
THEOREMS ON BEST PROXIMITY POINTS FOR

GENERALIZED RATIONAL PROXIMAL CONTRACTIONS

A.ANTONY RAJ1 J.MARIA JOSEPH2 M. MARUDAI3

Abstract. If the fixed point equation Tx = x does not posses a solu-
tion, then the natural interest is to find an element x ∈ X such that x
is in proximity to Tx in some sense. In other words, we would like to
get a desirable estimate for the quantity d(x, Tx) . In this paper, we
prove best proximity point theorems for generalized rational proximal
contraction of the first and second kinds. We also prove a best proxim-
ity point theorem for nonself mapping for generalized rational proximal
contraction of the first and second kinds without assuming the continu-
ity. Our results unify, generalize various known comparable results from
the current literature [6,7] .

1. Introduction and preliminaries:

Fixed point theory is an active area of research with wide range of ap-
plications in various directions. It is concerned with the results which state
that under certain conditions a self map f on a set X admit one or more
fixed points. Fixed point theory started almost immediately after the classi-
cal analysis began its rapid development. The further growth was motivated
mainly by the need to prove existence theorems for differential and integral
equations. Thus the fixed point theory started as purely analytical theory.
Fixed point theory can be divided into three major areas: Metric fixed point
theory, Topological fixed point theory and Discrete fixed point theory. Clas-
sical and major results in these areas are: Banach’s fixed point theorem,
Brouwer’s fixed point theorem and Tarski’s fixed point theorem. In 1922,
the Polish mathematician Stefan Banach formulated and proved a theorem
which concerns under appropriate conditions the existence and uniqueness
of a fixed point in a complete metric space. His result is known as Banach’s
fixed point theorem or the Banach’s contraction principle. Due to its sim-
plicity and generality, the contraction principle has drawn attention of a
very large number of mathematicians. After the period of enormous devel-
opment of linear functional analysis the time was ripe to focus on nonlinear
problems.
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Then the role of the analytical fixed point theory became even more im-
portant. The study of fixed points for set valued contractions and nonex-
pansive maps using the Hausdorff metric was initiated by Markin. Later, an
interesting and rich fixed point theory for such maps has been developed.
Following the Banach’s contraction principle Nadler introduced the concept
of set valued contractions and established that a set valued contraction pos-
sesses a fixed point in a complete metric space. Subsequently many authors
generalized Nadler’s fixed point theorem in different ways[1,2,5]. A funda-
mental result in fixed point theory is the Banach’s contraction principle.
Several extensions of this result have appeared in the literature; see e.g.,
Kirk [3]. Srinivasan et al. [4] extended the Banach’s contraction theorem
for a class of mappings satisfying cyclical contractive conditions. However
,the fixed point theorems do not address the issue of non-existence of a solu-
tion to the equation Tx = x when the mapping T is not a self-mapping. On
the other hand, the best approximation theorems and best proximity point
theorems probe into the existence of an approximate solution to the equa-
tion Tx = x when T is non-self mapping, in which case a solution does not
necessarily exist. The best proximity point theorems ascertain an optimal
approximate solution to the fixed point equation Tx = x. In fact, given a
non-self mapping T : A→ B, a best proximity point theorem examines the
conditions that guarantee the existence of an element x which is in some
sense closest to Tx. In other words, in the setting of metric spaces, a best
proximity point theorem identifies an element x for which d(x, Tx) is min-
imum. In this case, a point such that d(z, Tz) = dist(A,B) called a best
proximity point, has been considered. This notion is more general in the
sense that if the sets intersect, then every best proximity point is a fixed
point

In this section we give some basic definitions and concepts which are useful
and related to the context of our results. Define

PA(x) = {y ∈ X : d(x, y) = d(x,A)}
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}

A0 = {x ∈ A : d(x, y′) = d(A,B) for some y′ ∈ B}
B0 = {y ∈ B : d(x′, y) = d(A,B) for some x′ ∈ A}

There are some sufficient conditions which guarantee the non emptiness of
A0 and B0.One such simple condition is that A is compact and B is approx-
imately compact with respect to A(if every sequence {xn} of B such that
d(y, xn)→ d(y,B) for some y in A should have a convergent subsequence)

Definition 1.1. Let (X, d) be a metric space. Let A and B be two nonempty
subsets of X. A mapping T : A → B is said to be generalized rational
proximal contraction of the first kind if there exist ai ≥ 0, i = 1, 2, ..., 5 with
a1 + a2 + a3 + 2a4 + 2a5 < 1 such that the conditions d(u1, Tx1) = d(A,B)
and d(u2, Tx2) = d(A,B) imply that

d(u1, u2) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x2, u2)

+ a3

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x1, x2) + a4
[
d(x1, u1) + d(x2, u2)

]
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+ a5
[
d(x1, u2) + d(x2, u1)

]
,

for all u1, u2, x1, x2 ∈ A.

