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Abstract 

 In some situations, researchers may be faced with the problem high dimensional data, 

where the number of variables in the dataset is large, and the sample size is relatively small.  In 

such cases standard statistical methods do not perform well, making model parameter estimation 

potentially problematic.  In order to deal with such high dimensional data, statisticians have 

developed estimators, such as the lasso, that are specially designed to provide model parameter 

estimates for such scenarios.  Recently, this work has been extended to the context of high 

dimensional multilevel, or mixed effects data in which individuals at level-1 are nested within 

clusters at level-2.  Such data structures are extremely common in the social sciences, 

particularly education and sociology.  The goal of this simulation study was to assess a 

multilevel extension of the lasso estimator in high dimensional multilevel data case, and to 

compare this approach with the standard restricted maximum likelihood estimator typically used 

to fit multilevel models.  Results of the study demonstrated that the multilevel lasso yielded 

better control of the Type I error rate and better parameter coverage than did REML, when level-

1 and level-2 sample sizes were small, and there were many predictor variables.  Implications of 

these results are discussed.  
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 In some research and evaluation contexts, the number of variables that can be measured 

(p) approaches, or even exceeds the number of individuals on whom such measurements can be 

made (N).  For example, researchers working with individuals identified with a rare 

psychological diagnosis may have difficulty obtaining individuals for their research samples.  

Once such people are found the researcher may wish to make a relatively large number of 

cognitive and affective measurements for each participant.  The result of small samples coupled 

with a large number of measurements is commonly referred to as high dimensional data.  With 

such a limited sample size in conjunction with a large number of variables, standard statistical 

models such as regression, which could normally be used to address the research questions may 

not work well.  Specifically, in the high dimensional context such models tend to yield biased 

standard errors for the model coefficient estimates (Bühlmann & van de Geer, 2011).  A direct 

consequence of these biased standard errors are inaccurate Type I error and power rates for the 

tests of the null hypothesis that the coefficient is not 0 in the population.  These problems may in 

turn lead the researcher to erroneous inferences regarding relationships among the independent 

and dependent variables.  In addition, as noted above high dimensionality can also result in 

parameter estimation bias due to the presence of collinearity, or very strong relationships among 

the independent variables (Fox, 2016).  This model parameter estimation bias can result in 

potential misrepresentations of the relationships among the variables in the model.  Finally, when 

p in fact exceeds N, it is simply not possible to obtain LS estimates for the model parameters, and 

the researcher is not able to address the research questions of interest.  

 The goal of this study is to describe a statistical methodology designed specifically for 

dealing with high dimensional data in the context of multilevel and mixed effects models.  Please 

note that throughout this manuscript I will use these terms interchangeably to refer to a set of 
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models involving data structures at multiple levels, as is described in more detail below.  These 

models are becoming increasingly popular in the fields of psychology and education, and as such 

are being used in a wide variety of applications, some of which involve multilevel data 

structures.  Recently, Schelldorfer, Bühlmann & van de Geer (2011) described an extension of 

the well known least absolute shrinkage and selection operator (lasso) for use with multilevel 

data.  The purpose of the current study is to investigate the performance of the multilevel lasso 

through the use of a Monte Carlo simulation.  This work extends earlier simulation work by 

Schelldorfer, et al. (2011), which was fairly limited in scope, and which focused primarily on 

data scenarios more commonly seen in genetics research than in the social sciences (i.e., 300 to 

1000 independent variables, and samples of 150 and 180).  The simulation study used here was 

based upon a review of the multilevel data literature in the social sciences and includes a wider 

array of conditions with respect to the number of independent variables and the sample sizes.  

The remainder of the manuscript is organized as follows:  First, multilevel models are briefly 

described in order to provide context for the subsequent discussion of methods.  Next, the lasso 

and multilevel lasso are described, followed by a discussion of the study goals.  The 

methodology used to assess these goals is then described in detail, followed by a presentation of 

the results.  Finally, the implications of these results are discussed, and recommendations for 

practice are described for researchers. 

