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Abstract 

Capital management is a major concern for financial institutions. In fact, the 

declaration of risk appetite and capital allocation by the business line and the risk 

category are a means of managing the bank's activity.  

In this paper, we will present an approach to capital allocation based on 𝑉𝑎𝑅, 

combining the modelling of historical data using the 𝐿𝐷𝐴 approach and the 

modelling of data collected from experts using the Bayesian approach. 

We will also focus on the quality of the data collected from experts by 

proposing an approach based on the Delphi method that ensures the reliability of 

experts' estimates and reduces the model risk.  

   

 Keywords: Capital Allocation, Bayesian Approach, Value at Risk, Monte Carlo, Expert 
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1. Introduction 

Operational risk management practice is based on an approach based on four steps: 

identification, assessment of impact, classification of risks and implementation of action plans. 

Indeed, the risk management process must be able to ensure a perfect knowledge and control of 

operational risks at the level of the various activities exercised. 

With regard to the minimum capital requirement, the legislator under the Basel II offers 

banks several approaches and methods for calculating operational risk depending on the degree of 

control and the availability of the information required for internal modelling. As a result, the 

regulator proposes on one hand simple, unified and standardized approaches whose characteristics 

are provided by him and on the other hand, complicated and sophisticated approaches whose 

characteristics are determined by the banks.  

The Basel Committee has instituted operational risk management through three main 

documents. In addition to the Basel II Accord, which is the main reference for the regulation of 

operational risk; the committee defined best practices for operational risk management in a 

document published in 2003 entitled « Sound Practices for the Management and Supervision of 

Operational Risk ». Then, it revised these principles in 2011 with the publication of a new 

document entitled «Principles for the Sound Management of Operational Risk ».  
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In the first document, which represents the first reflections of the banks and the Basel 

Committee on the introduction of operational risk management at bank level, the Committee has 

defined the principles of best practice that can guarantee the effectiveness of the operational risk 

management process. Indeed, these principles are in the order of ten principles divided into four 

areas: 

(1) The elaboration of an adequate environment for risk management.  

(2) Identification, evaluation, monitoring and control and/or mitigation of risk.  

(3) The role of supervisors.  

(4) The role of financial communication. 

In the revised document the committee proposes three lines of defence and 11 principles of 

best practice. 

In terms of quantification, the committee presented some methods that can be used in the 

AMA approach in a document published in 2001 entitled « Working Paper on the Regulatory 

Treatment of Operational Risk ». 

Following the financial crisis, the minimum capital requirements for operational risk were 

reviewed by the Basel Committee. Indeed, the publication in December 2017 of the document 

entitled « Basel III: Finalising post-crisis reforms» divulged the orientation of banking regulation 

after 2022, which consists in replacing existing operational risk measurement approaches with a 

single approach known as « Standardised Measurement Approach (𝑆𝑀𝐴)» which will enter into 

effect in January 2022. 

Before the Basel III reform enters into effect, banks continue to use their own models for 

calculating minimum capital requirements. Indeed, banks opt for two types of modelling 

approaches, namely the Top-Down approach or the Bottom-up approach. 

The Top-Down approach quantifies operational risk without attempting to identify events or 

causes of losses. The operational losses, under this approach, are measured based on overall 

historical data. 

The Bottom-up approach quantifies operational risk based on knowledge of events by 

identifying internal events and related generating factors in great detail at the level of each task 

and entity. The information collected is included in the overall calculation of the capital charge.  

The use of internal models is essential for operational risk management despite the Basel 

Committee's decision to abandon the 𝐴𝑀𝐴 approach, notably for the risk appetite process and 

capital allocation process. 

Therefore, in this article, we will propose an approach to capital allocation based on a 

combination of expert opinion and the Loss Distribution Approach (𝐿𝐷𝐴). Indeed, the second 

paragraph will be reserved for risk appetite, the third part for risk mapping and regulatory capital 

requirements, then, the fourth part for the 𝐿𝐷𝐴 approach and the determination of VaR in 

operational risk, more over, the fifth part will be reserved for Bayesian modelling of the expert 

opinion and we terminate with the empirical study. 

2. The risk appetite process : 

Risk appetite is defined as the maximum loss that the bank accepts to support in order to 

achieve its profitability objectives. Indeed, the Board of Directors must define the risks that 

shareholders accept to support in order to achieve the objectives defined for the Senior 

Management.  

Risk appetite must be declined by the Senior Management at the level of each business line 

and activity, by defining risk tolerance at the intermediate level and risk limits at the operational 

level.  

Risk appetite is directly related to the current risk profile and its evolution in correlation with 

the evolution of the bank's activity. As a result, the bank must determine its risk profile at the date 

of preparation of its risk appetite policy and must estimate the evolution of its profile in accordance 

with the progress of its development and expansion plan. 
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The risk profile is determined internally by the bank and may differ from its regulatory 

profile determined by the regulatory capital. Indeed, the actual profile is determined by the bank's 

economic capital, while the regulatory profile is defined by the minimum capital requirement 

according to the standard approach of the Basel III.   

For the deployment of a risk appetite framework, Shang and Chen (2012) identified seven 

steps: 

(1) Bottom-up analysis of the company's current risk profile. 

(2) Interviews with the board of directors regarding the level of risk tolerance.  

(3)  Alignment of risk appetite with the company's goal and strategy.  

(4) Formalization of the risk appetite statement with approval from the board of directors. 

(5) Establishment of risk policies, risk limit and risk-monitoring processes consistent with risk 

appetite. 

(6) Design and implementation of the risk-mitigation plan to be consistent with risk appetite. 

(7) Communication with local senior management for their buy in. 

Indeed, this approach should allow to define three components:  

(1) The risk profile,  

(2) The risk tolerance process  

(3) The process for defining operational risk limits.  

2.1. The process of allocation capital. 

Capital allocation is the process that defines the capital allocated by the bank to a given entity 

to achieve the intended profitability objective. Indeed, the capital 𝐾𝑖 allocated to unit (𝑖) is defined 

according to the risk incurred by the said unit.  

The definition of a risk measure 𝜌 is an essential component in the capital allocation process. 

Indeed, for operational risk, two measures can be used, namely value at risk (𝑉𝑎𝑅) which is a non-

coherent risk measure, and the Expected Shortfall, which is a coherent risk measure. The expected 

Shortfal (𝐸𝑆) is defined by: 

                                               𝐸𝑆𝛼 =
1

𝛼
∫ 𝐹−1(𝑝)𝑑𝑝

𝛼

0
 

 with F is the cumulative distribution function of operational losses. 

Let be 𝑋𝑖, 𝑖 = 1, … , 𝑛 the random variables representing the individual losses of the 𝑛 

business units and 𝐾𝑖, 𝑖 = 1, … , 𝑛 the allocation of capital for each probable individual loss (𝑖). 
The total operational loss (𝑃) and total risk capital (𝐾) are expressed as : 

                                              {
𝑃 = ∑ 𝑋𝑖

𝑛
𝑖=1    

𝐾 = ∑ 𝐾𝑖
𝑛
𝑖=1

 

For the allocation of risk capital per unit, Dhaene et al (2012) proposes several methods that 

can be used to allocate equity capital as part of portfolio management. For operational risk, we use 

the proportional allocation method, which defines the capital 𝐾𝑗 allocated to unit 𝑖 by the formula: 

                                                    𝐾𝑗 =
𝐾

∑ 𝜌(𝑋𝑖)𝑛
𝑖=1

𝜌(𝑋𝑗) (1) 

with 𝜌(𝑋𝑗) = 𝐹𝑋𝑖

−1(𝛼) = 𝑉𝑎𝑅𝛼(𝑋𝑖)  or 𝜌(𝑋𝑗) = 𝐸𝑆𝛼(𝑋𝑖) =
1

𝛼
∫ 𝐹𝑋𝑖

−1(𝑝)𝑑𝑝
𝛼

0
       

For this method, the capital allocation is based on the risk measure 𝜌. As a result, the use of 

internal models to measure operational risk at the level of each entity and at the level of all entities 

is essential. 

Under the second pillar, the allocation of capital and the implementation of the risk appetite 

process strengthen the use of internal models despite the suppression of their use for the calculation 

of the minimum capital requirement under the first pillar. Indeed, the piloting of the activity by the 

risk requires an individual monitoring of the risk by business line in order to guarantee an adequacy 

between the risk incurred and the capital allocated. 
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Consequently, the bank must develop its own models for estimating the economic capital 

needed to develop its business independently of the regulatory constraint of measuring the 

solvency ratio based on the standard approach of the Basel III.    

3. The risk mapping and capital requirements: 

3.1. The risk mapping: 

The operational risk mapping is a balance sheet of the probable risks incurred by the bank at 

a given date. Indeed, it represents all operational risk situations broken down by business line and 

risk category. 

The operational risk situation is composed of three elements:  

(1) The generating factor of the risk (hazard): it constitutes the factors that favour the occurrence 

of the risk incident as inexperienced personnel and the malfunction of control device. 

(2) The operational risk event (incident): it constitutes the single incident whose occurrence can 

generates losses for the bank as internal fraud and external fraud. 

(3) The impact (loss): it constitutes the amount of financial damage resulting from an event. 

To normalize the identification of operational risk situation, the Basel Committee on 

Banking Supervision (2006) defines a generic mapping of operational risks within credit 

institutions, comprising 8 business lines and 7 categories of operational risks. 

