Some common fixed point theorems of sequentially compact and complete cone -2- metric spaces of a contractive mapping

¹L. Shambhu Singh, ²Th. Chhatrajit Singh and ³K. Anthony Singh

^{1,3}Department of Mathematics
 D.M.Collge of Science Imphal Manipur India-795001
 ²Department of Mathematics
 Manipur Technical University, Imphal Manipur India-795004

Email:¹laishramshambhu11@gmail.com, ²chhatrajit@gmail.com, ³anthony kuman@yahoo.co.in

Abstract: In this paper, we prove some common fixed point theorems of sequentially compact and complete cone 2-metric space of a contractive mappings. We have proved four lemmas for the main theorems. Our results improve and generalize some of the results of B Singh etal(15) etc.

Key-words : Fixed points, common fixed points, compact and complete cone 2-metric spaces, ordered Banach space, contractive mapping, Normal cone with normal constant, sequentially compact cone 2-metric space.

Subject classification: 47 H 10, 54 H 25

1. Introduction

The notion of 2-metric space was introduced by S. Gahler in series of paper [1], [2],[3] etc. published in the 60's whose abstract properties were suggested by the area function for a triangle determined by a triplet in the Euclidean Space.

L.G. Huang and X. Zhang [10] introduced the concept of cone metric space as a generalization of a metric space on replacing real numbers by an ordered Banach Space and obtained some fixed points of contractive mappings. Using both the two concepts B.Singh etal [15] introduced cone 2-metric space and proved some common fixed point theorems. We now extend and generalize the results of [15] for a pair of self mappings using a contractive mapping.

We need the following definitions for our main theorems.

Definition 1.1: A non-empty set X with at least three points together with a mapping $d: X \times X \times X \rightarrow R^+$, is called a 2-metric space if d satisfies.

i) To each pair of points $x \text{ and } y, x \neq y$ in X there exists a point $z \in X$ such that $d(x, y, z) \ge 0$.

- ii) d(x, y, z) = 0 if at least two of x, y and z are equal.
- iii) $d(x, y, z) = d(y, z, x) = d(z, x, y) \forall x, y, z \in X$

iv) $d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, y, z)$ for all $x, y, z w \in X$

It is denoted by the ordered pair (X, d). The mapping d is called a 2-metric defined on X

Definition 1.2 [15]: A cone 2-metric space is defined as follows. Let E be a real Banach Space and P a subset of E. P is called a cone of E if

- i) P is closed, non-empty and $P \neq \{0\}$
- ii) $a, b \in IR^+, a, b \ge 0$ and $x, y \in P \Longrightarrow ax + by \in P$
- iii) $x \in P and x \in P \Longrightarrow x = 0$

Given a cone $P \subset E$, we define a partial ordering \leq in E with respect to P by $x \leq y$ if and only if $y - x \in P$. A cone P is normal is if for every $x, y \in P$ there exist a number K > 0 such that $x \leq y \Longrightarrow ||x|| \leq K ||y||$.

The least of K is the normal constant of the cone P. The symbol $x \ll y$ is used to denote that $y - x \in Int(P)$, interior of P in E.

A cone P is regular if for every non-decreasing sequence which is bounded above is convergent i.e. if $\{x_n\}$ be a sequence such that $x_1 \le x_2 \le \dots \le x_n \le \dots \le y \le \dots$ for some $y \in P$ then there exists some $x \in P$ such that $x_n \to x \text{ or } ||x_n - x|| \to 0 \text{ as } n \to \infty$

Equivalently $x_n \to x \, as \, n \to \infty$ if $\{x_n\}$ is a non-increasing sequence which is bounded from below. Definition 1.3 : Let X be a non-empty set with at least three points. Let $d : XxXxX \to P$ be a mapping such that

- i) $d(x, y, z) \ge 0, \forall x, y, z \in X$ and d(x, y, z) = 0 if at least two of x, y or z are equal.
- ii) $d(x, y, z) = d(y, z, x) = d(z, x, y), \forall x, y, z \in X$.
- iii) $d(x, y, z) \le d(x, y, w) + d(x, w, z) + d(w, x, z)$ for all $x, y, z, w \in X$.

Such a mapping 'd' is called a cone 2-metric and the pair (X,d) is called a cone 2-metric space.