Multilevel models 

 Multilevel models (MLMs) are used in the analysis of data in which individuals (level-1) 

are nested within clusters (level-2), and the clusters could themselves be nested within higher 

order clusters (level-3). MLMs can also be used in the case of longitudinal data, where 

measurements taken at different points in time are nested within the individuals on whom they 
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were made.  As mentioned previously, with multilevel data the correct modeling of the 

relationship between a dependent variable and one or more independent variables must account 

for the nested structure in order to ensure that estimation bias for parameters and their standard 

errors is eliminated (Snijders & Bosker, 2012).  One of the most common MLMs is the random 

intercept model, which takes the form: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑥𝑖𝑗 + 𝜀𝑖𝑗        (1) 

Where 

𝑦𝑖𝑗 =Dependent variable value for individual i in cluster j 

𝛽0𝑗 =Intercept for cluster j 

𝛽1 =Slope relating independent variable x to dependent variable y 

𝑥𝑖𝑗 =Value of x for individual i in cluster j 

𝜀𝑖𝑗 =Random error for individual i in cluster j 

In turn, 𝛽0𝑗 can be expressed as 

𝛽0𝑗 = 𝛾00 + 𝑈0𝑗         (2) 

Where 

𝛾00 =Mean intercept across clusters 

𝑈0𝑗 =Unique effect of cluster j on the intercept  

The parameter 𝛾00 is referred to as a fixed effect, meaning that it takes the same value for all 

clusters, and 𝑈0𝑗 is a random effect that varies across clusters.  As an example, for students 

nested within schools this would mean that 𝛽0𝑗 would differ across schools, including a common 

component across schools (𝛾00), as well as a component unique to the individual school (𝑈0𝑗).  

Essentially, allowing for these varying intercepts in the model is allowing for schools to have 

unique means on the dependent variable, even while there is a common mean across all schools.  
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In model (1), 𝛽1 is treated as a fixed effect indicating that it is constant across clusters.  In the 

school research context this would mean that the relationship between the independent and 

dependent variables is the same for all schools.   It is also possible to fit a random coefficients 

model in which 𝛽1 has both fixed and random components, just as we have here for 𝛽0𝑗, thereby 

allowing for different relationships between the independent and dependent variables across 

schools.  The error term, 𝜀𝑖𝑗, is a random effect and assumed to be normally and independently 

distributed across individuals within the same cluster, with 𝜀𝑖𝑗~𝑁(𝟎, Λ𝑗).  Likewise, 

𝑈0𝑗~𝑁(𝟎, Ψ), and is assumed to be independent across clusters.   

The model parameters in (1) and (2) are typically estimated by maximum likelihood 

(ML) or restricted ML (REML) estimation.  With regard to estimating the model parameters 

themselves ( 𝛽1, 𝛾00), ML and REML provide essentially identical results.  However, they differ 

in terms of how the standard errors of these parameters are calculated.  Specifically, the degrees 

of freedom used in ML do not account for the fact that the parameters themselves are being 

estimated, leading to a negative bias in the standard error estimates (Kreft & de Leeuw, 1998).  

In contrast, REML standard error estimates do use degrees of freedom that account for the 

estimation of the model parameters, thereby producing unbiased estimates (Snijders & Bosker, 

2012; Lindstrom & Bates, 1988).  REML was used in the current study. 

The lasso 

 As noted earlier in the manuscript, high dimensional data can lead to problematic 

estimation using standard methods, including REML (Schelldorfer, Bühlmann, and van de Geer, 

2011).  As a result of these issues in the context of standard single level data structures, 

statisticians have worked to develop estimation methods that can better handle high dimensional 

data.  One such approach is known collectively as regularization or shrinkage methods.  These 
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regularization methods have in common the application of a penalty to the standard least squares 

estimator that is commonly used to fit a variety of linear and nonlinear regression models.  The 

penalty is devised in such a way that the coefficients linking the independent variables to the 

dependent variables are made smaller, or shrunken, so that only those that are most strongly 

related to the dependent variable are retained in the model, whereas the others are eliminated by 

having their coefficients reduced to 0.  The goal of this methodology is to eliminate from the 

high dimensional model many of the independent variables that exhibit weak relationships to the 

dependent variable, and thus render the resulting model non-high dimensional; i.e., with only a 

few salient variables rather than the very large number included in the original model.  One of 

the first such regularization approaches developed for this purpose was the least absolute 

shrinkage and selection operator (lasso; Tibshirani, 1996).  The fitting criterion for the lasso is 

written as 

𝑒2 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1 + 𝜆 ∑ ⌊𝛽̂𝑗⌋𝑝
𝑗=1        (3). 