3.1.1. The operational risk categories. 

The operational risk categories (RTc,1≤𝑐≤7) are : RT1- Execution, delivery and process 

management, RT2- Business disruption and system failures, RT3- Damage to physical assets, RT4- 

Clients, products and business practices, RT5- Employment practices and workplace safety, RT6 - 

External Fraud, RT7  : Internal Fraud. 

3.1.2. The business lines. 

The business lines (𝐵𝐿𝑖,1≤𝑖≤8) are :𝐵𝐿1: Corporate finance, 𝐵𝐿2: Trading and sales, 𝐵𝐿3: 

Retail banking, 𝐵𝐿4: Commercial banking, 𝐵𝐿5: Payment and settlement, 𝐵𝐿6: Agency services, 

𝐵𝐿7: Asset management, 𝐵𝐿8: Asset management. 

3.2. Capital requirements. 

 The quantification of operational risk remains a major problem for the Basel Committee. 

Indeed, several approaches have been adopted in the Basel II framework, including the 𝐴𝑀𝐴 

approach based on internal models, considered the most important.  

The research on the AMA approach focuses on the LDA approach, in these different forms, 

namely the classical approach, the Bayesian approach or MCMC, in particular those conducted by 

King (2001), Cruz (2002), Alexander (2003), Frachot et al. (2003), Chernobai et al. (2005), Bee 

(2006) and Schevchenko et al. (2008, 2009 and 2010).  

The use of internal models has been strongly criticized by the Basel Committee. Indeed, a 

new orientation of the Basel Committee has been born consists in abandoning all Basel II 

approaches and adopting a new standard approach 𝑆𝑀𝐴 which will replace all previous 

approaches. 

This new approach has been criticized by various academics and professionals such as 

Mignola et al.(2016); Peters et al.(2016); McConnell (2017) which means that operational risk 

remains an incomprehensible risk according to various studies such as Cohen (2017). 

The standard approach 𝑆𝑀𝐴 (Basel 2017) is based on the Business indicateur (𝐵𝐼) defined 

as follows :  

𝐵𝐼 = 𝐼𝐿𝐷𝐶 + 𝑆𝐶 + 𝐹𝐶    (2) 

The components 𝐼𝐿𝐷𝐶, 𝑆𝐶 and 𝐹𝐶 are calculated by the following formulas: 

                𝐼𝐿𝐷𝐶 = 𝑀𝑖𝑛 [(
1

3
∑ |𝑃𝐼𝑖 − 𝐶𝐼𝑖|

3
𝑖=1 ) ; 2,25% × (

1

3
∑ 𝐴𝑃𝐼𝑖

3
𝑖=1 )] +

1

3
∑ 𝐷𝑖

3
𝑖=1  (3) 
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 𝑆𝐶 = 𝑀𝑎𝑥 [(
1

3
∑ 𝐴𝐶𝐸𝑖

3
𝑖=1 ) ; (

1

3
∑ 𝐴𝑃𝐸𝑖

3
𝑖=1 )] + 𝑀𝑎𝑥 [(

1

3
∑ 𝑃𝐻𝐶𝑖

3
𝑖=1 ) ; (

1

3
∑ 𝐶𝐻𝐶𝑖

3
𝑖=1 )] (4) 

 𝐹𝐶 =
1

3
∑ |𝑃𝐿𝑇𝑖|

3
𝑖=1 +

1

3
∑ |𝑃𝐿𝐵𝑖|

3
𝑖=1  (5) 

with1 :  
- PIi and CIi are respectively the Interest Income and the Interest Expense for the year(i). 

- APIi is the Interest Earning Assets for the year (i). 
- Di is the Dividend Income for the year (i). 

- ACEi and  APEi are the other operating income and the other operating expense for the year (i). 

- PHCi and  CHCi are respectively the  Fee Income Fee Expense for the year (i). 
- PLTi  is the Net P&L Trading Book for the year (i). 

- PLBi  is the Net P&L Banking Book for year (i). 

4. The LDA approach and the 𝑽𝒂𝑹 of operational risk. 

4.1. The loss distribution Approach 𝑳𝑫𝑨. 

The LDA approach uses distributions of the frequency and the severity of operational losses 

occurred to determine operational losses over a time horizon 𝑇. 

4.1.1. The Classical 𝑳𝑫𝑨 model. 

4.1.1.1. Mathematical formulation of the model 

In the 𝐿𝐷𝐴 approach, the operational loss in horizon 𝑇 is considered as a random variable 𝑃 

defined as follows: 

                                                              𝑃𝑁 = ∑ 𝑋𝑖
𝑁
𝑖=1   (6) 

with:   

– 𝑋𝑖 : is the random variable that represents the individual impact of operational risk incidents.  

– 𝑁 :  is the random variable that represents the number of occurrences on a horizon 𝑇. 

The random variables 𝑋𝑖 are independent and identically distributed. The random variable 

𝑁 is independent with the variables 𝑋𝑖. 

The mathematical expectation and the variance of the compound random variable 𝑃 are 

defined as follows: 

- 𝐸(𝑃) =  𝐸(𝑋) × 𝐸(𝑁) = 𝜆  𝐸(𝑋)                                                                                          (7) 

- VAR (P) = E(N) × var(X)  +  var(N) × 𝐸(𝑋)2                                                                 (8)   

4.1.1.2. Presentation of the classic 𝑳𝑫𝑨 approach. 

The classical 𝐿𝐷𝐴 approach considers that severity and frequency can be modelled by usual 

theoretical laws whose parameters are estimated from these data 

4.1.1.2.1. Modelling the individual severity of losses 𝑋𝑖. 

Several distributions can be used to represent the severity random variable 𝑋 as the 

LogNormal distribution, the Beta distribution, the Weibull distribution or other distributions which 

are detailed in Chernoubai et al. (2007). In our study, we limit ourselves to LogNormal distribution 

𝐿𝑁(µ, 𝜎) defined as follows: 

                                              𝑓(𝑥) =
1

𝑥𝜎√2𝜋
𝑒

−
(log(𝑥)−𝜇)

2𝜎2  𝑠𝑖 𝑥 ≥ 0                               (9) 

with 

                 𝐸(𝑋) = 𝑒𝜇+
𝜎2

2   and 𝑉𝑎𝑟(𝑋) = (𝜎2 − 1)𝑒2𝜇+𝜎2
                (10) 

4.1.1.2.2. Modelling the frequency of losses 𝑵. 

With regard to the modelling of the loss frequency 𝑁, we use the Poisson distribution 𝑃(𝜆) 

or the Negative Binomial distribution 𝐵𝑁(𝑎, 𝑏) defined as follows: 

- 𝒫 (𝜆):   𝑃(𝑥 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆. 

                                                           
1 The rubrics for calculating the BI are detailed in Appendix : definition of the components of the BI of the Basel III 

reform 
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- 𝐵𝑁(𝑎, 𝑏):  𝑃(𝑋 = 𝐾) =
Г(𝑎+𝑘)

Г(𝑎)𝑘!
×

𝑏𝑎

(𝑏+1)𝑘+𝑎  ; Г(𝑟) = ∫ 𝑥𝑟−1𝑒−𝑥𝑑𝑥
∞

0
 if r∈N then : Г(𝑟) = (𝑟 − 1)! 

4.1.2. The Pure Bayesian 𝑳𝑫𝑨 Approach. 

In the pure Bayesian 𝐿𝐷𝐴 approach, the parameters of the distribution of the frequency 𝑁 

and the individual loss 𝑋𝑖 are considered as random variables with a probability density function.  

The pure Bayesian approach considers the parameters (𝜇, 𝜎) and λ of the density functions 

of 𝑋𝑖 and N as the random variables whose the density are respectively 𝜋𝜇, 𝜋𝜎 and 𝜋𝜆 

4.1.2.1. Description of the Pure Bayesian 𝑳𝑫𝑨 Approach.  

Let 𝑌 = (𝑌1, … 𝑌𝑚) be a vector of random variables independent and identically distributed 

(i.i.d). Let  (𝑦1, … 𝑦𝑚) be a realization of the vector 𝑌 and let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑝) be a vector of 

the random variables of the parameters of the density of the vector 𝑌. 

The density function 𝑓(𝑌, 𝜃) of the vector (𝑌, 𝜃) = (𝑌1, … 𝑌𝑚, 𝜃1, 𝜃2, … , 𝜃𝑝) is defined by: 

𝑓(𝑌, 𝜃) = 𝑓(𝑌 𝜃⁄ )𝜋(𝜃) = 𝜋(𝜃 𝑌⁄ )𝑓(𝑌) (11) 

where :  

- 𝜋(𝜃) is the probability density of the parameter 𝜃, called “prior density function”. 

- 𝜋(𝜃 𝑌⁄ ) is the conditional probability density function of the parameter 𝜃 knowing  𝑌, called 

“posterior density”; 

- 𝑓(𝑌, 𝜃) is a probability density function of the couple (𝑌, 𝜃) ; 
- 𝑓(𝑌 𝜃⁄ ) is the conditional density function of 𝑌 knowing 𝜃, it is the likelihood function 𝑓(𝑌 𝜃⁄ ) =
∏ 𝑓𝑖(𝑌𝑖 𝜃⁄ )𝑚

𝑖=1  

with 𝑓𝑖(𝑌𝑖 𝜃⁄ ) is the conditional probability density function of 𝑌𝑖. 

- 𝑓(𝑌) ) is a marginal density of 𝑌 that can be written as ∫ 𝑓(𝑌 𝜃⁄ )𝜋(𝜃)𝑑𝜃. 