Definition 1.4 : Let (X,d) be a cone 2-metric space with respect to a cone P in a real Banach Space E, Let $\{x_n\}$ be a sequence in X and let $x \in X$. If for every $c \in Int(P)$ with 0<<C there exist a number N(C) such that $d(x_n, x, a) \ll c \forall a \in X, n \ge N(c)$.

Then $\{x_n\}$ is called a convergent sequence converging to $x \cdot x$ is the limit of the sequence $\{x_n\}$. We denote it by $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

Definition 1.5 : Let $\{x_n\}$ be a sequence in a cone 2-metric space (X,d). For each $c \in Int(P)$ there is a number N(c) such $d(x_n, x_m, a) \ll c$ for all a $a \in X$ and $n, m \ge N(c)$. Such a sequence $\{x_n\}$ is called a Cauchy Sequence.

Definition 1.6 : If every sequence $\{x_n\}$ in a cone 2-metric space has a convergent subsequence then X is said to be a sequentially compact cone 2-metric space. A compact space is a sequentially compact space.

2. Main results.

We prove some results in cone 2-metric spaces.

Lamma : 2.1 : Every regular cone is a normal cone with a normal constant.

Proof : Let $\{x_n\}$ be a non-decreasing sequence which is bounded. Then exists a real number $M \in N$ such that each $x_i \leq M, \forall i$ if $\{x_n\} \subset X \text{ i.e. } M - x_i \in Int(P)$ i.e $||M - x_i|| \rightarrow 0 \text{ as } i \rightarrow \infty$. i.e $\{x_n\}$ is convergent. Also for some $i \text{ and } j, i \leq j$ We have, $||x_i|| \leq K ||x_j||, \forall i \text{ and } j$. Such K has least value and hence P is a normal cone with a normal constant. If $\{x_n\}$ be a non-increasing sequence and $x_{n+1} \leq x_n \forall n \in N$ then $||x_{n+1}|| \leq K ||x_n||, \forall n$ and hence P is normal cone with a normal constant K.

Lamma : 2.2 : Every convergent sequence $\{x_n\}$ in a cone 2-metric space has a convergent subsequence in X or Every subsequence of a convergent sequence in a cone 2-metric space converges.

Proof : Let $\{x_n\}$ be convergent to some $x \in X$. Then for each $c \in Int(P)$, P is normal cone with normal constant K. there exists a number N(c) such that

$$d(x_n, x, a) << c, \forall n \ge N(c)$$

Choosing $c, 0 << c$ such that $K \|c\| < \in, for \in > 0$.
We have

$$\|d(x_n, x, a)\| \le K \|c\| < \in \forall n \ge N(c)$$

 $\Rightarrow \|d(x_{n(\lambda)}, x, a)\| \le \in \forall n(\lambda) \ge N(c), a \in X$
 $\Rightarrow d(x_{n(\lambda)}, x, a) \to 0 \text{ as } \lambda \to \infty$
 $\Rightarrow \lim_{\lambda \to \infty} x_{n(\lambda)} = x$
 $\therefore \{x_{n(\lambda)}\} \subset \{x_n\}$ converges to $x \text{ in } X$.
As $\{x_{n(\lambda)}\} \subset \{x_n\}$ converges to $x \text{ in } X$.
As $\{x_{n(\lambda)}\} \subset \{x_n\}$ converges to $x \text{ in } X$.
As $\{x_{n(\lambda)}\}$ is arbitrary, any subsequence of a convergent sequence $\{x_n\}$ converges.
Lemma 2.3 : Every convergent sequence is Cauchy in a cone 2-metric space but the converse is not true.
Proof : Let $\{x_n\}$ be convergent
There for each $c \in Int(P)$ there exists a number $N(c)$ such that $d(x_n, x, a) << c$ for all $a \in X, n \ge N(c)$, Now for some $m, n \ge N(c)$
 $d(x_n, x, a) \le d(x_n, x, a) + d(x_n, x_m, x)$
 $< \frac{c}{3} + \frac{c}{3} + \frac{c}{3} = c$
 $i.e.d(x_n, x_n, a) \to 0 \text{ as } n, m \to \infty$
 $\therefore \{x_n\}$ is a Cauchy sequence.
Conversely if $\{x_n\}$ is Cauchy sequence, then for some $c \in Int(P)$. We have,
 $\therefore d(x_n, x_n, a) \le d(x_n, x_m, x) + d(x_n, x_n) + d(x, x_m, a), \forall n, m \ge N(c)$
 $\therefore 0 < d(x_n, x, a) \ne 0$
 $or \lim_{n \to \infty} x \ne x$
 $\therefore \{x_n\}$ does not converge to x .
This completes the proof.