Where 

𝑦𝑖 =The observed value of the dependent variable for individual i 

𝑦̂𝑖 =The model predicted value of the dependent variable for individual i 

𝛽̂𝑗 =Sample estimate of the coefficient for independent variable j 

𝜆 =Shrinkage penalty tuning parameter 

The tuning parameter, 𝜆, is used to control the amount of shrinkage (i.e. the degree to which the 

relationship of the independent variables to the dependent variable are down weighted or 

removed from the model).  Larger 𝜆 values correspond to greater shrinkage of the model; i.e. a 

greater reduction in the number of independent variables that are likely to be included in the final 

model.  On the other hand, a 𝜆 of 0 leads to the least squares estimator.  Given the goal of 
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minimizing 𝑒2 , the parameter estimates (𝛽̂) will be reduced in size, and some will even be set to 

0, while at the same time the predictions (𝑦̂) based upon the parameter estimates should be as 

accurate as possible, meaning that the parameter estimates cannot all be minimized or set to 0.  

In other words, the goal of the lasso estimator is to eliminate from the model those independent 

variables that contribute very little to the explanation of the dependent variable, by setting their 𝛽̂ 

values to 0, while at the same time retaining independent variables that are important in 

explaining y. 

 A key aspect of successfully using the lasso is determining of the optimal 𝜆 value.  A 

number of approaches for this purpose have been recommended in the literature, including using 

cross-validation to minimize the mean squared error (Tibshirani, 1996), and selecting the value 

of 𝜆 that minimizes the Bayesian information criterion (BIC).  This latter approach was 

recommended by Schelldorfer, et al. (2011), and was found by them to work well for selecting 

the optimal tuning parameter value.  In addition, work by Zou and Yu (2006) also supported the 

use of the BIC for this purpose.  Therefore, in the current study the BIC was used to select the 

optimal value of 𝜆. Essentially, a large number of potential 𝜆 are tried, the model using each is fit 

to the data and the BIC values for the models are compared, with the one yielding the smallest 

BIC being selected. 

Multilevel lasso 

 Schelldorfer, Bühlmann, and van de Geer (2011) described an extension of the lasso 

estimator that can be applied to multilevel models.  This multilevel lasso (MLL) involves the 

same basic penalty function as described in equation (3), but with additional terms to account for 

the variance components that are an integral part of the multilevel model in equations (1) and (2).  

Specifically, the MLL estimators minimizes the following function: 
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𝑄𝜆(𝛽, 𝜏2, 𝜎2) ≔
1

2
𝑙𝑛|𝑉| +

1

2
(𝑦𝑖 − 𝑦̂𝑖)′𝑉−1(𝑦𝑖−𝑦̂𝑖) + 𝜆 ∑ ⌊𝛽̂𝑗⌋

𝑝
𝑗=1    (4) 

Where 

𝜏2 =Between cluster variance at level-2 

𝜎2 =Within cluster variance at level-1 

𝑉 =Covariance matrix 

Thus, the estimates of the model parameters are obtained with respect to the penalization of the 

level-1 coefficients.  In all other respects, this estimator works similarly to the standard lasso of 

equation (3), including through the use of BIC to select the optimal value of 𝜆. 

Standard error estimation for MLL 

In order to conduct inference for the MLL model parameters, standard errors must be 

estimated.  Currently, the algorithm does not include standard error estimation.  Therefore, in 

order to allow for the calculation of confidence intervals for each model parameter, an alternative 

approach must be used.  It is proposed here that the block bootstrap methodology might serve as 

an effective means to calculate standard error estimates for each model parameter, and thereby 

allowing for the calculating confidence intervals allowing for inference.  Traditionally, 

application of the bootstrap has involved the sampling with replacement of individual members 

of the sample. However, in the context of multilevel data the block bootstrap approach has been 

proposed such that, rather than resampling individuals themselves, clusters or blocks of 

individuals corresponding to their organizing unit (e.g. classrooms or schools) are resampled 

instead. Block bootstrapping has been used with multilevel data to estimate standard errors from 

survey data (Kovacevic, Rong, & You, 2006), to correct standard errors in linear regression 