The Bayes formula allows to determine 𝜋(𝜃 𝑌⁄ ) of the parameter 𝜃 knowing 𝑌 as follows: 

𝜋(𝜃 𝑌⁄ ) =
𝑓(𝑌 𝜃⁄ )𝜋(𝜃)

𝑓(𝑌)
 (12) 

Hence 

𝜋(𝜃 𝑌⁄ ) ∝ 𝑓(𝑌 𝜃⁄ )𝜋(𝜃) (13) 

𝑓(𝑌) is a normalization constant and the posterior distribution 𝜋(𝜃 𝑌⁄ ) can be viewed as a 

combination of a prior knowledge 𝜋(𝜃) with a likelihood function 𝑓(𝑌 𝜃⁄ ) for observed data. 

Since 𝑓(𝑌) is a normalization constant, the posterior distribution is often written with the form 

(13) where the symbol ∝ signified “is proportional” with a constant of proportionality independent 

of the parameter 𝜃.  

4.1.2.2. The Bayesian Estimator �̂�𝑩𝒂𝒚 

The estimate of Bayesian posterior mean 𝜃𝐵𝑎𝑦 of 𝜃 is defined as follows: 

 The parameter 𝜽 is univariate : 

The estimate of the Bayesian posterior mean of 𝜃 noted 𝜃𝐵𝑎𝑦 is a conditional expectation of 

𝜃 knowing 𝑌: 

𝜃𝐵𝑎𝑦 = 𝐸(𝜃 𝑌⁄ ) = ∫ 𝜃 × 𝜋(𝜃 𝑌⁄ )𝑑𝜃 =
∫ 𝜃 × 𝑓(𝑌 𝜃⁄ )𝜋(𝜃)𝑑𝜃

𝑓(𝑌)
 (14) 

 The parameter 𝜽 is multivariate 

In a multidimensional context where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑝), the estimate of the Bayesian 

posterior mean of θ noted 𝜃𝐵𝑎𝑦 is a conditional expectation of the vector θ knowing Y defined by : 

𝜃𝐵𝑎𝑦 = 𝐸(𝜃 𝑌⁄ ) = (𝐸(𝜃1 𝑌⁄ ), 𝐸(𝜃2 𝑌⁄ ), … , 𝐸(𝜃𝑝 𝑌⁄ )) 

= (∫ 𝜃1 × 𝜋(𝜃1 𝑋⁄ )𝑑𝜃1 , ∫ 𝜃2 × 𝜋(𝜃2 𝑋⁄ )𝑑𝜃2 , … . , ∫ 𝜃𝑝 × 𝜋(𝜃𝑝 𝑋⁄ )𝑑𝜃𝑝) 
(15) 

4.1.2.3. Calculation of the estimate of the Bayesian posterior mean. 
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To determine the estimate of Bayesian posterior mean defined by the formulas (14) and (15), 

we must determine the prior law and the posterior law of the random variable 𝜃. 

In fact, we will limit our study to the Lognormal distribution for loss severity 𝑋𝑖 ↝ 𝐿𝑁(𝜇, 𝜎) 

,1 ≤ 𝑖 ≤ 𝑚 and to the Poisson distribution  for the frequency of the losses 𝑁 ↝ 𝑃(𝜆). The 

parameters 𝜇, 𝜎 and 𝜆 are considered random variables. 

Therefore, we have to determine the following estimate of the Bayesian posterior mean: 

𝜃𝐵𝑎𝑦 = (�̂�, �̂�) = 𝐸(𝜇, 𝜎 𝑋1, … 𝑋𝑛⁄ )  (16) 

𝜃𝐵𝑎𝑦 = �̂� = 𝐸(𝜆 𝑁⁄ ) (17) 

4.1.2.4. Determination of the prior law of the parameters. 

The Bayesian approach depends on the accuracy of the information provided by experts on 

the parameters of the prior law. In fact, we will present below the approach adopted: 

 The prior law of the parameter 𝝀 with 𝑵 ↝ 𝑷(𝝀) 

In our study, we will consider that the prior law is a gamma distribution Γ with the parameters 

(𝑎, 𝑏) to be determined by the experts. 

The choice of the prior distribution of the parameter λ depends on the description of the 

characteristics of the random variable given by the experts. In our study, we will consider that the 

prior law is a Gamma distribution (Γ) of parameter (𝑎, 𝑏). Indeed, the Gamma distribution is 

defined by:  

                                                         Γ(λ) =
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
× 𝑒−

𝜆

𝑏 

 The prior law of  𝝁 and 𝝈 with 𝑿𝒊 ↝ 𝑳𝑵(𝝁, 𝝈)  

In this paper we limit ourselves to the case where 𝜇 is a gaussian random variable 𝜇 ↝
𝑁(𝜇0, 𝜎0) and 𝜎 a known constant.  

However, Schevchenko PV (2011), represented 𝜎2 by the inverse Chi-square distribution 

( Inv.Chi.Sq) of parameters (𝛼, 𝛽) whose the probability density function is defined by :   

                                                   𝑓(𝜎2) =
(

𝜎2

𝛽
)

−1−
𝛼
2

2
𝛼
2 ×Γ(

𝛼

2
)×𝛽

× 𝑒
−

𝛽

2𝜎2 

4.1.2.5. Determination of the posterior law of the parameters 𝝀 and  . 

The posterior distribution is determined from the likelihood function and the prior 

distribution by the formula (13). Thereby, we will calculate the posterior law of frequency and 

severity: 

 The posterior law of the parameter 𝝀 with 𝑵 ↝ 𝑷(𝝀) 

Let  𝑁 = (𝑁1, … 𝑁𝑙) be a vector of random variables of the frequency. Let (𝑛1, … 𝑛𝑙) be a 

realization of the vector 𝑁. We suppose that  𝑁𝑗 ↝ 𝑃(𝜆)  and we consider that 𝜆 ↝ Γ(𝑎, 𝑏). 

The posterior law conjugated at the prior law λ is defined by: 

                                     𝜋(λ 𝑁⁄ ) ∝ 𝑓(𝑁 λ⁄ )𝜋(λ) ∝ 𝑓(𝑁 λ⁄ )
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
× 𝑒−

𝜆

𝑏 

We have : 

                                         𝑓(𝑁 λ⁄ ) = ∏ 𝑓𝑗(𝑁𝑗 λ⁄ )𝑙
𝑗=1 = ∏

λ
𝑛𝑗

𝑛𝑗!

𝑙
𝑗=1 𝑒−λ 

Thus 

 𝜋(λ 𝑁⁄ ) ∝ ∏
λ

𝑛𝑗

𝑛𝑗 !

𝑙
𝑗=1 𝑒−λ ×

(
𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
× 𝑒−

𝜆

𝑏 ∝
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
× 𝑒−

𝜆

𝑏 × ∏ 𝑒−λ λ
𝑛𝑗

𝑛𝑗 !

𝑙
𝑗=1  

               ∝
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
𝑒−

𝜆

𝑏 ∏ (𝑒−λ λ
𝑛𝑗

𝑛𝑗 !
)𝑙

𝑗=1 ∝
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
∏

λ
𝑛𝑗

𝑛𝑗 !

𝑙
𝑗=1 × (𝑒−𝑙×λ𝑒−

𝜆

𝑏) 
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               ∝
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
∏

λ
𝑛𝑗

𝑛𝑗 !

𝑙
𝑗=1 × (𝑒−𝑙×λ𝑒−

𝜆

𝑏) ∝
(

𝜆

𝑏
)

𝑎−1

Γ(𝑎)×𝑏
∏

λ
𝑛𝑗

𝑛𝑗 !

𝑙
𝑗=1 × 𝑒

−𝜆(
1

𝑏
+𝑙)

 

               ∝ 𝜆𝑎−1λ∑ 𝑛𝑗
𝑙
𝑗=1 × 𝑒−𝜆(

1

𝑏
+𝑙) ∝ 𝜆(𝑎+∑ 𝑛𝑗)𝑙

𝑗=1 −1 × 𝑒−𝜆(
1+𝑏×𝑙

𝑏
)
 

We pose 𝑎𝑙 = 𝑎 + ∑ 𝑛𝑗
𝑙
𝑗=1   and 𝑏𝑙 =

𝑏

1+𝑏×𝑙
 . Thus 

𝜋(λ 𝑁⁄ ) ∝ 𝜆𝑎𝑙−1𝑒
−

𝜆
𝑏𝑙 (18) 

From the formula (18) we deduct that the posterior law is a gamma law Γ(𝑎𝑙, 𝑏𝑙). 