Lemma 2.4: If every subsequence of a sequence $\{x_n\}$ converges to the same limit x in a cone 2-metric space (X,d) then x is the limit of the sequence $\{x_n\}$ in X. Proof:

Let $\{x_{n(\lambda)}\} \subset \{x_n\}$ be a subsequence such that $x_{n(\lambda)} \to x \text{ as } \lambda \to \infty$ Therefore, given $c \in Int(P)$, there exists a number N(c) and $x \in X$ such that $d(x_{n(\lambda)}, x, a) \ll c$ or equivalently.

$$d(x_{n(\lambda)}, x, a) < \frac{\epsilon}{3} \text{ if } K \|c\| < \epsilon \text{ and } \epsilon < 0 \text{ be chosen.}$$

Now,

$$d(x_n, x, a)$$

$$\leq d(x_n, x, x_{n(\lambda)}) + d(x_n, x_{n(\lambda)}, a) + d(x_{n(\lambda)}, x, a)$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

i.e., $d(x_n, x, a) \to 0$ as $n \to \infty \forall a \in X \& n \ge N(c)$

Thus,

 $\lim_{n \to \infty} x_n = x, \text{ as } n \to \infty$

Hence the sequence $\{x_n\}$ also converges to x.

- Remark 2.5 [15];[12] : If E be a real Banach space with cone P and if $a \le \lambda a$ where $a \in P$ and $0 < \lambda < 1$, then a = 0.
- Theorem 2.6: Let ((X,d) be a sequentially compact cone 2- metric space and let P be a cone with a normal constant K. Suppose the mappings $S,T: X \to X$ satisfy the following for all $x, y, z \in X$:

(2.6.1) T(X) or S(X) is closed subset of X.

$$d(Sx, Ty, z) \le Kd(x, y, z) + \lambda d(Sx, x, z)$$

(2.6.2)

$$\begin{aligned}
\mu d(Sx, Y, z) &= K d(x, y, z) + \lambda u(Sx, x, z) \\
&+ \mu d(Ty, y, z) + \beta \max\{d(Sx, y, z), d(Ty, x, z)\} \\
&\text{Where } 0 \leq K, \lambda, \mu, \beta < 1 \\
&\text{and } K + \lambda + \mu + 2\beta < 1, K + \beta < 1, \mu + \beta < 1
\end{aligned}$$

Then S and T have coincident points which are the unique common fixed points of S and T.

Proof :

For
$$x_0 \in X$$
, define a sequence $\{x_n\}$ as follows
 $x_n = Tx_{n-1}$ if *n* is odd
 $x_{n+1} = Sx_n$ if n is even.

Now,

$$\begin{aligned} d(x_{n+1}, x_n, z) &= d(Sx_n, Tx_{n-1}, z) \\ &\leq Kd(x_n, x_{n-1}, z) + \lambda d(Sx_n, x_n, Z) + \mu d(Tx_{n-1}, x_{n-1}, Z) \\ &+ \beta \max \left\{ d(Sx_n, x_{n-1}, Z), d(Tx_{n-1}, x_n, z) \right\} \\ &\leq Kd(x_n, x_{n-1}, z) + \lambda d(x_{n+1}, x_n, Z) + \mu d(x_n, x_{n-1}, z) \\ &+ \beta \max \left\{ d(x_{n+1}, x_{n-1}, z), d(x_n, x_n, z) \right\} \\ &\leq Kd(x_n, x_{n+1}, z) + \lambda d(x_{n+1}, x_n, Z) + \mu d(x_n, x_{n-1}, z) \\ &+ \beta d(x_{n+1}, x_{n-1}, z) \end{aligned}$$

$$\Rightarrow (1 - \lambda - \beta) d(x_{n+1}, x_n, z) \leq (K + \mu + \beta) d(x_n, x_{n-1}, z) \\ \Rightarrow d(x_{n-1}, x_n, z) \leq \left(\frac{K + \mu + \beta}{1 - \lambda - \beta} \right) d(x_n, x_{n-1}, z) \\ \Rightarrow d(x_{n-1}, x_n, z) \leq \rho d(x_n, x_{n-1}, z) \end{aligned}$$