Note that, if a3 = 0 , we get a rational proximal contraction of the first
kind by taking a1 = α, a2 = β, a4 = γ, a5 = δ, see[6].

Definition 1.2. Let (X, d) be a metric space. Let A and B be two nonempty
subsets of X. A mapping T : A → B is said to be generalized rational
proximal contraction of the second kind if there exist ai ≥ 0, i = 1, 2, ..., 5
with a1+a2+a3+2a4+2a5 < 1 such that the conditions d(u1, Tx1) = d(A,B)
and d(u2, Tx2) = d(A,B) imply that

d(Tu1, Tu2) ≤ a1 d(Tx1, Tx2) + a2

(
1 + d(Tx1, Tu1)

)
1 + d(Tx1, Tx2)

d(Tx2, Tu2)

+ a3

(
1 + d(Tx1, Tu1)

)
1 + d(Tx1, Tx2)

d(Tx1, Tx2) + a4
[
d(Tx1, Tu1)

+ d(Tx2, Tu2)
]

+ a5
[
d(Tx1, Tu2) + d(Tx2, Tu1)

]
,

for all u1, u2, x1, x2 ∈ A.

Note that, if a3 = 0 , we get a rational proximal contraction of the second
kind by taking a1 = α, a2 = β, a4 = γ, a5 = δ, see[6].

2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space and A and B be two
non-empty, closed subsets of X such that B is approximately compact with
respect to A. Suppose that A0 and B0 are non-empty and T : A → B is a
non self-mapping satisfying the following conditions:

(a) T is a generalized rational proximal contraction of the first kind,
(b) T (A0) ⊆ B0.

Then there exists a unique element x in A such that d(x, Tx) = d(A,B).
Further, for any x0 ∈ A0, the sequence {xn}, defined by
d(xn+1, Txn) = d(A,B), converges to the best proximity point x.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, then by the definition of B0, there
exists x1 ∈ A0 such that

d(x1, Tx0) = d(A,B)

Again, Tx1 ∈ B0, it follows that there is x2 ∈ A0 such that

d(x2, Tx1) = d(A,B)

Continuing this process, we construct a sequence {xn} in A0, such that
d(xn+1, Txn) = d(A,B), for every non-integer n because T (A0) ⊆ B0.
Also, T is a generalized rational proximal contraction of the first kind, we
have

d(xn, xn+1) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x2, u2)

+ a3

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x1, x2) + a4
[
d(x1, u1) + d(x2, u2)

]
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+ a5
[
d(x1, u2) + d(x2, u1)

]
d(xn, xn+1) ≤ a1 d(xn−1, xn) + a2

(
1 + d(xn−1, xn)

)
1 + d(xn−1, xn)

d(xn, xn+1)

+ a3

(
1 + d(xn−1, xn)

)
1 + d(xn−1, xn)

d(xn−1, xn) + a4
[
d(xn−1, xn)

+ d(xn, xn+1)
]

+ a5
[
d(xn−1, xn+1) + d(xn, xn)

]
≤ a1 d(xn−1, xn) + a2 d(xn, xn+1) + a3 d(xn−1, xn)

+ a4 d(xn−1, xn) + a4 d(xn, xn+1) + a5 d(xn−1, xn)

+ a5d(xn, xn+1)

≤ (a1 + a3 + a4 + a5)

1− (a2 + a4 + a5)
d(xn−1, xn)

It follows that, d(xn, xn+1) ≤ k d(xn−1, xn), where, k = ( a1+a3+a4+a5
1−(a2+a5+a5)

).