 The posterior law of the parameter 𝝁 ↝ 𝓝(𝝁𝟎, 𝝈𝟎)  with 𝝈  a constant  

Let 𝑥1, … , 𝑥𝑚 be the realizations of random variables 𝑋1, … , 𝑋𝑚 representing the collected 

losses. We suppose here for the Bayesian modelling of the severity that  𝜇 ↝ 𝒩(𝜇0, 𝜎0) and 𝜎 a 

constant, which we estimate from the sample by the maximum likelihood method. We pose 𝑍𝑖 =

𝑙𝑛(𝑋𝑖). Thus 𝑍𝑖 ↝ 𝒩(𝜇, 𝜎) . 
We consider the random vector 𝑍 = (𝑍1, … , 𝑍𝑚).The prior distribution of 𝜇 is given by : 

                                                           𝜋(𝜇) =
1

𝜎0√2𝜋
𝑒

−
(𝜇−𝜇0)2

2𝜎0
2  

The conditional distribution of the random vector 𝑍 is given by: 

                                                        𝑓(𝑍 𝜇, 𝜎⁄ ) = ∏
1

𝜎√2𝜋
𝑒

−
(𝑍𝑖−𝜇)

2

2𝜎2𝑚
𝑖=1  

Hence the posterior law of 𝜇: 

𝜋(𝜇 𝑍⁄ ) ∝ 𝑓(𝑍 𝜇⁄ )𝜋(𝜇) 

                           𝜋(𝜇 𝑍 = (𝑧1, … , 𝑧𝑚)⁄ ) ∝ ∏
1

𝜎√2𝜋
𝑒

−
(𝑧𝑖−𝜇)

2

2𝜎2 ×𝑚
𝑖=1

1

𝜎0√2𝜋
𝑒

−
(𝜇−𝜇0)2

2𝜎0
2  

                                          𝜋(𝜇 𝑍 = (𝑧1, … , 𝑧𝑚)⁄ ) ∝ 𝑒
−

(𝜇−𝜇0𝑚)2

2𝜎0𝑚
2  (19) 

with : 

                                 {
𝜇0𝑚 =

𝜇0+𝑚×𝜀×𝑍

1+𝑚×𝜀

𝜎0𝑚
2 =

𝜎0
2

1+𝑚×𝜀

             where     {
�̅� =

1

𝑚
∑ 𝑧𝑖

𝑚
𝐼=1

𝜀 =
𝜎0

2

𝜎2

 

The formula (19) shows that the posterior law of 𝜇 is a gaussian law 𝒩(𝜇0𝑚, 𝜎0𝑚).    

4.1.2.6. Calculation of the Bayesian estimator �̂�𝑩𝒂𝒚 and  �̂�𝐁𝐚𝐲 

 The Bayesian estimator �̂�𝐁𝐚𝐲 of the parameter 𝝀 : 

The Bayesian estimator �̂�𝐵𝑎𝑦 is given by: 

                                                     �̂�𝐵𝑎𝑦 = 𝐸(𝜆 𝑁⁄ ). 

The result (18) shows that the posterior law of 𝜆 is a Γ(𝑎𝑙, 𝑏𝑙) distribution with (𝑎𝑙, 𝑏𝑙) =

(𝑎 + ∑ 𝑛𝑗
𝑙
𝑗=1 ,

𝑏

1+𝑏×𝑙
). Consequently, the estimator �̂�𝐵𝑎𝑦 is the mathematical expectation of the 

posterior law of 𝜆:  

                       �̂�𝐵𝑎𝑦 = 𝑎𝑙 × 𝑏𝑙 = (𝑎 + ∑ 𝑛𝑗
𝑙
𝑗=1 ) × 

𝑏

1+𝑏×𝑙
 

                                         =
𝑎×𝑏+𝑏×𝑙×(

∑ 𝑛𝑗
𝑙
𝑗=1

𝑙
)

1+𝑏×𝑙
=

𝜆0+𝑏×𝑙×(
∑ 𝑛𝑗

𝑙
𝑗=1

𝑙
)

1+𝑏×𝑙
=

𝜆0+𝑏×𝑙×(�̅�)

1+𝑏×𝑙
 

�̂�𝐵𝑎𝑦 = ε0 × 𝜆0 + (1 − ε0) × �̅�  =    ε0 × 𝜆0 + (1 − ε0) × 𝜆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (20) 

   with ε0 =
1

1+𝑏×l
, 𝜆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = �̅� =

∑ 𝑛𝑗
𝑙
𝑗=1

𝑙
 𝑎𝑛𝑑 𝜆0 = 𝐸(𝜆). The parameter 𝜆0 is estimated by the 

experts. 

 The Bayesian estimator  �̂�𝑩𝒂𝒚 of the parameter 𝝁: 

http://context.reverso.net/traduction/anglais-francais/the+method+of+maximum+likelihood
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The Bayesian estimator �̂�𝐵𝑎𝑦  is given by �̂�𝐵𝑎𝑦 = 𝐸(𝜇 (𝜎; 𝑋1, … , 𝑋𝑚)⁄ ) =

𝐸(𝜇 (𝜎; 𝑥1, … , 𝑥𝑚)⁄ ). 

With 𝜎 is a constant and 𝑥1, … , 𝑥𝑚 are realizations of the random variables 𝑋1, … , 𝑋𝑚. 

The result (19), shows that the posterior law of 𝜇 is a gaussian distribution 𝒩(𝜇0𝑚, 𝜎0𝑚). 

Consequently, the estimator �̂�𝐵𝑎𝑦 is the mathematical expectation of the posterior law of 𝜇. Thus :  

�̂�𝐵𝑎𝑦 = 𝜇0𝑚 =
𝜇0 + 𝑚 × 𝜀 × �̅�

1 + 𝑚 × 𝜀
 

which can be written : 

�̂�𝐵𝑎𝑦 = 𝜀2 × 𝜇0 + (1 − 𝜀2) × �̅� = 𝜀2 × 𝜇0 + (1 − 𝜀2) × 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (21) 

With 

                𝜀2 =
1

1+𝑚×𝜀
 ; 𝜀 =

𝜎0
2

𝜎2  ; �̅� =
1

𝑚
∑ 𝑧𝑖

𝑚
𝐼=1 = 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ;   𝑧𝑖 = 𝑙𝑛(𝑥𝑖) ; 𝜇0 = 𝐸(𝜇) 

The parameter 𝜇0 is estimated by the experts. Consequently, the parameters of the 

LogNormal law used in the simulation are  �̂�𝐵𝑎𝑦 and 𝜎.     

4.2. Value at Risk of operational risk: 

Value at Risk (VaR) is a measure adopted by the Basel Committee on Banking Supervision 

under Basel II to measure credit risk, market risk and operational risk in the framework of 

advanced approaches based on internal models. Indeed, the committee requires that the internal 

model be very robust and meet a very high requirement by fixing the threshold for the VaR of 

operational risk at 99,9%. 

In terms of operational risk, the 𝑉𝑎𝑅 model is a main component for the calculation of 

capital requirements by the 𝐿𝐷𝐴 approach because it is based on the determination of the 

distribution of aggregate operational losses and the determination of the 99,9% percentile of this 

distribution. 

The determination of 𝑉𝑎𝑅 is dependent on the determination of the aggregate operational 

loss distribution because it can be calculated analytically, determined by numerical algorithms or 

calculated by Monte Carlo simulation. 

4.2.1. Presentation of Value at Risk (𝑽𝒂𝑹). 

Let be 𝑋𝑡, 𝑡 = 1, … , 𝑛, a series of stationary data of cumulative distribution function 𝐹. The 

value at risk (VaR) for a given probability 𝛼 is defined mathematically by : 

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝑢 𝐹(𝑢) ≥ 𝛼⁄ } 

4.2.2. Definition of the capital at operational risk. 

We consider the aggregated loss  𝑃𝑁 = ∑ 𝑋𝑖
𝑁
𝑖=1  in a given horizon 𝑇. We fix the level of 

confidence 1 − 𝛼 = 99.9%. 

The requirement of capital to cover the operational risk is measured by the Value At Risk 

(VaR). The 𝑉𝑎𝑅 is the quantile of order 1 − 𝛼 of the aggregated loss  𝑃𝑁  defined by: 

𝐹𝑃𝑁
(𝑉𝑎𝑅) = 𝐹∑ 𝑋𝑖

𝑁
𝑖=1

(𝑉𝑎𝑅) = 𝑃(𝑃𝑁 ≤ 𝑉𝑎𝑅) = 1 − 𝛼 (22) 

Where 𝐹𝑃𝑁
 is the cumulative distribution function of 𝑃𝑁. The 𝑉𝑎𝑅 is given by: 

𝑉𝑎𝑅 = 𝐹𝑃𝑁

−1(1 − 𝛼) (23) 

4.2.3. Simulation of aggregate operational losses. 

To simulate the losses, we use the appropriate estimator. For the classical 𝐿𝐷𝐴 approach, we 

use the maximum likelihood estimator (𝜆 ̂,�̂�𝑖, �̂�𝑖) of  (𝜆, 𝛼, 𝛽) respectively the parameters of P(𝜆) 

and 𝐿𝑁(𝛼, 𝛽) . For the Bayesian approach we use the Bayesian estimators (�̂�𝐵𝑎𝑦 , �̂�𝐵𝑎𝑦�̂�𝐵𝑎𝑦). 

4.2.3.1. Presentation of simulation by the inverse cumulative distribution function. 

The Monte Carlo Method consists of simulating an important sample of realizations 𝑝𝑗 of 

size 𝐽 = 100000  in the following manner: for 1 ≤ 𝑗 ≤ 𝐽 

(1) Simulate a realization 𝑛𝑗  of the frequency 𝑁 from the law of frequency chosen 

(𝑃(𝜆) 𝑜𝑟 𝐵𝑁(𝑎, 𝑏)) 
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(2) Simulate 𝑛𝑗  realizations 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛𝑗 , of the severity 𝑋, from the law of severity chosen 

(𝐿𝑁(𝛼, 𝛽) 𝑜𝑟 𝑊𝑒𝑖(𝛼, 𝛽)) 

(3) Calculate 𝑝𝑗 = ∑ 𝑥𝑖
𝑛𝑗

𝑖=1
 which will constitutes a realization of the loss 𝑃𝑁 = ∑ 𝑋𝑖

𝑁
𝑖=1 . 

In the following paragraph, we present the used algorithms to simulate the law 𝑃(𝜆) of the 

frequency and the law 𝐿𝑁(𝛼, 𝛽) of the severity. 

Before presenting the simulation by Monte Carlo method, we cite firstly the theorem of the 

inverse cumulative function that allows the simulation of the continuous random variables. 