(Cameron, Gelbach, & Miller, 2008), to calculate standard errors for multilevel DIF assessment 
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(French, Finch, & Valdivia Vazquez, 2016), and to estimate standard errors for dynamic factor 

analysis (Zhang & Browne, 2010).   The block bootstrap involves the following steps: 

1. Calculate the test statistic of interest (e.g., 𝛽𝑗) for the original sample. 

2. Resample m blocks of individuals with replacement, where m is equal to the number of distinct 

level-2 (e.g. schools) in the sample, where m is the number of level-2 units. 

3. For each bootstrap sample calculate the parameter estimate; i.e., coefficient. 

4. Repeat this procedure B (e.g. 1000) times. 

5. Calculate the bootstrap standard error as: 

𝑆𝛽 = √∑ (𝛽0−𝛽̅)
2𝐵

𝑏=1

𝐵−1
        (5) 

Where 

𝛽̅=Mean coefficient estimate across the B bootstrap samples 

The standard error from equation (5) can then be used to construct a confidence interval for 𝛽0 as: 

𝛽0 ± 1.96𝑆𝛽          (6). 

This is the methodology used in the current study. 

Study goals and hypotheses 

 The primary goal of this study was to investigate the performance of the lasso estimator 

in the context of high dimensional multilevel data.  Previous authors (Bühlmann & van der Geer, 

2011; Hastie, Tibshirani, & Friedman, 2009; Zou & Hastie, 2005; Tibshirani, 1996) have 

described how in the single level regression context the lasso is able to control the Type I error 

rate for tests of the relationships between independent and dependent variables in cases where 

standard estimators are not.  Though this prior work has found that the lasso estimates do exhibit 

some bias, the level of bias is relatively small (e.g., Tibshirani).  Therefore, based on this earlier 

work with the lasso in the single level data context it is hypothesized that the lasso will control 

the Type I error rate better than the standard REML estimator for situations involving high 
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dimensional data.  In addition, it is also hypothesized that the lasso estimates will exhibit more 

negative parameter estimation bias than their REML counterparts, and that power for the lasso 

will be lower than that of REML, particularly for small sample sizes and with more independent 

variables.  Finally, it is hypothesized that given the more accurate standard error estimates 

expected for the lasso, coverage rates for this estimator will be closer to the nominal 0.95 level 

than will be those of the REML estimator. 

Method 

 The aforementioned goals of this study were addressed using a Monte Carlo simulation 

study with 1000 replications per combination of conditions, which are described below.  Data 

were generated from a 2-level random intercept linear model, as in equation (1), using Mplus, 

version 7.11 (Muthén & Muthén, 2015).  REML estimation was carried out using the R package 

lme4 (Bates, Maechler, Bolker, & Walker, 2015), whereas MLL estimates were obtained using 

the lmmlasso function in the lmmlasso library (Schelldorfer, 2015).  For each replication 

dataset, the shrinkage parameter was determined based upon the value of the BIC, as described 

above.  Standard errors for the MLL estimates were obtained using the block bootstrap, as was 

described above.  The focus of the simulation was on the level-1 predictors. The data generating 

conditions that were manipulated in this study are described below.   

Level-1 and level-2 sample sizes 

 The simulated sample sizes per cluster were 5, 10, and 20, and the number of clusters that 

were simulated were 5, 10, 20, 30, 50, and 100.  These values were selected so as to reflect a 

variety of total sample size conditions, from very small (25 total) to large (2000 total).  In 

addition, these values were selected based upon the results of prior research examining the 

relationship of sample size and parameter estimation in the context of multilevel modeling.  For 
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example, based on the work of Kreft (1996), Snijders and Bosker (2012), and Hox (2010), it has 

been suggested that somewhere between 20 and 50 level-2 units should be present when data 

analysts use the REML estimator.  Thus, it was of interest to ascertain the performance of MLL 

and REML in cases where the number of level-2 units fell below these guidelines, and in cases 

where the number of level-2 units was well in excess of these values.  In addition, the impact of 

high dimensionality was a primary focus here, and therefore the total sample size on the 

performance of both estimators was also of interest, and thus a wide array of values were 

simulated in this study.   