Also,

$$\Rightarrow d(x_{n=1}, x_n, z) \le \rho d(x_{n-1}, x_{n-2}, z) \\ \le \rho^2 d(x_{n-1}, x_{n-2}, z) \le \dots$$

$$\leq \rho^n d(x_n, x_0, z)$$

Now for some $m, n \in N, n > m$.

$$d(x_{n}, x_{m}, z) \leq d(x_{n}, x_{m}, x_{n-1}) + d(x_{n}, x_{n-1}, z) + d(x_{n-1}, x_{m}, z)$$

$$\leq \rho^{n-1} d(x_{1}, x_{0}, z) + d(x_{n}, x_{n-1}, z) + d(x_{n-1}, x_{m}, z)$$

$$\leq (\rho^{n-1} + \rho^{n-2}) d(x_{1}, x_{0}, z) + d(x_{n-2}, x_{m}, z)$$

$$\leq (\rho^{n-1} \rho^{n-2} + ... + \rho^{n}) d(x_{1}, x_{0}, z)$$

$$\leq \rho^{m} (1 + \rho + \rho^{2} ... + \rho^{n-m-1}) d(x_{1}, x_{0}, z)$$

$$\leq \frac{\rho^{m}}{1 - \rho} d(x_{1}, x_{0}, z)$$

$$\Rightarrow || d(x_{n}, x_{m}, z) || \leq \frac{\rho^{m}}{1 - \rho} || d(x_{1}, x_{0}, z) ||$$

$$\Rightarrow || d(x_{n}, x_{m}, z) || \rightarrow o \text{ as } n, m \rightarrow \infty \qquad \text{by remark (2.5)}$$

$$\Rightarrow \lim_{n \to \infty} d(x_{n}, x_{m}, z) = o$$

Thus, $\{x_n\}$ is a Cauchy sequence in T(X) or S(X) which has a convergent subsequence. Let $\{x_{n(k+1)}\} \subset \{x_n\}$ be the convergent subsequence such that $x_{n(k+1)} \rightarrow x$ as $k \rightarrow \infty$

$$\therefore \lim_{k \to \infty} \lim_{k \to \infty} x_{n(k)} \Rightarrow Sx = x$$
To prove $x = Tx$. If $not, x \neq Tx$.
Now, $d(x,Tx,z)$
 $= d(Sx, \lim Tx_n, z)$
 $= d\left(Sx, \lim Tx_n, z\right)$
 $= \lim_{n \to \infty} d\left(Sx, Tx_n, z\right)$
 $= \lim_{n \to \infty} d\left\{Kd(x, x_n, z) + \lambda d\left(Sx, x, z\right) + md\left(Tx_n, x_n, z\right) + \beta max\left(d\left(Sx, x_n, z\right), d\left(Tx_n, x, z\right)\right)\right\}$
 $\leq \left(Kd(x, x, z) + \lambda d\left(Sx, x, z\right) + md\left(Tx, x, Z\right) + \beta max\left(d\left(Sx, x, z\right), d\left(Tx_n, x, z\right)\right)\right)$
 $\therefore d(x,Tx,z) \leq (m + \beta) d(Tx, x, z)$
 $\Rightarrow T(x,Tx,z) = 0$ by remark [2.5]
 $\Rightarrow Tx = x$

Thus, $Sx = Tx = x \Rightarrow$ The coincident points of S and T is the common fixed point of the mappings S and T.

We prove that the fixed point is unique . If possible, let z' be another fixed point of S and T, then z = z'. Now,

$$d(z, z', a) = d(Sz, Tz', a)$$

$$\leq Kd(z, z', a) + \lambda d(Sz, z, a) + ud(Tz', z', a) + \beta \max \{d(Sz, z', a), d(Tz, z', a)\}$$

$$\leq Kd(z, z', a) + \lambda d(z, z, a) + ud(z', z', a) + \beta \max \{d(z, z', a), d(z', z', a)\}$$

$$\leq (K + \beta)d(z, z', a)$$

i.e., $d(z, z', a) \leq (k + \beta)d(z, z', a)$
i.e., $d(z, z', a) = o$ by remark(2.5)
 $\therefore z = z'$

Thus, the fixed point s of S and T is unique.