Theorem: If 𝑈 is uniform random variable on the interval [0,1] and 𝐹 a cumulative distribution 

function continuous and strictly increasing. Let 𝑌 be the random variable defined from the inverse 

cumulative distribution function 𝐹−1  by   𝑌 = 𝐹−1(𝑈). Then the cumulative distribution function 

of 𝑌 is 𝐹. 

Consequently, for simulating a realization 𝑦𝑖 of the random variable 𝑌  which has  𝐹 as a 

cumulative distribution function, it suffices to: 

 Simulate a realization 𝑢𝑖 of the Uniform distribution 𝑈[0,1]. 
 Calculate the inverse cumulative distribution function 𝑦𝑖 = 𝐹−1(𝑢𝑖). Then 𝑦𝑖 is considered as a 

realization of 𝑌. 

4.2.3.2. Simulation of the realizations 𝒏𝒋  for  𝟏 ≤ 𝒋 ≤ 𝟏𝟎𝟎𝟎𝟎𝟎 : 

To simulate the realizations of the frequency 𝑁, we use the Poisson distribution 𝑃(𝜆) or the 

gamma distribution Γ(𝑎, 𝑏). 

4.2.3.2.1. Simulation Poisson distribution.  

Propriety: Let (𝑉𝑖)𝑖≥1 be a sequence of exponential random variables of parameter 𝜆. Then 

the random variable defined by: 

𝑀 = 𝑆𝑢𝑝{𝑘 ∈ ℕ∗ ∑ 𝑉𝑖 ≤ 1𝑘
𝑖=1⁄ }   and  𝑀 = 0 𝑖𝑓 𝑉1 > 1 

is a Poisson random variable of parameter 𝜆. 

To simulate the realizations of the Poisson’s law of the parameter λ we use the following 

algorithm. 

Step 1 : Simulation of 𝒏𝟏 

To simulate the realization 𝑛1 of the frequency we proceed as follows : 

(1) Simulate a realization 𝑣1 of the law 𝐸𝑥𝑝(𝜆) by the inverse cumulative distribution function. 

For that we must :  

 Simulate a realization 𝑢1 of the Uniform law 𝑈[0,1]. 
 The cumulative distribution function of the exponential law 𝐸𝑥𝑝(𝜆) is defined by 

𝐹−1(𝑢) = −
𝑙𝑛(1−𝑢)

𝜆
.  We deduct  𝑣1 = 𝐹−1(𝑢1) = −

𝑙𝑛(1−𝑢1)

𝜆
 

(2) If 𝑣1 > 1 then 𝑛1 = 0. 

    If not, simulate a second realization 𝑣2 of the exponential law 𝐸𝑥𝑝(𝜆) according to the 

procedure 1. If 𝑣1 + 𝑣2 > 1  then 𝑛1 = 1 is a realization of Poisson of the parameter 𝜆, otherwise,  

simulate the 𝑘 realizations 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑘 until that  ∑ 𝑣𝑖
𝑘
𝑖=1 ≤ 1  and  ∑ 𝑉𝑖

𝑘+1
𝑖=1 > 1. The value 𝑘 

that verify the last two inequalities is the realization 𝑛1 = 𝑘 of the frequency. 

Step j : Simulation of 𝒏𝒋, 𝟐 ≤ 𝒋 ≤ 𝟏𝟎𝟎𝟎𝟎𝟎 

We redo 100000 times the step 1. We obtain thus 100000 realization 𝑛𝑗 . 

4.2.3.3. Simulation of the laws 𝑳𝑵(𝜶, 𝜷). 

To simulate the laws 𝐿𝑁(𝛼, 𝛽)we use the inverse cumulative distribution function method 

as follows: 

(1) Simulate a realization 𝑢𝑖 of the Uniform law 𝑈[0,1]. 
(2) Calculate 𝑥𝑖 = 𝐹(𝛼,𝛽)

−1 (𝑢𝑖) where 𝐹(𝛼,𝛽) is a cumulative distribution function of the law 

𝐿𝑁(𝛼, 𝛽). As 𝐹(𝛼,𝛽)
−1 (𝑢𝑖) has not analytical expression we simulate numerically 𝑥𝑖. 
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4.2.3.4. Determination of operating losses. 

For each 𝑛𝑗  realization of the law of frequency, 𝑛𝑗  realizations of the law of severity must be 

simulated. The simulated loss 𝑝𝑗 is the sum of the simulated realizations: 

                                                   𝑝𝑗 = ∑ 𝑥𝑖
𝑛𝑗

𝑖=1
 

4.2.4. Calculation of the Capital at operational risk (𝑽𝒂𝑹). 

The capital at operational risk is calculated by the determination of the percentile 99.9% of 

the empirical distribution of the losses 𝑝𝑗 = ∑ 𝑥𝑖
𝑛𝑗

𝑖=1
, for 1 ≤ 𝑗 ≤ 100000, simulated by Monte 

Carlo. 

Let 𝐹𝑃 be the empirical cumulative distribution function of the loss 𝑃 determined from the 

simulated realizations 𝑝𝑗. The function 𝐹𝑃 is given by :  

                                                        𝐹𝑃(𝑦) =
𝑛𝑢𝑚𝑏𝑟𝑒 𝑜𝑓 𝑝𝑗≤𝑦 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑗
 (24) 

The value at risk 𝑉𝑎𝑅 is expressed by the formula: 

                    𝑉𝑎𝑅 = 𝐼𝑛𝑓{𝑦 𝐹𝑃(𝑦) ≥ 99,9%⁄ } = 𝐼𝑛𝑓 {𝑦
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑗≤𝑦 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑗
≥ 99,9%⁄ } 

In this paper, the modelling of the frequency is made for a horizon of one year 𝑇 =

12 𝑚𝑜𝑛𝑡ℎ or by dividing the year 𝑇 into 𝑘 sub-horizons 𝑇𝑘 =
𝑇

𝑘
  for 𝑘 an integer 2 ≤ 𝑘 ≤ 12. 

4.2.5. The annual 𝑽𝒂𝑹 with segmentation of the database by risk category  

The operational loss  𝑃𝑐  of risk category 𝑅𝑇𝑐 is a random variable defined by 𝑃𝑐 = ∑ 𝑋𝑐𝑖
𝑁𝑐
i=1 . 

With : 

 𝑁𝑐 : the random variable that represents the frequency of losses of the risk category 𝑅𝑇𝑐 

 X𝑐𝑖 : the random variable, for  1 ≤ 𝑖 ≤ 𝑁𝑐, that represents the severity of the losses of the 

risk category 𝑅𝑇𝑐 

Let 𝑛𝑗𝑐, 1 ≤ 𝑗 ≤ 100000, the annual frequency of the losses collected for the risk category  

𝑅𝑇𝑐 and let 𝑥𝑐𝑖 be the simulated realizations of the losses of the risk category 𝑅𝑇𝑐.  

The realizations 𝑝𝑗𝑐 = ∑ 𝑥𝑐𝑖
𝑛𝑗𝑐

𝑖=1
,  1 ≤ 𝑗 ≤ 100000 permit to calculate the capital at risk 

𝑉𝑎𝑅𝑐  for each risk category 𝑅𝑇𝑐.  The annual 𝑉𝑎𝑅 is the sum of the 𝑉𝑎𝑅𝑐 because it is supposed 

that the risk categories are independent.The modelling of the frequency of the loss is made for a 

horizon of one year 𝑇 = 12 𝑚𝑜𝑛𝑡ℎ or by dividing the year 𝑇 into 𝑘 sub-horizons 𝑇𝑘 =
𝑇

𝑘
  for 𝑘 an 

integer 2 ≤ 𝑘 ≤ 12. 

 The modelling of the Loss frequency for an annual horizon  

The horizon chosen is a year 𝑇 = 12 𝑚𝑜𝑛𝑡ℎ and the level of confidence is 1 − 𝛼 = 99.9%. 

The empirical cumulative distribution function 𝐹𝑃𝑐
 of the losses for the risk category 𝑅𝑇𝑐 is 

defined by: 

𝐹𝑃𝑐
(𝑦) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑗𝑐 ≤ 𝑦 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑗𝑐
 (25) 

The capital of operational risk for the category risk 𝑅𝑇𝑐 is:  

𝑉𝑎𝑅𝑐 = 𝐼𝑛𝑓{𝑦 𝐹𝑃𝑐
(𝑦) ≥ 99.9%⁄ } (26) 

The capital at risk on the annual horizon is the sum of the 𝑉𝑎𝑅𝑐: 

 𝑉𝑎𝑅 = ∑ 𝑉𝑎𝑅𝑐

7

𝑐=1

 (27) 

 The modelling of the Losses frequency for the sub-horizon 𝑻𝒌 =
𝑻

𝒌
 , 𝟐 ≤ 𝒌 ≤ 𝟏𝟐 : 
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Let 𝐹𝑃𝑇𝑐
 be the empirical cumulative distribution function of the operational risk of a given 

risk category 𝑅𝑇𝑐  for the horizon 𝑇 = 1 𝑦𝑒𝑎𝑟 defined by the formula (44) and determined from 

the simulate realizations 𝑝𝑗𝑐 with 𝑛𝑗𝑐 is a realization of the frequency of losses on the horizon 𝑇.  

The cumulative distribution function 𝐹𝑃𝑇𝑐
 is simulated 𝑘 times on the horizon 𝑇. Let 𝐹𝑃𝑇𝑐𝑖

 

be the ith simulation. The capital at operational risk  𝑉𝑎𝑅𝑐 on an annual horizon is the sum of the 

𝑉𝑎𝑅𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑘,  𝑉𝑎𝑅𝑐𝑖 is the ith  capital at operational risk determined from the  ith simulation 

of the losses. 