Number of level-1 and level-2 independent variables 

 In addition to the sample size, the number of independent variables at both level-1 and 

level-2 were also manipulated in this study.  In the low dimensionality case, 2 predictors were 

included at level-1 and 1 predictor level-2 was included at level-2, and in the high dimensionality 

condition there were 10 level-1 predictors and 5 level-2 predictors.  These values were selected 

in order to reflect a range of conditions that might be expected in the social and behavioral 

sciences.  An examination of 40 studies published in psychology journals in 2017 that used 

multilevel modeling revealed that the average number of level-1 predictors was 4.4, with a 

maximum of 8.  The average number of level-2 predictors used in these studies was 1.6.  

Although it is recognized that this is merely a snapshot of the research in the literature, it is 

believed that these are representative numbers of the level-1 and level-2 predictors, respectively.  

Thus, the current study was designed to include values at the low and high ends of what is seen 

in the published psychology literature. The correlations among the independent variables was set 

equal to 0.3 across conditions, in order to reflect a moderate relationship among them. 

Number of coefficients with non-0 population values 
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 The number of independent variables that were simulated to have a relationship with the 

dependent variable was also manipulated in this study.  The purpose for including this condition 

was to assess the Type I error and power rates for the two estimators under a variety of 

conditions.  For both the low and high dimensional cases, the number of non-0 coefficients was 

manipulated.  In the low dimensional case, one set of simulations was conducted in which all of 

the independent variables at both levels were simulated to have coefficients of 1 in the 

population.  In the other set of conditions for the low dimensional case, one of the level-1 

predictors had a coefficient of 1 in the population, and the other had a coefficient of 0, as did the 

level-2 predictor.  In the high dimensional condition, one set of simulations was such that all of 

the level-1 and level-2 predictors had coefficients of 1 in the population, whereas for the other 

set of simulations 5 of the 10 level-1 predictors were simulated to have coefficients of 1, and 5 to 

have coefficients of 0.  In this latter set of conditions, two of the 5 level-2 coefficients were 

simulated to have coefficients of 1, and the other three to have coefficients of 0. 

Intraclass correlation (ICC) 

 Two values of the ICC were simulated in this study, 0.05 and 0.33.  These values were 

selected because they represent a very small impact of the level-2 units on the outcome (0.05), 

and a relatively large such impact (0.33). 

Outcome variables 

 There were several outcomes of interest in this study, including parameter estimation 

bias, the standard error of the estimates, coverage rates for the estimates, Type I error rate, and 

power, all for the level-1 predictor.  Specifically, one of the level-1 predictors was selected as the 

target, and results are presented below for that target variable.  Results for the other level-1 

predictors were examined and compared to those for the target, and were found to be extremely 



14 
 

similar to those of the target.  Thus, results for the target were the only ones included in the 

results in order to keep the results at a manageable length.  The parameter estimation bias was 

calculated as: 

𝑏𝑖𝑎𝑠 = 𝜃 − 𝜃         (7) 

Where 

𝜃 =Parameter estimate 

𝜃 =Data generating value. 

The standard error of the estimates was calculated empirically using the following equation: 

√∑ (𝜃̂−𝜃)
2𝑅

𝑟=1

𝑅−1
         (8) 

Where 

𝑅 =Total number of replications; e.g., 1000. 

The coverage rate was the proportion of replications for which the 95% confidence interval 

constructed using the sample data included the data generating value of the parameter.  

Therefore, if an estimator is working appropriately, the coverage value should be 0.95.  The 

Type I error rate is simply the proportion of replications for which the null hypothesis 𝐻0: 𝜃 = 0 

was rejected when it should not have been.  Likewise, power was the proportion of replications 

for which this null hypothesis was rejected when it should have been rejected.   