Theorem 2.7 : Let (X,d) be a complete cone 2-metric space and let P be a normal cone with normal constant K suppose the mappings $S,T: X \to X$ satisfy the contractive conditions : (2.6.1) $d(SxTy,z) \le Kd(x,y,z) + \lambda d(Sx,x,z) + \mu d(Ty,y,z) + \beta max \{d(Sx,y,z), d(Ty,x,z)\}$

where K, λ, μ and β are constants and $o \le K, \lambda, u, \beta < 1$ and

(2.6.2) $K + \lambda + u + 2\beta < 1$, with $K + \beta < 1, \mu + \beta < 1$

Thus S and T have coincident points which are the unique common fixed point of the mappings S and T

Proof : For $x_0 \in X$, We define a sequence $\{x_n\}$ as

 $x_n = Tx_{n-1}$ if *n* is odd. $x_{n+1} = Sx$ if *n* is even.

Then continuing as in the proof of Theorem 2.6 are can prove that the sequence $\{x_n\}$ is Cauchy

Since X is complete the sequence $\{x_n\}$ converges to a unique limit i.e. if $z \in X$ such that

 $x_n \rightarrow z \text{ as } n \rightarrow \infty$

Then $S_z = T_z = z$, Such a fixed point is unique.

The details of the proof are omitted.

Theorem 2.8 : Let (X,d) be a complete cone -2 metric space and Let P be a normal cone with a normal constant K Suppose the mapping $T: X \to X$ satisfies for all $x, y, z \in X: d(Tx, Ty, Z) \le Kd(x, y, z) + \lambda d(Tx, x, z) + \mu d(Ty, y, z) + \beta max \{d(Tx, y, z), d(Ty, x, z)\}$

For some constants $K, \lambda, \mu\mu \& \beta$ such that $o \le k, \lambda, \mu, \beta < 1$ and $K+T+\mu+2\beta < 1, \lambda+\mu+\beta < 1, K+\beta < 1$

Then T has a unique fixed point in X.

Proof: For some $x_o \in X$ define a sequence $\{x_n\}$ in X by

$$\begin{aligned} x_1 &= Tx_o \\ x_2 &= Tx_1 = T^2 x_o, \dots, x_{n+1} = Tx_n = T^{(n+1)} x_o \end{aligned}$$

Now,

$$\begin{aligned} d(x_{n+1}, x_n, z) &= d(Tx_n, Tx_{n-1}, z) \\ &\leq Kd(x_n, x_{n-1}, Z) + \lambda d(Tx_n, x_n, z) + \mu d(Tx_{n-1}, x_{n-1}, z) + \beta \max \left\{ d(Tx_n, x_{n-1}, z), d(Tx_{n-1}, x_n, z) \right\} \\ &\Rightarrow d(x_{n+1}, x_n, x) \leq Kd(x_n, x_{n-1}, x) + \lambda d(x_{n+1}, x_n, z) + \mu d(x_n, x_{n-1}, z) + \beta \max \left\{ d(x_{n+1}, x_{n-1}, Z), d(x_n, xn, z) \right\} \\ &\Rightarrow (1 - \lambda - \beta) d(x_{n+1}, x_n, z) \leq (K + \mu + \beta) d(x_n, x_{n-1}, z) \\ &\Rightarrow d(x_{n+1}, x_n, z) \leq \rho d(x_n, x_{n-1}, x), \text{if } \rho = \left(\frac{k + \mu + \beta}{1 - \lambda - \beta} \right) < 1 \\ &\text{i.e. } K + \mu + \lambda + 2\beta < 1 \\ &\text{Also,} d(x_n, x_{n-1}, x) \leq \rho d(x_{n-1}, x_{n-2}, x) \\ &\text{Thus, } d(x_{n+1}, x_n, z) \leq \rho^n d(x_1, x_n, x) \end{aligned}$$

For some $m, n \in N$ and n > mWe can prove that

 $d(x_n, x_m, z) \rightarrow o \text{ as } n, m \rightarrow \infty$

 $\therefore \{x_n\}$ is a Cauchy sequence in X and hence if converges to some $x \in X$.

