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Abstract
This study compared the performance of five Family Generalized Auto-Regressive Conditional Heteroscedastic (fGARCH) models (sGARCH, gjrGARCH, iGARCH, TGARCH and NGARCH) in the presence of high positive autocorrelation. To achieve this, financial time series was simulated with autocorrelated coefficients as ρ = (0.8, 0.85, 0.9, 0.95, 0.99), at different time series lengths (as 250, 500, 750, 1000, 1250, 1500) and each trial was repeated 1000 times carried out in R environment using rugarch package. And the performance of the preferred model was judged using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Results from the simulation revealed that these GARCH models performances varies with the different autocorrelation values and at different time series lengths. But in the overall, NGARCH model dominates with 62.5% and 59.3% using RMSE and MAE respectively. We therefore recommended that investors, financial analysts and researchers interested in stock prices and asset return should adapt NGARCH model when there is high positive autocorrelation in the financial time series data. 
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1.0
Introduction

Financial time series analysis is mainly concerned with the theory and application of asset valuation over time, because of this financial time series analyses are very useful to financial analysts and portfolio managers (Tsay, 2005). Financial time series contains uncertainty, volatility, excess kurtosis, high standard deviation, high skewness and sometimes non normality (Pedroni (2001); Grigoletto & Lisi (2009)).
Volatility is a very important element of financial time series since its introduction by Engle (1982). Models such as Auto-Regressive Conditional Heteroscedastic (ARCH), Generalized Auto-Regressive Conditional Heteroscedastic (GARCH), multivariate GARCH, Stochastic volatitlity (SV) and various variants of the models have been proposed to handle volatility in financial time series (Lawrance, 2003). In fact the ARCH and GARCH models are now so widely used and they are referred to as the “workhorse of the financial industry” (Lee & Hansen (1994); Lange (2011)).
Many economic time series including financial time series are strongly autocorrelated and can be modeled by linear (near) unit root or I(1) processes such as Threshold Autoregressive (TAR) model (Lanne & Saikkonen, 2002). Autocorrelation leads to serious underestimation of standard error for regression coefficients and makes prediction intervals to be excessively wide and as such the presence of autocorrelation renders inference and decision making about the estimated parameters invalid (Adenomon, et al., 2015). This means that financial time series and its possible modeling techniques such as ARCH and GARCH models may not also be immune against the effects of autocorrelation.
The aim of this study is to compare performance of some family GARCH models in the presence of first order autocorrelation.
2.0
Brief Review of Literature of Modelling Financial Time Series with Autocorrelation

Autocorrelation can be defined as correlation between members of series of observations ordered in time (as in time series data) or space (as in cross-section data) (Adenomon & Micheal, 2017). Gujarati (2003) identified the following as causes of autocorrelation in time series data: inertia, specification Bias, excluded variables, incorrect functional form, cobweb phenomenon, lags, data transformation and manipulation, and non stationarity.
Lanne and Saikkonen (2002) investigated economic time series that are strongly autocorrelated using Threshold Autoregression because TAR model can accommodated time series that are strongly autocorrelated or I(1) time series processes.
Xiao et al. (2003) proposed a modification of local polynomial time series regression estimators that improves efficiency when the innovation process is autocorrelated which was based on pre-whitening transformation of the dependent variable that must be estimated from the time series data. Their proposed method and method was more efficient than the conventional local polynomial method. Their study is similar to the work of Su and Ullah (2006).

Lee and Lund (2004) investigated the properties of ordinary and generalized least squares in a simple linear regression with stationary autocorrelated errors. They derived variances of the parameter estimators for some time series autcorrelation structures which include a first order autocorraltion and general moving averages.
Lanne and Saikkonen (2005) investigated and proposed non-linear GARCH models for highly persistent volatility. They observed that conventional GARCH are inflexible to simultaneously first order autocorrelation of squares, persistence of shocks to volatility and excess kurtosis prevalent in financial return series.

Lawrance (2013) examined volatility in financial time series using exploratory graphs and observed that volatility can be confused with the effect of negative autocorrelation and can be distorted by positive autocorrelation. Lawrence concluded that volatility can only be visualized and analyzed for linearly uncorrelated or decorrelated series.
3.0
Model Specification

This study focuses on the GARCH models that are robust for forecasting the volatility of financial time series data in the presence of high positive autocorrelation; so GARCH model and some of its extensions are presented in this section
3.1
Autoregressive Conditional Heteroskedasticity (ARCH) Family Model

Every ARCH or GARCH family model requires two distinct specifications, namely: the mean and the variance equations (Atoi, 2014). The mean equation for a conditional heteroskedasticity in a return series, 
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The mean equation in equation (1) also applies to other GARCH family models. 
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[image: image5.wmf]t

e

is the error generated from the mean equation at time t and 
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 is the sequence of independent and identically distributed random variables with zero mean and unit variance.