Similarly, we will show that d(xn, xn+1) ≤ k2 d(xn−2, xn−1). By induction,
we obtain, d(xn, xn+1) ≤ kn d(x0, x1). Note that for m,n ∈ N such that
m > n, we have,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (km−1 + km−2 + · · ·+ kn) d(x0, x1)

= kn(1 + k + k2 + k3 + · · ·+ km−n−1) d(x0, x1)

≤ kn
∞∑
r=0

kr d(x0, x1)

≤ kn

1− k
d(x0, x1)

Since 0 ≤ k < 1, then as n → ∞, kn(1 − k)−1 → 0 and d(xm, xn) → 0 as
m,n→∞

Therefore {xn} is a Cauchy sequence in X. But X is complete and A is
closed, the sequence {xn} converges to some x ∈ A. Further, we have,

d(x,B) ≤ d(x, Tx)

≤ d(x, xn+1) + d(xn+1, Txn)

= d(x, xn+1) + d(A,B)

≤ d(xnxn+1) + d(x,B)

Therefore, d(x, Txn) → d(x,B). But B is approximately compact with
respect to A, then the sequence {Txn} has a subsequence {Txnk

} that con-
verges to some y ∈ B. Then, d(x, y) = limk→∞ d(xnk+1

, Txnk
) = d(A,B)

and hence x must be in A0. Since T (A0) ⊆ B0, then, d(u, Tx) = d(A,B)
, for some u ∈ A. Using the fact that T is generalized rational proximal
contraction of the first kind, we obtain,

d(u, xn+1) ≤ a1 d(x, xn) + a2

(
1+d(x,u)

)
1+d(x,xn)

d(xn, xn+1) + a3

(
1+d(x,u)

)
1+d(x,xn)

d(x, xn)

+a4
[
d(x, u) + d(xn, xn+1)

]
+ a5

[
d(x, xn+1) + d(xn, u)

]
. Taking the limit as n → ∞, we get, d(u, x) ≤ (a4 + a5) d(x, u), which
yields x = u, since a4 + a5 < 1. Therefore, d(x, Tx) = d(u, Tx) = d(A,B).
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Hence, x is a best proximity point of T .
Uniqueness: Let y be the other best proximity points of T . So that
d(y, Ty) = d(A,B). Since T is a generalized rational proximity contrac-
tion of the first kind, we have,

d(x, y) ≤ a1 d(x, y) + a2

(
1+d(x,x)

)
1+d(x,y) d(y, y) + a3

(
1+d(x,x)

)
1+d(x,y) d(x, y)

+a4
[
d(x, x) + d(y, y)

]
+ a5

[
d(x, y) + d(x, y)

]
which yields d(x, y) < (a1 + a3 + 2a5) d(x, y). It follows that x = y, since
a1 + a3 + 2a5 < 1.
Hence T has a unique best proximal points.

Theorem 2.2. Let (X, d) be a complete metric space. Let A and B be two
non-empty, closed subsets of X such that A is approximately compact with
respect to B. Suppose that A0 and B0 are non-empty and T : A → B is a
non self-mapping satisfies the following conditions:

(a) T is continuous generalized rational proximity contraction of the second
kind.

(b) T (A0) ⊆ B0.

Then there exists an element x in A such that d(x, Tx) = d(A,B) and
the sequence {xn}, defined by d(xn+1, xn) = d(A,B) converges to the best
proximity point x, where x0 is any fixed element in A0 and d(xn+1, xn) =
d(A,B) for n ≥ 0.

Moreover, if y is another best proximity point of T , then Tx = Ty and
hence T is a constant on the set of all best proximity points of T .

Proof. Proceeding as in Theorem 2.1, it is possible to construct a sequence
{xn} in A0 such that d(xn+1, xn) = d(A,B) ,for any non-negative integer n.
Since T is a generalized rational proximal contraction of the second kind,
we obtain

d(Txn, Txn+1) ≤ a1 (Txn−1, Txn) + a2

(
1 + d(Txn−1, Txn)

)
1 + d(Txn−1, Txn)

d(Txn, Txn+1)

+ a3

(
1 + d(Txn−1, Txn)

)
1 + d(Txn−1, Txn)

d(Txn−1, Txn)

+ a4
[
d(Txn−1, Txn) + d(Txn, Txn+1)

]
+ a5

[
d(Txn−1, Txn+1) + d(Txn, Txn)