To prove $x = Tx = \lim_{n \to \infty} Tx_n$. Assume that $x \neq Tx$.

Now,

$$\begin{aligned} d(Tx, x, z) \\ &\leq d(Tx, x, Tx_n) + d(Tx, Tx_n, z) + d(Tx_n, Tx_n, z) \\ &\leq d(Tx, Tx_n, x) + d(Tx, Tx_n, z) + d(Tx_n, x, z) \\ &\leq \left[Kd(x, x_n, x) + \lambda d(Tx, x, x) + \mu d(Tx_n, x_n, x) + \beta max \left\{ d(Tx, x_n, x), d(Tx_n, x, x) \right\} \right] \\ &+ \left[Kd(x, x_n, z) + \lambda d(Tx, x, x) + \mu d(Tx_n, x_n, z) \right] \\ &+ \beta max \left\{ d(Tx, x_n, z), d(Tx_n, x, z) \right\} + d(Tx_n, x, z) \\ &\leq \mu d(Tx_n, x_n, x) + \beta .d(Tx, x_n, x) + Kd(x, x_n, z) \\ &+ \lambda d(Tx, x, z) + \mu d(Tx_n, x, z) \\ &+ \beta max \left\{ d(Tx, x_n, z), d(Tx_n, x, z) \right\} + d(Tx_n, x, z) \end{aligned}$$

Letting $n \to \infty$ and $\lim x_n = x$, we have

$$d(Tx, x, z) \le \mu d(Tx, x, z) + \beta d(Tx, x, x) + Kd(x, x, z)$$

+ $\lambda d(Tx, x, z) + \mu d(Tx, x, z) + \beta \max \{ d(Tx, x, z), d(Tx, x, z) \}$
 $\Rightarrow d(Tx, x, z) \le (\lambda + \mu + \beta) d(Tx, x, z)$
 $\Rightarrow d(Tx, x, z) = 0 \text{ as } \lambda + \mu + \beta < 1$
 $\Rightarrow Tx = x$

i.e. x is as fixed point of T. This fixed point is unique. Let, if possible, Ty = y for some $y \in X$. Now,

$$d(x, y, z) = d(Tx, Ty, z)$$

$$\leq Kd(x, y, z) + \lambda d(Tx, x, z) + \mu d(Ty, y, z)$$

$$+\beta \max \left\{ d(Tx, y, z), d(Ty, x, z) \right\}$$

$$\leq Kd(x, y, z) + \lambda d(x, x, z) + \mu d(y, y, z)$$

$$+\beta \max \left\{ d(x, y, z), d(y, x, z) \right\}$$

$$\leq (K + \beta) d(x, y, z)$$
i.e. $d(x, y, z) = 0 \forall z \in X$ using remark (2.5)
i.e. $x = y$

 \therefore The fixed point of T is unique in (X,d).

Corollary Theorem 2.9:

Let (X,d) be a complete cone 2-metric space and P be a normal cone with a normal constant K. Suppose $T: X \to X$ satisfies,

 $d(Tx,Ty,c) \le Kd(x, y, c) + \lambda d(Tx, x, c) + \mu d(Ty, y, c)$ for some $k, \lambda, \mu \in [0,1)$ with $k + \lambda + \mu < 1$, then T has a unique fixed point on X and for every $x \in X$, the sequence $\{T^n x\}$ coverages to the fixed point. This is the main Theorem 2.1 of [15] as a particular case of our theorem 2.7.

Proof: Putting $\beta = 0$ in Theorem 2.8 above, we get a sequence $\{T^n x_0\} \subset X$ which is a Cauchy sequence and hence converges to a point $x \in X \text{ as } X$ is x_0 - orbitally complete. The uniqueness of such fixed point follows easily.