In order to identify the main effects and interactions of the manipulated study factors that 

were related to each outcome, analysis of variance (ANOVA) was used, along with the partial 𝜂2 

effect size.  For an effect to be considered meaningful in the context of this study, it needed to be 

both statistically significant, and to have 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2  value of 0.1 or greater.  This latter condition 

was used because it would mean that the main effect or interaction accounted for at least 10% of 

the variation in the study outcome. 
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Results 

Parameter estimation bias 

 With respect to the amount of parameter estimation bias, ANOVA results identified the 

interaction of estimation method by number of groups by sample size per group as the highest 

order statistically significant effect (𝐹10,13 = 4.453, 𝑝 = 0.007, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.774).  All other 

significant effects were subsumed within this interaction.  Estimation bias by number of groups, 

sample size per group, and estimation method appears in Table 1.  Based upon these results, it 

can be concluded that the degree bias was greater for REML than for the MLL when the number 

of groups was 5, or there were 10 groups and the sample size per group was 5.  For example, at 

the 5 groups 5 individuals per group condition for REML bias was more than 10 times larger 

than was the case for MLL.  For all other conditions, however, the two methods yielded very 

comparable, and very low levels of estimation bias.  In addition, this pattern of results was 

present regardless of the population value for the coefficient (0 or 1).   

Standard error 

 ANOVA results showed that the interaction of estimation method by number of groups 

by sample size per group was the highest order statistically significant such term 

(𝐹10,13 = 2.916, 𝑝 = 0.037, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.692), with all other significant model terms being 

subsumed in this interaction, or not statistically significant.  The standard errors by method, 

number of groups, and sample size per group appear in Table 2, and reveal that the standard 

errors for the two approaches are very comparable across most of the simulated conditions.  The 

lone exception to this pattern occurred when data were simulated for 5 groups, with a sample 

size of 5 individuals per group, in which case REML had a larger standard error than did that 
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produced by MLL.  Otherwise, standard errors for the two methods were within 0.001 of one 

another across conditions. 

Coverage 

 As with the bias and standard error outcomes, ANOVA was used to ascertain which of 

the manipulated factors in the simulation study were associated with the coverage rates for the 

model parameters.  It was found that the interaction of number of groups, sample size per group, 

and estimation method were associated with coverage (𝐹10,13 = 2.708, 𝑝 = 0.050, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 =

0.673).  Coverage rates by method, number of groups, and number of items appear in the bar 

chart in Figure 1.  A reference line has been placed at the 0.95 value on the graphs, denoting the 

nominal coverage level.  Thus, when a method is working appropriately with respect to 

coverage, the bar should meet this line.  In fact, for REML the coverage rates were consistently 

below the nominal level when there were 5 or 10 groups, regardless of the sample size per group.  

In addition, for 20 and 30 groups, the REML coverage rates were below 0.95 for samples of 5 

individuals per group.  In contrast, the coverage rates for the MLL approach were always at or 

slightly above the nominal 0.95 level. 

Type I error rate 

 When the level-1 coefficients for variables were simulated to be 0 (i.e., there was no 

relationship between the independent variable and the response), a statistically significant result 

would represent a Type I error.  In order to determine which of the manipulated factors were 

associated with the Type I error rate, ANOVA was used, as mentioned in the methods section.  

The interaction of the number of groups by the estimation method was found to be statistically 

significantly related to the Type I error rate (𝐹5,8 = 10.562, 𝑝 = 0.002, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.868).  

Figure 2 displays the Type I error rate for each estimation method by the number of groups.  
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Note that there is a reference line at the nominal 0.05 Type I error level.  In addition, per 

recommendations from Bradley (1978) error rates between 0.025 and 0.075 were considered to 

be in control.  Perhaps the most obvious result made apparent in Figure 2 is that the REML Type 

I error rate was out of control when the number of groups was 20 or fewer, whereas for 30 or 

more groups the error rate was in control.  In contrast, the Type I error rate for MLL was always 

in control, and indeed well below 0.05, for all number of groups conditions. 

Power 

 ANOVA results for the power for detecting model parameters that are not 0 in the 

population identified the interaction of number of level-2 groups by the sample size per group by 

estimation method (𝐹10,13 = 15.853, 𝑝 < 0.001, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.924) as being statistically 

significantly related to the power rate.  The power by number of level-2 groups, sample size per 

group, and estimation method appear in Figure 3.  From these results, it can be seen that power 

for REML was lower than that for MLL with 20 or fewer groups, regardless of the number of 

individuals in each group.  In addition, this effect of the number of groups was magnified by the 

sample size per group, so that when groups were smaller, the power differential between the two 

methods was greater. Under this combination of conditions, power for MLL was always between 

0.98 and 1.  For 30 or more level-2 groups, power for the two methods was very comparable and 

always between 0.98 and 1.   