The capital at risk on the annual horizon is the sum of the 𝑉𝑎𝑅𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑘:     

                                                       𝑉𝑎𝑅𝑐 = ∑ 𝑉𝑎𝑅𝑐𝑖
𝑘
𝑖=1  (28) 

The capital at risk on the annual horizon is the sum of the 𝑉𝑎𝑅𝑐 : 

                                                       𝑉𝑎𝑅 = ∑ ∑ 𝑉𝑎𝑅𝑐𝑖
𝑘
𝑖=1

7
𝑐=1  (29) 

5. Bayesian modelling of expert opinion 

5.1. Collecting and modelling expert opinion. 

5.1.1. Organization of the process for collecting expert opinion. 

Obtaining expert opinion can be defined as a process of collecting information and data, or 

answering questions about problems to be solved. In this study, we must define the parameters of 

the frequency and severity of operational risk events. Therefore, the approach adopted must ensure 

a high level of accuracy and reliability of the expert opinion in order to reduce the impact of this 

data on the bank’s risk profile. 

The modelling of expert opinion has been the subject of various studies that have used 

various techniques for collecting expert opinions, such as the Delphi technique defined by Helmer 

(1968) and the practical guides proposed by Ayyub (2001). 

In our study, we used the Delphi technique after adapting it to the specificities of collecting 

information from experts in the field of operational risk.  

5.1.2. Presentation of the Delphi method. 

The Delphi method includes eight steps according to Ayyub (2001) defined as follows: 

(1) Selection of issues or questions and development of questionnaires. 

(2) Selection of experts who are most knowledgeable about issues or questions of concern. 

(3) Issue familiarization of experts by providing sufficient details on the issues on the 

questionnaires. 

(4) Elicitation of experts about the issues. The experts might not know who the other 

respondents are. 

(5) Aggregation and presentation of results in the form of median values and an inter-quartile 

range (i.e., 25% and 75% percentile values). 

(6) Review of results by the experts and revision of initial answers by experts. This iterative 

re-examination of issues would sometimes increase the accuracy of results. Respondents 

who provide answers outside the inter-quartile range need to provide written justifications 

or arguments on the second cycle of completing the questionnaires. 

(7) Revision of results and re-review for another cycle. The process should be repeated until a 

complete consensus is achieved. Typically, the Delphi method requires two to four cycles 

or iterations. 

(8) A summary of the results is prepared with argument summary for out of inter-quartile range 

values. 

5.1.3. Summary presentation of the process for collecting expert opinions. 

The approach for collecting expert opinion is based on that defined by Ayyub (2001) with 

readjustments to better adapt the process to the area of operational risk: 

(1) Definition of the information requested. 

(2) Definition of interveners in data collecting process. 

(3) Identification of problems, information sources and insufficiency. 
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(4) Analysis and collecting of pertinent information. 

(5) Choice of interveners in data collecting process. 

(6) Knowledge of the objective of the operation by the experts and formation of experts. 

(7) Soliciting and collecting opinions. 

(8) Simulation, revision of assumptions and estimates, if the expert manifests his consent, we 

pass to the next step otherwise we repeat steps 6, 7 and 8. 

(9) Aggregation of estimates and overall validation. 

(10) Preparation of reporting and determination of results. 

5.1.3.1. Definition of the information requested. 

The collecting of information from experts has two objectives: 

(1) The first consists in modelling the law a priori of the frequency and severity of data by risk 

category. Indeed, the expert must provide the forms of the laws a priori of frequency and 

severity and the estimation of their parameters (𝜆𝑒 , 𝜇𝑒 , 𝜎𝑒).  

(2) The second objective is estimation of the expert weighting with the control functions 

(internal audit and permanent control). 

5.1.3.1.1. Modelling the a priori law. 

In this case the expert must provide: 

(1) The estimation of the parameter 𝜇e of the lognormal law 𝐿𝑁(𝜇, 𝜎) which models the 

severity 𝑋𝑖 by risk category knowing that σ is a constant and 𝜇 ~ 𝑁(𝜇e, 𝜎0). 

(2) The estimation of the parameter 𝜆𝑒 the Poisson’s law  𝑃(𝜆) which models the frequency 

𝑁 by risk category over a horizon (𝑇) knowing that  𝜆~gamma (𝑎0, 𝑏0). 

5.1.3.1.2. Weighting of the expert opinion. 

The objective of weighting the expert opinion is to determine the parameters of a posteriori 

law. Indeed, for frequency, the weighting permits to determine the parameter �̂�𝐵𝑎𝑦 of the Poisson’s 

law relating to the frequency of losses by risk category 𝑅𝑇𝑐. Whereas, for severity, it allows to 

determine the parameter �̂�𝐵𝑎𝑦 of the LogNormal law relating to the severity of losses by risk 

category. 

5.1.3.2. Definition of interveners in data collecting process. 

The evaluation of the parameters of a priori law involves all operational entities concerned 

as well as the risk management function: 

 The Risk managers.  

They have the status of evaluator because they must conduct the evaluation process with the 

various experts. 

 The responsible for declaring incidents (Risk correspondents) and their managers.  

This is an essential population of great added value given their experience in collecting 

incidents and their contributions to correct collecting bias.  

 Expert from the operating entities and des business lines.  
The operational losses are dependent on the business line and the activity exercised. Indeed, 

the severity and frequency generally reflect the risk profile of each activity and business line 

because they depend on the size of the transactions concluded by the business line (or activity 

exercised) and on their frequencies.  

Consequently, the use of experienced and well-qualified experts is the first step in the 

evaluation process, which will be followed by a phase of estimation and aggregation of the data 

collected, which takes into account the specificities of the activity targeted by the evaluation. 

 Internal auditors and permanent controllers. 

The internal audit and permanent control functions have a right of supervision over all 

activities and execute, on a permanent or periodic basis, audit and control missions for the various 

business lines and operational entities. Their verification approaches are based on a risk 

identification approach using risk mapping and the database of events collected. Therefore, the 

recourse to the service of this category for the weighting of the experts’ opinions is necessary. 
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5.1.3.3. Identification of problems, information sources and insufficiency. 

The main reason for using expert opinion modelling is to reduce the uncertainty due to the 

change in the bank’s risk profile caused by changes in the organization level and in the process of 

control and risk management, given that the distributions of observed historical losses in frequency 

and severity follow the Poisson law and the LogNormal law respectively .Indeed, uncertainty is 

linked to the change in the parameters of the two laws because the use of historical data alone can 

bias the estimation of risk capital. 

Consequently, the expert opinion makes it possible to define the a priori law on the one hand 

and to weight the experts’ estimate on the other hand. To do this, we will estimate with the business 

experts the average loss defined by formula (4), which will permit to determine the parameters 𝜆𝑒 

and 𝜇𝑒 respectively. 

5.1.3.4. Analysis and collecting of pertinent information.  

In order to carry out the evaluation mission and ensure an acceptable reliability of the expert 

opinion, we have collected a series of relevant information such as: 

(1) The evolution of the bank’s size in terms of net banking income, the number of transactions, 

the number of incidents, the size of the banking network and the number of customer claims. 

(2) The organizational and business changes such as the introduction of new products, 

industrialization of sales, control and treatment processes, external audits, control activities, 

outsourcing of activities. 

(3) The major losses suffered and the action plans implemented and their impact on the control 

and risk management device. 

(4) The formation programmers of operational risk and their frequency. 

5.1.3.5. Choice of interveners in data collecting process. 

5.1.3.5.1. Choice of Expert from the operating entities and responsible for declaring events 

of risk. 

In our study, we weighted the expert opinion at 25%. However, the approach used is valid 

for any desired weighting.  

Therefore, we have carried out the estimation with experts who can be weighted at 25%. To 

choose them, we drew a list of experts from the operating entities and responsible for declaring 

events of risk at the level of each business line and we scaled the estimate that each responsible 

and each expert can provide with a scoring system that we constructed, then we selected only those 

whose estimate can be weighted at 25%. 

The determination of the score is made with the hierarchical managers and validated with 

the internal audit and permanent control functions on the basis of the following elements: 

(1) Relevant expertise, academic and professional formation as well as the professional 

experience. 

(2) The number of risk incidents declared and treated. 

(3) Knowledge and mastery of the control device. 

(4) The level of formation and knowledge in operational risk. 

(5) The level of knowledge of descriptive and inferential statistics. 

(6) Excellent communication abilities, flexibility, impartiality and capacity to generalize and 

simplify. 

The score must give a value that corresponds to a grid of (10%, 25%, 40%, 50%, 75%). 

Indeed, each criterion must have a qualification between low, medium and high. To calculate the 

score, a rating was assigned to each qualification as follows: 

Table 1 : Rating of the criteria for scoring experts 

Qualification Low Medium High 

Rating 1 2 3 
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The expert score function that we retained for our study is equal to the sum of the ratings 

assigned to all criteria and the weighting is defined according to the score obtained, as follows: 

Table 2 : Expert weighting according to the score function 

Score (6 à 7) (8 à 9) (10 à 11) (12 à 14) (15 à 18) 

Weighting 10% 25% 40% 50% 75% 
      

5.1.3.5.2. Choice of evaluators for internal audit and permanent control. 

For the choice of evaluators for permanent control and internal audit, we based our choice 

on the following elements: 

(1) Relevant expertise, academic and professional formation as well as the professional 

experience. 