Example: Let
$$E = R^2$$
 and $P = \{(x, y) \in R^2 : x, y \ge 0\}$ be a normal cone in E . Let X be
 $X = \{(x, 0) : 0 \le x \le 1\} \cup \{(0, y) : 0 \le y \le 1\}$. Define a mapping d by
 $d: X \times X \times X \to E$
 $d(a_1, a_2, a_3) = d_1(b_1, b_2), a_i \in X, \forall i = 1, 2, 3 \& b_1, b_2 \in \{a_1, a_2, a_3\}$ such that
 $||b_1 - b_2|| = \min\{||a_1 - a_2||, ||a_2 - a_3||, ||a_3 - a_1||\}$ and
 $d_1((x, 0), (y, 0)) = \left(\frac{3}{2}|x - y|, |x - y|\right),$
 $d_1((0, x), (0, y)) = \left(|x - y|, \frac{1}{2}|x - y|\right),$
 $d_1((x, 0), (0, y)) = d_1((0, y), (x, 0)) = \left(\frac{3}{2}x + y, x + \frac{1}{2}y\right)$

Then (X,d) is a complete cone 2-metric space. Define the mappings $S, T: X \rightarrow X$ by

$$S(x,0) = T(x,0) = (0, \frac{1}{2}x)$$
$$S(0, y) = T(0, y) = (\frac{1}{12}y, 0)$$

then the mappings S and T satisfy the contractive condition $d(Sx, Ty, z) \le kd(x, y, z) + \lambda d(Sx, x, z) + \mu d(Ty, y, z) + \beta \max\{d(Sx, y, z), d(Ty, x, z)\}$

for all x, y, z $\in X$ with the constants assuming the values $k = \frac{1}{4}$, $\lambda = \mu = \frac{1}{6}$ and $\beta = \frac{1}{12}$. The mappings S and T have a coincident point (0,0) which the unique common fixed point.

The mappings S and T have a coincident point (0,0) which the unique common fixed points. One can check that S and T are not contractive in the 2-metric space on X.

Acknowledgement: The first author L. Shambhu Singh is financially supported by UGC-MRP project No.-F.5-334/2014-2015/NERO/2367 dated 18/2/2015.

References

- 1. Gahler, S. 2 metrische Raume and ither topologische structure, Math Nachr, 26, (1963), PP. 115-148.
- 2. Gahler, S, Uber die unformesior barkat 2-metriche Raume, Math. Nachr, 28(1966), PP. 235-244.
- 3. Gahler, S., Zur geometric 2-metrische Raume, Math. Nachr, 28(1966), 11, PP.665-667
- 4. Boyd, D.W., Wong, T.S.W., On non-linear contractions, Proc.Amer.Soc.20(1969), PP.458-464.
- 5. Sessa, S. On a weak commutatively condition in fixed points considerations, Publ. Inst. Math. 32,(1982), PP. 149-153.
- 6. Naidu, S.V.R. and Prasad, J.R., Fixed point Theorem in 2-metric spaces, Indian J.Pure Appl. Math., (1986), 17, PP. 974-993.

- 7. Imdad, M. Khan, M.S. and Khan, M.D., A common fixed point theorem in 2-metric space, Math. Japonica, 36(5), (1991), PP. 907-914.
- 8. Rhoades, B.E., Some theorems on weakly contractive maps., Non-linear Anals 47(2001), PP. 2683-2693.
- 9. Singh, M.R., Singh, L.S. and Murthy P.P., common fixed points of set -valued mappings, Int, J.Math. Sci. 25(6), (2001), PP. 411-415.
- 10. Huang, L.G., Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings J. Math. Anal. Appl. 332(2007), PP. 1468-1476.
- 11. Murthy, P.P., Kenan Tas, New common fixed point theorem of Gregus type for R-weakly commuting mappings in 2-metric space, Hacettepe Journal of Mathematics and Statistics, Vol. 38(3), (2009), PP. 285-291.
- 12. Shobha Jain, Shishir Jain and Lal Bahadur, Weakly Compatible maps in Cone Metric Spaces, Rediconti Del Semnario Mathematica, 3,(2010), PP. 13-23.
- 13. Asim R., Aslam M. Zafer, A.A., Fixed point theorem for certain contraction in Dmetric space, Int Journal of Math. Analysis, Vol. 5. No. 39, (2011), PP. 1921-1931.
- Shambu Singh L. Ranjit Singh M., New common fixed point theorem of Set-valued mapping in 2-metric spaces, International Journal of Math. Sci&Engg. Appls. (IJMSEA), ISSN 0973-9424, Vol. 5. No. III. PP. 156-173.
- 15. B.Singh, Shishir Jain, Prakash Bhagat, Cone 2-metric spaces and fixed point theorem of contractive mappings, Commentationes Mathematicae, Vol. 52, No. 2 (2012), PP. 143-151.