The variance equation for an ARCH(p) model is given by
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It can be seen in the equation that large values of the innovation of asset returns have bigger impact on the conditional variance because they are squared, which means that a large shock tends to follow another large shock and that is the same way the clusters of the volatility behave. So the ARCH(p) model becomes:
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 is assumed to follow the standard normal or a standardized student-t distribution or a generalized error distribution (Tsay 2005). 

3.2
Asymmetric Power ARCH


According to Rossi (2004), the asymmetric power ARCH model proposed by Ding, Engle & Granger (1993) given below forms the basis for deriving the GARCH family models   

Given that: 
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where 
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This model imposes a Box-Cox transformation of the conditional standard deviation process and the asymmetric absolute residuals. The leverage effect is the asymmetric response of volatility to positive and negative “shocks”. 

3.3
GARCH(p, q) Model:


The mathematical model for the GARCH(p,q) model is obtained from equation (4) by letting 
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Where 
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The restriction on ARCH and GARCH parameters 
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To expatiate on the properties of GARCH models, the following representation is necessary: 

Let 
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It can be seen that {
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A GARCH model can be regarded as an application of the ARMA idea to the squared series 
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provided that the denominator of the prior fraction is positive. (Tsay, 2005) 
When p =1 and q =1, we have GARCH(1, 1) model given by: 
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3.4
GJR-GARCH(p, q) Model
The Glosten-Jagannathan-Runkle GARCH (GJRGARCH) model, which is a model that attempts to address volatility clustering in an innovation process, is obtained by letting
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Which is the GJRGARCH model (Rossi, 2004).

But when 
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Then recall Eq. (8) 
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which allows positive shocks to have a stronger effect on volatility than negative shocks (Rossi, 2004). But when
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, the GJRGARCH(1,1) model will be written as
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3.5
IGARCH(1, 1) Model

The integrated GARCH (IGARCH) models are unit- root GARCH models. The IGARCH (1, 1) model is specified in Tsay (2005) and Grek (2014) as 
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Where 
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The model is also an exponential smoothing model for the {
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By repeated substitutions, we have
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which is the well-known exponential smoothing formation with 
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being the discounting factor (Tsay, 2005). 
3.6
TGARCH(p, q) Model 

The Threshold GARCH model is another model used to handle leverage effects, and a TGARCH(p, q) model is given by the following:
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where 
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are nonnegative parameters satisfying conditions similar to those of GARCH models, (Tsay, 2005). When
[image: image112.wmf]1

,

1

=

=

q

p

, the TGARCH(1, 1) model becomes:


[image: image113.wmf]2

1

2

1

1

2

)

(

-

-

-

+

+

+

=

t

t

t

t

a

N

bs

g

a

w

s

  





(16)
3.7
NGARCH(p, q) Model
The Nonlinear Generalized Autoregressive Conditional Heteroskedasticity (NGARCH) Model has been presented variously in literature by the following scholars: Hsieh & Ritchken (2005), Lanne & Saikkonen (2005), Malecka (2014) and Kononovicius & Ruseckas (2015). The following model can be shown to represent all the presentations:
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Where
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Which can also be written as
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3.8
SGARCH(p, q) Model
The SGARCH model can be written as:  




[image: image123.wmf]t

t

t

Y

e

h

=





[image: image124.wmf]å

å

=

+

+

=

-

+

-

-

+

+

=

q

i

p

q

q

j

j

q

t

j

i

t

i

t

i

t

1

1

2

2

0

2

)

(

h

d

e

h

d

d

h

,




(19)
where 
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is the leading market return at time t, 
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N(0, 1) is the innovation (or shock) of the market, and is hypothesized to be Gaussian. 
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has to be positive and the remaining parameters nonnegative in order to ensure the positivity of 
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4.0 
materials and Methods
4.1
Simulation Procedure 
The simulation procedure here considers the following equations of GARCH (1,1):
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The Case simulated is the case of financial time series where there are positive high autocorrelation coefficients as ρ = (0.8, 0.85, 0.9, 0.95, 0.99), at different time series lengths (as 250, 500, 750, 1000, 1250, 1500). The experiment is repeated 1000 times. The rugarch package of the R software was used to execute the simulation. 