(2) The number of control and audit missions conducted annually. 

(3) The level of formation and knowledge in operational Risk. 

(4) The level of knowledge of descriptive and inferential statistics. 

(5) Excellent communication abilities, flexibility, impartiality and capacity to generalize and 

simplify. 

The designation of evaluators is made by consensus with the audit function and the 

permanent control function. 

5.1.3.6. Knowledge of the objective of the operation by the experts and formation of 

experts. 

Once, we selected the experts and evaluators, we organized an introductory session of the 

evaluation mission by presenting the main lines of the mission, the objectives, the speakers and 

the realization planning. Then, the following elements are sent to the participants before launching 

the evaluation meetings and workshops: 

(1) The description of the objective of the operation. 

(2) The list of experts from the operating entities, responsible for declaring events of risk, 

hierarchical managers and the evaluators for internal audit and permanent control. 

(3) A summary description of risks, tools and operating system, organization and controls.  

(4) Basic terminology, definitions that should include probability density, arithmetic and 

weighted mean, standard deviation, mode, median…etc. 

(5) A detailed description of the process by which meetings and workshops to collect expert 

opinion are conducted and the average duration of their conduct. 

(6) Methods for aggregating expert opinions. 

5.1.3.7. Simulation, revision of assumptions and estimates. 

To have the expert’s consent to the estimates obtained, we proceeded as follows: 

(1) The expert estimates the average loss per risk category that will be used to determine the 

parameters of frequency law 𝑃(�̂�𝑒𝑥𝑝𝑒𝑟𝑡) and severity law 𝐿𝑁(�̂�𝑒𝑥𝑝𝑒𝑟𝑡, �̂�𝑒𝑥𝑝𝑒𝑟𝑡) knowing that 

�̂�𝑒𝑥𝑝𝑒𝑟𝑡 is equal to 𝜎 determined by the likelihood. These parameters will be used to simulate, 

by Monte Carlo, three samples of the realizations concerning respectively the individual loss 

𝑋𝑖, the frequency 𝑁 and the annual loss 𝑃(∑ 𝑋𝑖
𝑛
𝑖=1 ) Then we analyze the characteristics of 

these samples with the expert, in particular the average, median, maximum, minimum and 

maximum values… etc.  

(2) If the expert accepts the simulations and their characteristics, the estimation of the 

parameters �̂�𝑒𝑥𝑝𝑒𝑟𝑡, �̂�𝑒𝑥𝑝𝑒𝑟𝑡 and  �̂�𝑒𝑥𝑝𝑒𝑟𝑡 will be validated. 

(3) If the expert rejects the simulations, we will eliminate the outliers rejected by the expert and 

we will revise the expert’s initial estimates and reputed the simulations in an iterative manner 

until the expert’s consent is obtained.  

5.1.3.8. Aggregation of estimates and validation. 
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In our study, the expert’s estimate concerns the parameters �̂�𝑒𝑥𝑝𝑒𝑟𝑡, �̂�𝑒𝑥𝑝𝑒𝑟𝑡 and  �̂�𝑒𝑥𝑝𝑒𝑟𝑡 . 

Therefore, we need to aggregate historical and expert estimates to determine the Bayesian 

estimator. 

5.2. Determination of the Bayesian Estimator. 

In the theoretical study, we showed that the Bayesian Estimators of the parameters of the 

severity and frequency distributions of losses are defined as follows: 

(1) For frequency, formula (20) defines the Bayesian estimator of 𝜆 by: 

�̂�𝐵𝑎𝑦 = 𝜀1 × 𝜆expert + (1 − 𝜀1) × 𝜆16bserve 

(2) For severity, formula (21) defines the Bayesian estimator of 𝜇 by: 

�̂�𝐵𝑎𝑦 = 𝜀2 × 𝜇expert + (1 − 𝜀2) × 𝜇observé 

In our study, the weights 𝜀2 and 𝜀2 are fixed at 25 %  which corresponds to the scores of the 

selected experts. 

6. Empirical study.  

6.1. Data description. 

In this study we used a database of loss incidents concerning the retail banking business line 

of a Moroccan banking institution, the database were constituted from the losses registered by the 

bank since the 1990s as well as the reports and missions of the audit. 

The database is composed of 3581 losses, i.e. 2069 distinct amounts, the statistical 

characteristics of distinct losses are summarized as follows: 

Table 3 : Descriptive statistics of losses (in amounts) 

Mean Standard Deviation Skewness Kurtosis 

468 730 8 719 755,32 36,28 1 430,99 

 

The distribution of the database by risk category 𝑅𝑇c shows that the losses of the category 

« 𝑅𝑇3  » represent 45%, followed by « 𝑅𝑇6  » that represent 19%, in third position the category 

« 𝑅𝑇1 » that represent 12%, followed by « 𝑅𝑇7  » with 10% and the other categories represent 

15%. The statistical characteristics of the loss amounts by risk category are summarized in the 

following table: 

Table 4 : Statistical characteristics of losses by risk category (in amounts) 

𝑅𝑇c 

Distribution of 

losses in 

number 

Mean 

Distribution of 

losses by 

amount 

Standard 

Deviation 
Skewness Kurtosis 

𝑅𝑇1 12% 781 175,04 16,8% 9 355 985,39 15,33 234,22 

𝑅𝑇2 9% 13 213,10 0,3% 63 647,81 7,123 52,090 

𝑅𝑇3 45% 34 573,71 0,7% 363 852,27 20,47 457,38 

𝑅𝑇4 4% 183 689,13 3,9% 781 324,16 5,81 32,690 

𝑅𝑇5 2% 199 146,42 4,3% 84 075,40 1,853 4,475 

𝑅𝑇6 19% 190 746,84 4,1% 1 379 733,78 10,248 113,639 

𝑅𝑇7 10% 3 249 849,84 69,9% 25 490 889,73 13,408 184,914 

 

To determine the frequency of losses we will segment the database by a semi-annual 

horizon. The choice of horizon is made on the basis of the data available for modelling, which 

must be greater than 30 observations.  

The statistical characteristics of the frequency by risk category are as follows:  

Table 5 : Statistical characteristic of frequency by risk category 

𝑅𝑇c Mean Standard Deviation 

𝑅𝑇1 10,57 11 

𝑅𝑇2 11,87 14,54 
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𝑅𝑇3 52,96 54,92 

𝑅𝑇4 3,17 2,71 

𝑅𝑇5 2,92 3,15 

𝑅𝑇6 38,72 52,82 

𝑅𝑇7 7,12 10,08  

 

6.2. The LDA approach.  

6.2.1. Statistical estimation of parameters. 

The estimation of the parameters of the laws of severity and frequency based on observed 

data by risk category is as follows: 

6.2.1.1. The parameters of the severity. 

The adjustment test of the data with the lognormal law 𝐿𝑁(𝜇ℎ, 𝜎ℎ) s based on the 

Kolmogorov- Smirnov test. As a result, the estimation of the parameters and the results of the 

adjustment tests by risk category are as follows: 

Table 6 : Estimation and adjustment test of the 𝐿𝑁(𝜇ℎ, 𝜎ℎ) by risk category 

𝑅𝑇c 
𝐿𝑁(𝜇ℎ, 𝜎ℎ) Kolmogorov- Smirnov test 

𝜇ℎ 𝜎ℎ p-value 

𝑅𝑇1 10,60 1,67 0,084 

𝑅𝑇2 7,51 1,58 0,258 

𝑅𝑇3 8,59 1,49 0,419 

𝑅𝑇4 9,84 2,09 0,831 

𝑅𝑇5 12,14 0,35 0,649 

𝑅𝑇6 8,08 2,49 < 0,0001 

𝑅𝑇7 11,52 2,49 0,723 

 

The Kolmogorov-Smirnov fit test shows that data from all categories adjust with the 

lognormal law except the category 𝑅𝑇6. 

6.2.1.2. The parameters of the frequency. 

The test for adjusting the frequency data with the Poisson law and the negative binomial law 

is based on the chi-square test. As a result, the estimation of the parameters and the results of the 

adjustment tests by risk category are as follows: 

Table 7 : Estimation and adjustment test of the 𝑃(𝜆ℎ) and 𝐵𝑁(𝑎ℎ, 𝑏ℎ) by risk category 

𝑅𝑇c 
Poisson 𝑃(𝜆ℎ)  p-value chi-

square test 

Negative-Binomial 𝐵𝑁(𝑎ℎ, 𝑏ℎ) p-value chi-

square test 𝜆ℎ 𝑎ℎ 𝑏ℎ 

𝑅𝑇1 10,57 < 0,0001 0,83 12,87 0,01 

𝑅𝑇2 11,87 < 0,0001 0,74 16,12 0,040 

𝑅𝑇3 52,96 < 0,0001 0,87 60,84 0,385 

𝑅𝑇4 3,17 < 0,0001 2 ,93 1 ,08 0,017 

𝑅𝑇5 2,92 < 0,0001 2,38 1,23 0,030 

𝑅𝑇6 38,72 < 0,0001 0,42 92,66 0,054 

𝑅𝑇7 7,12 < 0,0001 1,25 5,68 < 0,0001 

 

The fit test shows that for a 5% threshold, the data does not adjust with Poisson law and 

Negative-Binomial law except the category 𝑅𝑇7 which adjusts with the Negative-Binomial law 

while for a 1% threshold, all categories does not adjust with the Poisson law but adjusts with the 

Negative-Binomial law except the category 𝑅𝑇7 which does not adjust with the Negative-Binomial 

law.  