Discussion 

 Researchers in some areas of the social sciences will sometimes face the situation in 

which they have relatively small samples and a relatively large number of variables of interest.  

In such cases, standard parameter estimation algorithms, such as ordinary least squares and 

maximum likelihood will not provide stable or reliable estimates.  In an attempt to address this 
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problem, Tibshirani (1996) introduced the lasso estimator, which was designed to reduce the 

effective set of predictors in a model to include only those which are most strongly associated 

with the dependent variable of interest.  In the context of least squares estimation the lasso has 

been shown to produce shrunken estimates, which tend to be somewhat negatively biased, 

though the degree of bias is typically small.  In addition, the lasso, and other shrinkage 

estimators, have been found to control the Type I error rate better than do standard estimators 

such as least squares and maximum likelihood (Zou & Hastie, 2005).  In short, for single level 

data shrinkage methods such as the lasso have been found to work well in terms of yielding 

reasonably accurate parameter estimates while also controlling the Type I error rate. 

High dimensionality is not a problem limited to single level models, and for that reason 

the current study was designed to explore the performance of the MLL for use with multilevel 

data structures.  Results of the study generally showed that in the context of a 2-level random 

intercept model, the MLL estimator is a very viable alternative to the standard REML approach 

most commonly used in practice, even when the data were not high dimensional.  Specifically, 

when the sample sizes were small at both levels 1 and 2, MLL yielded less biased parameter 

estimates than did REML, and for larger samples both methods had very similar (and extremely 

small) levels of estimation bias.  Similarly, for the smallest sample size conditions, MLL yielded 

more controlled Type I error rates, and higher power than did REML.  The results of this study 

also demonstrated that use of the block bootstrap for estimating the standard errors of the level-1 

parameter estimates is also viable, as these standard errors were generally very similar to those of 

REML for larger sample sizes, and somewhat smaller when the sample sizes were small.  This 

use of the block bootstrap represents an extension to the work of Scheldorfer, et al. (2011), 

Finally, the coverage rates for the MLL estimator using the block bootstrap to estimate the 
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standard error were always at or slightly above the nominal 0.95 level, whereas REML had 

coverage rates below the nominal level whenever the number of level-2 clusters was less than 20, 

and these were lowest for the combination of five level-1 and five level-2 units. 

With regard to the research hypotheses described above, several conclusions can be 

reached.  First, as was hypothesized based on earlier work, MLL was better able to control the 

Type I error rate than was REML.  In addition, the hypothesis that the MLL coverage rates 

would be better than those of REML was also supported by this study.  However, the hypotheses 

that power would be lower for MLL was not supported, nor was the hypothesis that its parameter 

estimates would be more negative than those of REML.  These latter results are likely at least 

partially a result of the fact that the MLL loss function in equation (4) involves not only the fixed 

effects (i.e., 𝛽1) but also the two variance component terms.  Thus, when determining the penalty 

for the coefficients, MLL accounts not only for the level-1 predictors but also for the variation 

both within and between level-2 clusters.  For the standard single level lasso, the loss function is 

only influenced by the degree of disparity between the observed and model predicted dependent 

variable values.  However, for MLL not only are these terms important, but so are the variance 

components estimates.  This fact would appear to largely mitigate the impact of the shrinkage 

process on the estimates.  Interestingly, the numbers of level-1 and level-2 predictor variables 

were not found to be related to the performance of the estimators.  Thus, in the context of 

multilevel data, it would appear that the sample sizes at levels 1 and 2 may be more salient in 

terms of estimation performance than are the number of independent variables.   