4.2
Forecast Assessment 
The following are the criteria for Forecast assessments used:

1. Mean Absolute Error (MAE) has a formula 
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. This criterion measures deviation from the series in absolute terms, and measures how much the forecast is biased. This measure is one of the most common ones used for analyzing the quality of different forecasts. 

2. The Root Mean Square Error (RMSE) is given as 
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 is the time series data and 
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is the forecast value of y (Caraiani, 2010).

For the two measures above, the smaller the value, the better the fit of the model (Cooray, 2008)

In this simulation study, 
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 where N=1,000, is the number of iterations or replications in the simulation study. Therefore, the model with the minimum RMSE and MAE result will be the preferred model

5.0
Results and Discussion 
5.1 
Simulation Analysis Results

The results of the simulation carried out are presented in Table 1 to Table 12 below.
Table 1: The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.8 at different time series lengths 

	Autocorrelation Coefficient 
	0.8

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	15.71621
	198.40292
	22.26565
	397.21749
	27.32206 
	596.84701

	gjrGARCH
	15.67723
	197.67197
	22.26607
	397.35969
	27.34346 
	597.34298

	iGARCH
	15.67723
	197.67197
	22.28668
	397.33560
	27.29018 
	596.33660

	TGARCH
	*NA
	*NA
	22.29444 
	397.54459
	27.33909 
	597.47104

	NGARCH
	*NA
	*NA
	22.27423 
	397.56284
	27.24909 
	595.71351


Table 1 Continued: 

	Autocorrelation Coefficient 
	0.8

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	gjrGARCH
	31.5664 
	796.4621
	35.31191 
	996.36279
	38.68945 
	1195.24246

	iGARCH
	31.54257 
	795.60796
	35.2902 
	995.3027
	38.6903 
	1195.2416

	TGARCH
	31.59317 
	796.72437
	35.3148 
	995.9538
	38.66294 
	1194.47858

	NGARCH
	31.55313 
	795.87381
	35.32081 
	996.50479
	38.7049 
	1195.9127

	
	31.53909 
	795.63060
	35.23728 
	994.15621
	38.59607 
	1192.49545


Table 2: The Ranks of The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.8 at different time series lengths  

	Autocorrelation Coefficient 
	0.8

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	3.0

1.5

1.5

*NA

*NA
	3.0

1.5

1.5

*NA

*NA
	1

2

4

5

3


	1

3

2

4

5


	3

5

2

4

1


	3

4

2

5

1



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Table 2 Continued:   

	Autocorrelation Coefficient 
	0.8

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	4

2

5

3

1


	4

1

5

3

2


	3

2

4

5

1


	4

2

3

5

1


	3

4

2

5

1


	4

3

2

5

1



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Tables 1 and 2 presents the RMSE and MAE values, and their respective ranks from the fGARCH family model for autocorrelation value of 0.8 at different time series lengths 

Table 3: The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.85 at different time series lengths 

	Autocorrelation Coefficient 
	0.85

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	15.66386 
	197.70122
	22.25821 
	396.90223
	27.28654 
	595.80040

	gjrGARCH
	15.68658 
	197.91230
	22.24494 
	396.80352
	*NA
	*NA

	iGARCH
	15.69286 
	197.90984
	22.25257 
	396.79475
	27.34184 
	597.43763

	TGARCH
	15.71391 
	198.18182
	22.26876 
	397.13353
	27.23526 
	595.14723

	NGARCH
	15.61822 
	197.17366
	22.21827 
	396.37184
	27.25388 
	595.46976


Table 3 Continued:  

	Autocorrelation Coefficient 
	0.85 

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	31.55959 
	796.16952
	35.31079 
	995.68791
	38.72317 
	1196.32629

	gjrGARCH
	31.5704 
	796.1239
	35.34999 
	997.37200
	*NA
	*NA

	iGARCH
	31.54111 
	795.49648
	35.32417 
	996.32265
	38.69188 
	1195.64099

	TGARCH
	31.57198 
	796.59430
	35.33417 
	996.52832
	38.72268 
	1196.43748

	NGARCH
	31.50466 
	795.42553
	35.30166 
	995.55099
	38.66997 
	1194.57390


Table 4: The Ranks of The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.85 at different time series lengths  

