1 are specified as follows Ri = ki−1Ri−1, i =
2, 3, ..., n − 1 where Ri is the ith row and each ki is a non-zero scalar. The
matrix can be generated from its non-zero eigenvalue λ:

A = a11


1 k1 k1k2 · · · k1 · · · kn−1
k1 |k1|2 |k1|2k2 · · · |k1|2k2 · · · kn−1
k1k2 |k1|2k2 |k1|2|k2|2 · · · · · ·

...
...

...
...

k1 · · · kn−1 |k1|2k2 · · · kn−1 |k1|2|k2|2k3 · · · kn−1 · · · |k1|2 · · · |kn−1|2


(1)

where

a11 =
λ

1 + |k1|2 + |k1|2|k2|2 + · · ·+ |k1|2 × · · · × |kn−1|2
.

3 Main work

We now consider the IEP for n × n singular Hermitian matrices of rank 2.
A(3,2) is of the form:

A(3,2) =

 a11 ka11 a13
ka11 |k|2a11 ka13
a13 ka13 a33

.

Here, tr(A(3,2)) = λ1 + λ2 = a11 + |k|2a11 + a33 = a11(1 + |k|2) + a33. But

λ1λ2 = a11(1 + |k|2)a33 ⇒ a33 =
λ1λ2

a11(1 + |k|2)
. Thus

λ1 + λ2 = a11(1 + |k|2) +
λ1λ2

a11(1 + |k|2)
,

which implies

a211(1 + |k|2)2 − a11(1 + |k|2)(λ1 + λ2) + λ1λ2 = 0
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which yields a11 =
λ1

1 + |k|2
and λ2 = a33. Therefore a13 becomes a free

variable. When λ1 = 1, λ2 = 2, k = 3i and a13 = 2 + i, for example, we
obtain the following singular Hermitian matrix:

A(3,2) =


1
10

−3i
10

2− i

3i
10

9
10

3 + 6i

2 + i 3− 6i 2

.

We illustrate the results for 4 × 4 singular Hermitian matrices of rank 2.
A(4,2) is of the form:

A(4,2) =


a11 k1a11 k1k2a11 a14
k1a11 |k1|2a11 |k1|2k2a11 k1a14
k1k2a11 |k1|2k2a11 |k1|2|k2|2a11 k1k2a14
a14 k1a14 k1k2a14 a44

.

Then tr(A(4,2)) = λ1 + λ2 = a11(1 + |k1|2 + |k1|2|k2|2) + a44. This implies

a11 =
λ1

1 + |k1|2 + |k1|2|k2|2
, λ2 = a44 and a14 becomes a free variable.

Numerical example, for λ1 = 3, λ2 = 5, k1 = 2i, k2 = 1+2i and a14 = 1+i,
we obtain a singular Hermitian matrix below:

A(4,2) =



3
25

−6i
25

−12−6i
25

1− i

6i
25

12
25

12−24i
25

2i+ 2

−12+6i
25

12+24i
25

60
25

−2 + 6i

1 + i 2− 2i −2− 6i 5


In general, the solution of the IEP for A(n,r) leads to the solution of an

rth degree polynomial equation in a11 of the form:
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0 =ar11(1 + |k1|2 + · · ·+ |kn−r|2)r − (
r∑
i=1

λi)(1 + |k1|2 + · · ·+ |kn−r|2)ar−111

+
r∑

k=1

(
k+1∏
i=k

λi)(1 + |k1|2 + · · ·+ |kn−r|2)ar−211

−
r∑

k=1

(
k+2∏
i=k

λi)(1 + |k1|2 + · · ·+ |kn−r|2)ar−311 + · · · − (
r∏
i=1

λi)−−−−− (1).

We generalise the method above in the following two theorems, first an
n×n singular Hermitian matrix of rank 2 and then of rank r, where 2 ≤ r < n.

Theorem 4: Given the spectrum and the row multipliers ki, i = 1, · · · , n−
2, the inverse eigenvalue problem for an n× n singular Hermitian matrix of
rank 2 is solvable.