Directions for future research 

 The results of this study appear to support the performance of the MLL estimator with 

small samples and high dimensional data.  In addition, they buttress earlier work by Scheldorfer, 
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et al. (2011) suggesting that this estimator may be particularly useful with relatively small 

samples.  Despite these results, however, there does remain room for further research.  This 

study was intended to represent the first fairly large scale simulation examination of the 

performance of MLL.  However, more work needs to be done in this regard.  First, a wider array 

of number of level-1 and level-2 predictors needs to be examined.  The values selected for this 

study were taken from published literature in the social sciences.  However, more extreme 

numbers of predictors should be examined in future work, perhaps with as many as 20 to 30 such 

variables.  Work by Scheldorfer, et al., examined very extreme dimensionality with 300 to 1000 

independent variables, and found that MLL worked well in terms of parameter recovery.  When 

coupled with the results presented in the current study, these earlier results are certainly 

suggestive that MLL should work well with 20 or 30 predictors.  However, by themselves these 

very large numbers are not particularly informative for most social science research, as the 

number of predictors will typically not be in the several hundreds.  In addition to including more 

independent variables, future work should also examine a wider range of ICC values, and a 

wider range of sample size conditions.  In particular ICC values in between the small (0.05) and 

large (0.33) values included here could be informative for applied researchers.  Finally, future 

research should examine the performance of MLL and REML in terms of estimating variance 

components estimation in the high dimensional case.  In order to keep the current study well 

focused, only the level-1 predictor estimates were examined.  This decision was made because 

these estimates are typically of primary interest to researchers using MLLs.  It is hoped that this 

focus allowed for a clear picture to be developed regarding the performance of the two 

estimators in the high dimensional case.  Now that such work has been completed, a next step 

would be to investigate the estimation of the variance components themselves. 
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Conclusions 

 As noted earlier, the current study was designed to build on the work by Scheldorfer, et 

al. (2011) with regard to the performance of the MLL estimator in the context of high 

dimensional data.  The results of this study have found that MLL is indeed a viable alternative to 

REML, not only in the context of high dimensional data but indeed for general use.  MLL always 

performed as well as REML in the simulated conditions, and was preferable for small sample 

sizes.  Thus, researchers are encouraged to consider using it whenever the level-2 sample size is 

less than 30.  MLL is particularly useful in terms of controlling the Type I error rate of the level-

1 predictors.  In addition, MLL appears to perform as well as REML for larger sample sizes, so 

that it would be appropriate to use even in cases where the sample sizes at levels 1 and 2 are 

relatively large.  Finally, the results of this study show that the block bootstrap is an appropriate 

method for estimating the standard error of the level-1 estimates.  This was not an issue 

described by Scheldorfer, et al., and one which adds to the current use of this estimator. 
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Table 1:  Parameter Estimation Bias by Estimation Method, Number of Level-2 Groups, and 

Sample Size per Group 

 

Groups 

Sample Size 

per Group REML MLL 

5 5 .1020 .0185 

10 .0608 .0190 

20 .0457 .0145 

10 5 -.0277 -.0181 

10 -.0090 -.0092 

20 .0007 .0009 

20 5 .0034 .0034 

10 .0014 .0014 

20 .0028 .0027 

30 5 -.0031 -.0029 

10 .0063 .0061 

20 .0003 .0004 

50 5 -.0009 -.0009 

10 -.0075 -.0074 

20 -.0008 -.0009 

100 5 -.0062 -.0062 

10 .0005 .0006 

20 -.0004 -.0004 
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Table 2: Parameter Estimate Standard Error by Estimation Method, Number of Level-2 Groups, 

and Sample Size per Group 

 

Groups 

Sample Size 

per Group REML MLL 

5 5 .3775 .2813 

10 .2135 .2135 

20 .1318 .1325 

10 5 .2181 .2187 

10 .1352 .1355 

20 .0841 .0840 

20 5 .1418 .1418 

10 .0909 .0909 

20 .0588 .0588 

30 5 .1162 .1163 

10 .0736 .0734 

20 .0540 .0538 

50 5 .0812 .0809 

10 .0560 .0561 

20 .0423 .0425 

100 5 .0599 .0600 

10 .0420 .0421 

20 .0298 .0339 
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Figure 1:  Coverage Rates by Estimation Method, Number of Level-2 Groups, and Sample Size 

per Group 
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Figure 2:  Type I Error Rate for Parameter Estimate by Estimation Method and Number of 

Level-2 Groups 
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Figure 3:  Power for Parameter Estimate by Estimation Method and Number of Level-2 Groups 

 
 

 

 

 

 

 

 

 

 

 

 