	Autocorrelation Coefficient 
	0.85

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	2

3

4

5

1
	2

4

3

5

1
	4

2

3

5

1
	4

3

2

5

1
	3

*NA

4

1

2
	3

*NA

4

1

2

	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Table 4 Continued:   

	Autocorrelation Coefficient 
	0.85

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	3

4

2

5

1
	4

3

2

5

1
	2

5

3

4

1
	2

5

3

4

1
	4

*NA

2

3

1
	3

*NA

2

4

1

	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Tables 3 and 4 presents the RMSE and MAE values, and their respective ranks from the fGARCH family model for autocorrelation value of 0.85 at different time series lengths 

Table 5: The RMSE and MAE values from the fGARCH family model for autocorrelation value  of 0.9 at different time series lengths 

	Autocorrelation Coefficient 
	0.9

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	15.69056 
	197.97735
	22.22066 
	396.54629
	27.34395 
	597.45662

	gjrGARCH
	15.69322 
	198.21389
	22.2961 
	397.7557
	27.36271 
	598.10197

	iGARCH
	15.67502 
	197.83526
	22.29554 
	397.73077
	27.23304 
	594.83387

	TGARCH
	15.6704 
	197.9100
	22.27206 
	397.27891
	27.34957 
	597.51156

	NGARCH
	15.66183 
	197.72987
	22.25393 
	397.27571
	27.25242 
	595.38001


Table 5 Continued:  
	Autocorrelation Coefficient 
	0.9 

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	31.5213 
	795.3229
	31.5213 
	795.3229
	38.68276 
	1195.44711

	gjrGARCH
	31.5506 
	796.2314
	31.5506 
	796.2314
	38.69959 
	1196.23093

	iGARCH
	31.48481 
	794.08972
	31.48481 
	794.08972
	38.65638 
	1194.28637

	TGARCH
	31.55911 
	796.64856
	31.55911 
	796.64856
	38.64567 
	1194.20921

	NGARCH
	*NA
	*NA
	*NA
	*NA
	38.58901 
	1192.30893


Table 6: The Ranks of The RMSE and MAE values from the fGARCH family model at for autocorrelation value of 0.9 at different  time series lengths  

	Autocorrelation Coefficient 
	0.9

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	4

5

3

2

1


	4

5

2

3

1


	1

5

4

3

2


	1

5

4

3

2


	3

5

1

4

2


	3

5

1

4

2



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Table 6 Continued:   

	Autocorrelation Coefficient 
	0.9

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	3.5

1

3.5

2

*NA
	2

4

1

3

*NA
	3.5

1

3.5

2

*NA
	2

4

1

3

*NA
	4

5

3

2

1


	4

5

3

2

1



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Tables 5 and 6 presents the RMSE and MAE values, and their respective ranks from the fGARCH family model for autocorrelation value of 0.9 at different time series lengths 

Table 7: The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.95 at different time series lengths 

	Autocorrelation Coefficient 
	0.95

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	15.68814 
	197.73295
	22.29211 
	397.51403
	27.2964 
	596.6663

	gjrGARCH
	15.69865 
	198.10642
	22.2407 
	396.9439
	27.30838 
	597.00994

	iGARCH
	15.73973 
	198.55254
	22.2631 
	397.3768
	27.30615 
	596.77193

	TGARCH
	15.72409 
	198.23185
	22.26515 
	397.06924
	27.32061 
	596.60567

	NGARCH
	15.64798 
	197.42033
	22.22985 
	396.67303
	27.28743 
	596.51312


Table 7 Continued: 

	Autocorrelation Coefficient 
	0.95 

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	31.61276 
	797.63204
	35.35245 
	997.24819
	38.64961 
	1194.17442

	gjrGARCH
	31.55876 
	796.28403
	35.34023 
	996.77395
	38.69062 
	1195.48262

	iGARCH
	31.52512 
	795.55465
	35.32587 
	996.60224
	38.71167 
	1196.78469

	TGARCH
	31.52324 
	795.34252
	35.2704 
	995.3214
	*NA
	*NA

	NGARCH
	31.55345 
	795.67381
	35.15163 
	991.66978
	38.58982 
	1192.56306


Table 8: The Ranks of The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.95 at different time series lengths  

	Autocorrelation Coefficient 
	0.95

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	2

3

5

4

1


	2

3

5

4

1


	5

2

3

4

1


	5

2

4

3

1


	2

4

3

5

1


	3

5

4

2

1



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Table 8 Continued:   