Proof:
Given the spectrum Λn = {λ1, λ2, · · · , λn}, since the rank of Λ2 = 2,

it follows from our notation above that λ1 6= 0 6= λ2 and λi = 0, for i =
3, 4, · · · , n. Let ki, i = 1, 2, · · · , kn−2 be row multiples. Letting

A(n,2) =


a11 k1a11 k1k2a11 · · · k1k2 · · · kn−2a11 a1n
k1a11 |k1|2a11 |k1|2k2a11 · · · |k1|2k2 · · · kn−2a11 k1a1n
k1k2a11 |k1|2k2a11 |k1|2|k2|2a11 · · · |k1|2|k2|2k3 · · · kn−2a11 k1k2a1n

...
...

... · · · ...
...

a1n k1a1n k1k2a1n · · · k1k2 · · · kn−2a1n ann

 .

(2)
Then

tr(A(n,2)) = λ1+λ2 = a11(1+|k1|2+|k1|2|k2|2+· · ·+|k1|2×· · ·×|kn−2|2)+ann.

Hence

a11 =
λ1

1 + |k1|2 + |k1|2|k2|2 + · · ·+ |k1|2 × · · · × |kn−2|2
,

λ2 = ann and a1n becomes a free variable. The result follows by induction on
n.
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We consider the Inverse Eigenvalue Problem (IEP) for n × n singular
Hermitian matrices of rank 3. A(4,3) is of the form

A(4,3) =


a11 ka11 a13 a14
ka11 |k|2a11 ka13 ka14
a13 ka13 a33 a34
a14 ka14 a34 a44

 (3)

Here, tr(A(4,3)) = λ1+λ2+λ3 = a11(1+|k|2)+a33+a44. Using equation(1),
A(4,3) leads to the following cubic equation in a11 where λ1, λ2 and λ3 are
nonzero members of the spectrum.

a311(1+|k|2)3−a211(1+|k|2)2(λ1+λ2+λ3)+a11(1+|k|2)(λ1λ2+λ1λ3+λ2λ3)−λ1λ2λ3 = 0.

Solving the above cubic equation we obtain the following roots, λ1 =

a11(1 + |k|2)⇒ a11 =
λ1

1 + |k|2
, λ2 = a33 and λ3 = a44, where a13, a14 and a34

are free variables. For instance, when λ1 = 2, λ2 = −1, λ3 = 5, k = −i, a13 =
2 + i, a14 = 2i and a34 = 1− 3i we have

A(4,3) =


1 i 2− i −2i
−i 1 −1− 2i −2

2 + i −1 + 2i −1 1 + 3i
2i −2 1− 3i 5

 .

Finally, we present 5× 5 singular Hermitian matrix of rank 3. Using the
same method, we obtain the following equation in a11 where λ1, λ2 and λ3
are nonzero members of the spectrum.

0 =a311(1 + |k1|2 + |k1|2|k2|2)3 − a211(1 + |k1|2 + |k1|2|k2|2)2(λ1 + λ2 + λ3)

+ a11(1 + |k1|2 + |k1|2|k2|2)(λ1λ2 + λ1λ3 + λ2λ3)− λ1λ2λ3.

Factoring the above equation gives the following results:

a11 = λ1
1+|k1|2+|k1|2|k2|2 , λ2 = a44 and λ3 = a55. The free variables are a14, a15

and a45.

Example, let λ1 = 13, λ2 = −3, λ3 = 5, k1 = 2i, k2 = 1 + i, a14 = 4, a15 = i
and a54 = 3− i we get the following 5× 5 singular Hermitian matrix of rank
3:
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A(5,3) =


1 −2i −2(1 + i) 4 −i
2i 4 4(1− i) 8i 2

−2(1− i) 4(1 + i) 8 −8(1− i) 2(1 + i)
4 −8i −8(1 + i) −3 3 + i
i 2 2(1− i) 3− i 5

 .

We state the following theorem for the general case where An has rank r:

Theorem 5: The inverse eigenvalue problem for an n× n singular Her-
mitian matrix of rank r is solvable provided that n− r arbitrary parameters
are described.

4 Conclusion and Recommendation

We found in this study that when the eigenvalues and some parameters are
given the inverse eigenvalue problem for n × n singular Hermitian matrices
of rank 2 and 3 are solvable. To illustrate the results, numerical examples
were provided.

Finally, we recommend that Singular Hermitian matrices of rank ≥ 4
could be studied for future research work.
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