]
≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn+1)

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn)

+ a5 d(Txn, Txn+1)

It follows that d(Txn, Txn+1) ≤ k d(Txn−1, Txn), where k = ( a1+a3+a4+a5
1−(a2+a4+a5)

)

Following the same proof of the Theorem 2.1, we can show that {Txn} is a
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Cauchy sequence. Since X is complete, then the sequence {Txn} converges
to some y ∈ B. Moreover, we have,

d(y, x) ≤ d(y, xn+1)

≤ d(y, Txn) + d(Txn, xn+1)

= d(y, Txn) + d(A,B)

≤ d(y, Txn) + d(y,A)

Therefore, d(y, xn) → d(y,A). But, A is approximately compact with re-
spect to B, then the sequence {xn} has a subsequence {xnk

} converging to
some x ∈ A. Since T is continuous mapping, d(x, Tx) = limk→∞ d(xnk+1

, Txnk
) =

d(A,B). Hence x is a best proximity point of T .
Uniqueness: Let y be another best proximity point of T so that d(y, Ty) =
d(A,B) Using the fact that T is a generalized rational proximal contraction
of the second kind, we obtain,

d(Tx, Ty) ≤ a1 d(Tx, Ty) + a2

(
1 + d(Tx, Tx)

)
1 + d(Tx, Ty)

d(Ty, Ty)

+ a3

(
1 + d(Tx, Tx)

1 + d(Tx, Ty)
d(Tx, Ty) + a4

[
d(Tx, Tx)

+ d(Ty, Ty)
]

+ a5
[
d(Tx, Ty) + d(Tx, Ty)

]
which yields d(Tx, Ty) < (a1 + a3 + 2a5) d(Tx, Ty),since a1 + a3 + 2a5 < 1.
Hence, Tx = Ty. This completes the proof.

Theorem 2.3. Let (X, d) be a complete metric space. Let A and B be two
non-empty, closed subsets of X. Suppose that A0 and B0 are non-empty .
Let T : A→ B satisfies the following conditions:

(a) T is a generalized rational proximal contraction of the first kind and
second kind.

(b) T (A0) ⊆ B0.

Then, there exists a unique element x in A such that d(x, Tx) = d(A,B).
Further, for any fixed x0 ∈ A0, the sequence {xn}, defined by d(xn+1, Txn) =
d(A,B), converges to x.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, then by the definition of B0, there
exists x1 ∈ A0 such that

d(x1, Tx0) = d(A,B)

Again, Tx1 ∈ B0, it follows that there is x2 ∈ A0 such that

d(x2, Tx1) = d(A,B)

Continuing this process, we construct a sequence {xn} in A0, such that
d(xn+1, Txn) = d(A,B), for every non-integer n because T (A0) ⊆ B0.
Also, T is a generalized rational proximal contraction of the first kind, we
have

d(xn, xn+1) ≤ a1 d(x1, x2) + a2

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x2, u2)

+ a3

(
1 + d(x1, u1)

)
1 + d(x1, x2)

d(x1, x2) + a4
[
d(x1, u1) + d(x2, u2)

]
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+ a5
[
d(x1, u2) + d(x2, u1)

]
d(xn, xn+1) ≤ a1 d(xn−1, xn) + a2

(
1 + d(xn−1, xn)

)
1 + d(xn−1, xn)

d(xn, xn+1)

+ a3

(
1 + d(xn−1, xn)

)
1 + d(xn−1, xn)

d(xn−1, xn) + a4
[
d(xn−1, xn)

+ d(xn, xn+1)
]

+ a5
[
d(xn−1, xn+1) + d(xn, xn)

]
≤ a1 d(xn−1, xn) + a2 d(xn, xn+1) + a3 d(xn−1, xn)

+ a4 d(xn−1, xn) + a4 d(xn, xn+1) + a5 d(xn−1, xn)

+ a5d(xn, xn+1)

≤ (a1 + a3 + a4 + a5)

1− (a2 + a4 + a5)
d(xn−1, xn)

It follows that d(xn, xn+1) ≤ k d(xn−1, xn), where k = ( a1+a3+a4+a5
1−(a2+a5+a5)