	Autocorrelation Coefficient 
	0.95

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	5

4

2

1

3


	5

4

2

1

3


	5

4

3

2

1


	5

4

3

2

1


	2

3

4

*NA

1


	2

3

4

*NA

1



	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Tables 7 and 8 presents the RMSE and MAE values, and their respective ranks from the fGARCH family model for autocorrelation value of 0.95 at different time series lengths 

Table 9: The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.99 at different time series lengths 

	Autocorrelation Coefficient 
	0.99

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	15.61949 
	196.78527
	22.17187 
	395.70803
	27.28797 
	596.21018

	gjrGARCH
	15.5150 
	195.4712
	22.35713 
	398.76400
	*NA
	*NA

	iGARCH
	15.54559 
	195.92525
	22.21787 
	396.31757
	27.25111 
	595.66820

	TGARCH
	15.6229 
	196.6654
	22.26547 
	397.25319
	27.2632 
	595.5894

	NGARCH
	15.6246 
	197.1020
	22.16014 
	395.53835
	27.25505 
	595.26933


Table 9 Continued:  

	Autocorrelation Coefficient 
	0.99 

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	31.49784 
	794.64301
	35.34941 
	997.45191
	38.65248 
	1194.47871

	gjrGARCH
	31.58383 
	796.63904
	35.24889 
	994.76280
	38.6506 
	1194.6269

	iGARCH
	31.61138 
	797.79248
	35.24748 
	994.22704
	38.6874 
	1195.7461

	TGARCH
	31.56081 
	795.91771
	35.21394 
	993.53380
	38.72278 
	1196.99541

	NGARCH
	31.48974 
	794.83949
	35.10384 
	989.91744
	38.64695 
	1193.96249


Table 10: The Ranks of The RMSE and MAE values from the fGARCH family model for autocorrelation value of 0.99 at different time series lengths  

	Autocorrelation Coefficient 
	0.99

	Time series length (T)
	250
	500
	750

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	3

1

2

4

5
	4

1

2

3

5
	2

5

4

3

1
	2

5

4

3

1
	4

*NA

1

3

2
	4

*NA

3

2

1

	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Table 10 Continued:   

	Autocorrelation Coefficient 
	0.99

	Time series length (T)
	1000
	1250
	1500

	Model
	RMSE
	MAE
	RMSE
	MAE
	RMSE
	MAE

	sGARCH
	2

4

5

3

1
	1

4

5

3

2
	5

4

3

2

1
	5

4

3

2

1
	3

2

4

5

1
	3

2

4

5

1

	gjrGARCH
	
	
	
	
	
	

	iGARCH
	
	
	
	
	
	

	TGARCH
	
	
	
	
	
	

	NGARCH
	
	
	
	
	
	


Tables 9 and 10 presents the RMSE and MAE values, and their respective ranks from the fGARCH family model for autocorrelation value of 0.99 at different time series lengths 

Table 11: Summary of the Performances of the fGARCH family models at different levels of autocorrelation and time series lengths using RMSE
	Forecast Statistics: RMSE

	Autocorrelation Coefficient
	Time series length (T)

	
	250
	500
	750
	1000
	1250
	1500

	0.8
	gjrGARCH

iGARCH
	sGARCH
	NGARCH
	NGARCH
	NGARCH
	NGARCH

	0.85
	NGARCH
	NGARCH 
	TGARCH
	NGARCH
	NGARCH
	NGARCH

	  0.9
	NGARCH
	sGARCH
	iGARCH
	gjrGARCH
	gjrGARCH
	NGARCH

	0.95
	NGARCH
	NGARCH
	NGARCH
	TGARCH
	NGARCH
	NGARCH

	0.99
	gjrGARCH
	NGARCH
	iGARCH
	NGARCH
	NGARCH
	NGARCH


Table 12: Summary of the Performances of the fGARCH family models at different levels of autocorrelation and time series lengths using MAE 
	Forecast Statistic: MAE

	Autocorrelation Coefficient
	Time series length (T)

	
	250
	500
	750
	1000
	1250
	1500

	0.8
	gjrGARCH

iGARCH
	sGARCH
	NGARCH
	gjrGARCH


	NGARCH
	NGARCH

	0.85
	NGARCH
	NGARCH
	TGARCH
	NGARCH
	NGARCH
	NGARCH

	 0.9
	NGARCH
	sGARCH
	iGARCH
	iGARCH
	iGARCH
	NGARCH

	0.95
	NGARCH
	NGARCH
	NGARCH
	TGARCH
	NGARCH
	NGARCH

	0.99
	gjrGARCH
	NGARCH
	NGARCH
	sGARCH
	NGARCH
	NGARCH


Table 13: Overall performance rating of the fGARCH models irrespective of the autocorrelation values and time series lengths 
	Models
	RMSE
	MAE

	sGARCH
	6.25%
	9.38%

	gjrGARCH
	12.5%
	9.38%

	iGARCH
	12.5%
	15.6%

	TGARCH
	6.25%
	6.25%

	NGARCH
	62.5%
	59.3%


5.2
Discussion of Findings 
5.2.1
GARCH models performance in the presence of autocorrelation using the root mean square error (RMSE) from the results of the simulation in Table 11. 