). Sim-

ilarly, we will show that, d(xn, xn+1) ≤ k2 d(xn−2, xn−1). By induction, we
obtain, d(xn, xn+1) ≤ kn d(x0, x1) Note that for m,n ∈ N such that m > n,
we have,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (km−1 + km−2 + · · ·+ kn) d(x0, x1)

= kn(1 + k + k2 + k3 + · · ·+ km−n−1) d(x0, x1)

≤ kn
∞∑
r=0

kr d(x0, x1)

≤ kn

1− k
d(x0, x1)

Since 0 ≤ k < 1, then as n → ∞, kn(1 − k)−1 → 0 and d(xm, xn) → 0 as
m,n→∞. Therefore, {xn} is a Cauchy sequence in X and hence converges
to some element x ∈ A.
d(xn+1, xn) = d(A,B), for any non-negative integer n. Since T is a gen-

eralized rational proximal contraction of the second kind, we obtain,

d(Txn, Txn+1) ≤ a1 (Txn−1, Txn) + a2

(
1 + d(Txn−1, Txn)

)
1 + d(Txn−1, Txn)

d(Txn, Txn+1)

+ a3

(
1 + d(Txn−1, Txn)

)
1 + d(Txn−1, Txn)

d(Txn−1, Txn)

+ a4
[
d(Txn−1, Txn) + d(Txn, Txn+1)

]
+ a5

[
d(Txn−1, Txn+1) + d(Txn, Txn)

]
≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn+1)

≤ a1 d(Txn−1, Txn) + a2 d(Txn, Txn+1)

+ a3 d(Txn−1, Txn) + a4 d(Txn−1, Txn)

+ a4 d(Txn, Txn+1) + a5 d(Txn−1, Txn)
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+ a5 d(Txn, Txn+1).

It follows that d(Txn, Txn+1) ≤ k d(Txn−1, Txn), where k = ( a1+a3+a4+a5
1−(a2+a4+a5)

),

we can show that {Txn} is a Cauchy sequence. Since X is complete,
then the sequence {Txn} converges to some y ∈ B. Therefore, d(x, y) =
limn→∞ d(xn1 , Txn) = d(A,B). Clearly, xmust be inA0. Since T (A0) ⊆ B0,
then, d(u, Tx) = d(A,B) ,for some u ∈ A. Since T is a generalized rational
proximal contraction of the first kind, we obtain,

d(u, xn+1) ≤ a1 d(x, xn) + a2

(
1 + d(x, u)

)
1 + d(x, xn)

d(xn, xn+1)

+ a3

(
1 + d(x, u)

)
1 + d(x, xn)

d(x, xn) + a4
[
d(x, u) + d(xn, xn+1)

]
+ a5

[
d(x, xn+1) + d(xn, u)

]
Taking the limit as n→∞, we have, d(u, x) ≤ (a4 +a5) d(x, u) which yields
x = u, since a4+a5 < 1. Thus, it follows that d(x, Tx) = d(u, Tx) = d(A,B).
Uniqueness: Let y be the other best proximity points of T . So that
d(y, Ty) = d(A,B) Since T is a generalized rational proximity contraction
of the first kind, we have,

d(x, y) ≤ a1 d(x, y) + a2

(
1 + d(x, x)

)
1 + d(x, y)

d(y, y)

+ a3

(
1 + d(x, x)

)
1 + d(x, y)

d(x, y) + a4
[
d(x, x) + d(y, y)

]
+ a5

[
d(x, y) + d(x, y)

]
which yields d(x, y) < (a1 + a3 + 2a5) d(x, y). It follows that x = y, since
a1 + a3 + 2a5 < 1.
Hence T has a unique best proximal points.This completes the proof.

Example 2.4. Let (X, d) be complete metric space.
Let X = R endowed with usual metric d(x, y) = |x− y|, for all x, y ∈ X
. Let A = [−2, 2] and B = [−4,−3]

⋃
[3, 4]

Define T : A→ B by

Tx = 3 if x ∈ Q
= 4 if x /∈ Q

Indeed, d(A,B) = 1, A0 = {−2, 2}, B0 = {−3, 3} and T (A0) ⊆ B0.
Hence, T is a generalized rational proximal contraction of the first and sec-
ond kinds. All the hypothesis of Theorem 2.3 are satisfies and d

(
2, T (2)

)
=

d(A,B).
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