For autocorrelation value of 0.8, iGARCH and gjrGARCH performed better than other models when the time series length (T) is 250, but at time series length (T) is 500, sGARCH performed better. However, NGARCH dominated as it outperformed the other models at the time series lengths (T) of 750, 1000, 1250 and 1500.

For autocorrelation value of 0.85, NGARCH outperformed the other models irrespective of the time series (T) length except at time series length of 750 where TGARCH performed better than others.

Coming to the autocorrelation value of 0.9, it can be seen that while NGARCH performed better at T = 250 and T = 1500, gjrGARCH performed better at T =  1000 and T = 1250, and sGARCH and iGARCH, respectively, outperformed the other models at T = 500 and T = 750.  

For autocorrelation value of 0.95, it can clearly be observed that NGARCH outperformed the other models irrespective of the time series (T) length except at time series length of 1000 where TGARCH performed better than others.

For autocorrelation value of 0.99, while gjrGARCH performed better than other models at T = 250, iGARCH performed better than other models at T = 750, NGARCH outperformed the other models at the time series (T) lengths of 500, 1000, 1250 and 1500; thereby being the dominant model for that autocorrelation value. 

5.2.2
GARCH models performance in the presence of autocorrelation using the root mean square error (MAE) from the results of the simulation in  Table 12.
For autocorrelation value of 0.8, gjrGARCH and iGARCH performed better than other models when the time series length (T) is 250, gjrGARCH again performed better than other models at T = 1000, sGARCH outperformed the other models at T = 500, while NGARCH performed better than the other models at the time series lengths (T) of 750, 1250 and 1500.

For autocorrelation value of 0.85, NGARCH dominated as it outperformed the other models irrespective of the time series (T) length except at time series length of 750 where TGARCH performed better than others.

And for the autocorrelation value of 0.9, it can be seen that whereas NGARCH performed better at time series length (T) = 250 and T = 1500, sGARCH performed better than the other models at T = 500, while iGARCH dominated at the other time series lengths, performing better at T = 750, T = 1000 and T = 1250. 

For autocorrelation value of 0.95, it can be observed that NGARCH was the preferred model as it outperformed the other models irrespective of the time series (T) length except at time series length (T) of 1000 where TGARCH performed better than others.

And for autocorrelation value of 0.99, while NGARCH dominated the other models, performing better at time series lengths (T) = 500, T = 750, T = 1250 and T = 1500, gjrGARCH performed better than other models at T = 250, and sGARCH performed better than other models at T = 1000.  Using RMSE and MAE criteria, this study has shown that different models performed better at different autocorrelation coefficients and at different time series lengths. This is in line with previous studies: Atoi (2014) modelling the volatility of stock returns using daily closing data of Nigerian Stock Exchange, found that GARCH (1,1), PGARCH (1,1,1) and EGARCH (1,1) with student’s t distribution, and TGARCH with GED were the four best fitted models based on Schwarz Information Criterion, and the conclusions in Grek (2014), Chen, Min and Chen (2013), Dijk, Franses and Lucas (1999) and Demos (2000),  that different models performed differently under different conditions; in this case, different autocorrelation coefficients and different time series lengths. Results are however in contrast to Mikosch and Starica (2000) using GARCH (1,1) model to estimate log return of foreign exchange, said that the level of autocorrelation is unreliable means for model selection . In summary in Table 13, modeling financial time series with high positive autocorrelation values is dominated by NGARCH model which is in line with results obtained by Lanne and Saikkonen (2005).
6.0
Conclusion and Recommendation
This study investigated the performance of fGARCH family models in the presence of high positive autocorrelation values, the results concluded the dominance of NGARCH model.   We therefore recommended that investors, financial analysts and researchers interested in stock prices and asset return should adapt NGARCH model when there is high positive autocorrelation in the financial time series data. 
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