 

6.2.2. Experts' estimates. 
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The mean annual loss is determined by risk category by maintaining the same allocation 

structure for the mean annual losses. The calculation of the mean loss for the business line is 

defined as a percentage of the activity level of the business line (𝑁𝑎). Indeed, the level of activity 

is deducted from the activity indicator presented above. In our research, the activity level 𝑁𝑎 is 

defined as follows : 

 𝑁𝑎 = 𝑀𝑖𝑛 [(
1

3
∑ |𝑃𝐼𝑖 − 𝐶𝐼𝑖|

3
𝑖=1 )  ; 2,25% × (

1

3
∑ 𝐴𝑃𝐼𝑖

3
𝑖=1 )] +

𝑀𝑎𝑥 [(
1

3
∑ 𝑃𝐻𝐶𝑖

3
𝑖=1 ) ; (

1

3
∑ 𝐶𝐻𝐶𝑖

3
𝑖=1 )] 

For the bank studied, the level of activity of the Retail Banking line is equal to 4 500 

million MAD. 

The experts' estimate of the mean loss for the business line is set at 1.5%, i.e. an mean loss 

of 6,75 million MAD, allocated as follows: 

Table 8 : Expert estimate of mean losses (𝑃𝑀) by risk category  𝑅𝑇𝐶 in millions of MAD 

𝑅𝑇c  
mean losses (𝑃𝑀) 

by category  
Mean losses structure 

by category 
Expert estimate of mean losses (𝑃𝑀) 

by category 

𝑅𝑇1 18 966  31,6% 21 313 

𝑅𝑇2 314 0,5% 352 

𝑅𝑇3 2 349  3,9% 2 640 

𝑅𝑇4 2 266 3,8% 2 546 

𝑅𝑇5 1 704  2,8% 1 915 

𝑅𝑇6 4 706  7,8% 5 289 

𝑅𝑇7 29 762  49,5% 33 445 

 

The estimation by the experts is made in two steps. Indeed, we will first estimate the mean 

semi-annual frequency (𝜆𝑒) then we will estimate the parameter 𝜇𝑒 of 𝐿𝑁(𝜇𝑒 , 𝜎ℎ) from the 

formula (11) using the mean loss per risk category 𝑅𝑇c. 

6.2.2.1. Expert estimation 𝝀𝒆 of the parameter 𝝀. 

The experts' estimate of the parameter 𝜆𝑒 is based on the approach defined above. in fact, 

the expert gives a first estimate based on historical data. This estimate is used to simulate the 

realization of the Poisson law according to the algorithm presented above, then the values judged 

outliers by the expert are deleted. We determine the new mean of the simulated sample that will 

be confirmed with the expert. The simulation is repeated until the expert's validation of the mean 

frequency by risk category is obtained.  

The results of this approach are as follows: 

Table 9 : The experts' estimate of the parameter 𝜆𝑒  by risk category  

𝑅𝑇c 𝜆𝑒 

𝑅𝑇1 11,5 

𝑅𝑇2 14,3 

𝑅𝑇3 54,6 

𝑅𝑇4 4,07 

𝑅𝑇5 3,40 

𝑅𝑇6 5,8 

𝑅𝑇7 3,5 

 

6.2.2.2. Estimation of the parameter 𝝁𝒆 

The expert estimate of the parameter 𝜇𝑒 from the estimation of the mean loss and the mean 

frequency is made by the following formulas determined from the formulas (8) et (11) : 
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{

𝑃𝑀 = 𝜆𝑒𝐸(𝑋)

𝜇𝑒  = ln(𝐸(𝑋)) −
𝜎ℎ

2

2

 

As a result, the estimate of the parameter 𝜇𝑒 by risk category is presented as follows: 

Table 10 : The expert estimate of the parameter 𝜇𝑒 by risk category 

𝑅𝑇c 𝑃𝑀 𝜆𝑒 𝜇𝑒 

𝑅𝑇1 21 313 11,5 6,13 

𝑅𝑇2 352 14,3 1,95 

𝑅𝑇3 2 640 54,6 2,77 

𝑅𝑇4 2 546 4,07 4,25 

𝑅𝑇5 1 915 3,40 6,27 

𝑅𝑇6 5 289 5,8 3,72 

𝑅𝑇7 33 445 3,5 6,06 

 

6.2.3. The Bayesian estimators of parameters. 

The Bayesian estimators of frequency and severity are determined by the following 

relationships: 

{
�̂�𝐵𝑎𝑦 = 𝜀1 × 𝜆e + (1 − 𝜀1) × 𝜆ℎ

�̂�𝐵𝑎𝑦 = 𝜀2 × 𝜇e + (1 − 𝜀2) × 𝜇h
    with 𝜀1 = 𝜀2 = 25% 

As a result, Bayesian estimators of severity and frequency by risk category, knowing that 

variance is a constant determined by likelihood, are presented as follows: 

Table 11 : The Bayesian estimators of parameters by risk category 

𝑅𝑇c 
𝑃(𝜆) 𝐿𝑁(𝜇, 𝜎) 

�̂�𝐵𝑎𝑦 �̂�𝐵𝑎𝑦 𝜎ℎ 

𝑅𝑇1 10,80 9,48 1,67 

𝑅𝑇2 12,48 6,12 1,58 

𝑅𝑇3 53,37 7,14 1,49 

𝑅𝑇4 3,40 8,44 2,09 

𝑅𝑇5 3,04 10,67 0,35 

𝑅𝑇6 30,49 6,99 2,49 

𝑅𝑇7 6,22 10,16 2,49 

  

6.2.4. Determination of 𝑽𝒂𝑹 by risk category. 

The determination of the 𝑉𝑎𝑅 is made according to the approach presented above. Indeed, 

the breakdown of 𝑉𝑎𝑅 based on historical 𝐿𝐷𝐴 and the Bayesian 𝐿𝐷𝐴 by risk category is as 

follows: 

Table 12 : The 𝑉𝑎𝑅 under Historical and Bayesian 𝐿𝐷𝐴 by risk category (in 𝑘𝑀𝐴𝐷) 

𝑅𝑇c 𝑉𝑎𝑅𝐶,ℎ (𝜆ℎ, 𝜇ℎ, 𝜎ℎ) 𝑉𝑎𝑅𝐶,𝑏𝑎𝑦 (�̂�𝐵𝑎𝑦 , �̂�𝐵𝑎𝑦, 𝜎ℎ) 

𝑅𝑇1           45 526        14 449   

𝑅𝑇2             1 560              367 

𝑅𝑇3             6 926           1 767    

𝑅𝑇4           45 526        11 764    

𝑅𝑇5             4 026              955    

𝑅𝑇6        164 222        45 554   

𝑅𝑇7     1 641 160      384 680   
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The use of expert opinion has permitted to minimize 𝑉𝑎𝑅 by risk category. Indeed, the 

experts readjusted the parameters of the distributions of severity and frequency for all categories, 

in order to take into account organizational changes and the strengthening of the control device. 

6.3. Capital allocation. 

The capital is allocated in accordance with formula (1). Indeed, each category benefiting 

from a percentage of the capital allocated to the retail banking business line equivalent to the ratio 

of its 𝑉𝑎𝑅𝐶 and the sum of the 𝑉𝑎𝑅𝑠 of all categories (∑ 𝑉𝑎𝑅𝐶
7
𝑐=1 ). he capital share of each class 

is as follows:  

Table 13 : Capital allocation through historical and Bayesian approaches 

𝑅𝑇c Percentage of capital allocated 

under the classical 𝐿𝐷𝐴 

Percentage of capital allocated under 

the bayesian 𝐿𝐷𝐴  

𝑅𝑇1 2,38% 3,14% 

𝑅𝑇2 0,08% 0,08% 

𝑅𝑇3 0,36% 0,38% 

𝑅𝑇4 2,38% 2,56% 

𝑅𝑇5 0,21% 0,21% 

𝑅𝑇6 8,60% 9,91% 

𝑅𝑇7 85,97% 83,71% 

 

The use of 𝑉𝑎𝑅 through the use of the traditional approach or by incorporating expert 

opinion shows that the capital allocated to retail banking will be divided mainly into the risk 

categories 𝑅𝑇6 and 𝑅𝑇7. Indeed, the category 𝑅𝑇7 benefited respectively from 85,97% and 83,71% 

of the allocated capital, followed by the category 𝑅𝑇6 respectively from 8,60 et 9,91% while the 

other categories benefited respectively from 5,43% and 6,38%. 

 

7. Conclusion  

Internal models permit to determine the economic capital independently of the regulatory 

capital and to determine the impact of the occurrence of risk events at the level of the different 

entities and at the aggregate level under the Bottom-up approach or the Top-down approach. 

for the risk identification process, banks are free to use their own models to achieve the 

objective of risk supervision in accordance with the second pillar relating to prudential risk 

management. This situation encourages the use of internal models that can be based either on 

historical data, expert opinion or a combination of historical data and expert opinion.  

The use of expert opinion is essential in risk management given the recurrent changes in 

organization, business size and control device. Indeed, the expert opinion permits to readjust the 

estimates and assumptions based on historical data taking into account the changes operated.  

The reliability of models incorporating expert opinions depends on the approach used to 

collect the requested information. Indeed, it is necessary to adopt rigorous procedures and 

approaches at the theoretical and practical levels in order to avoid the risk of a model. 

In this context, we have presented in this paper a process for collecting information from 

experts specific to operational risk, based on the Delphi method, which we believe will give the 

relevant results for risk measurement if it is correctly administered.  

For the prospects of internal models for quantifying operational risk, banks must separate 

regulatory capital requirements from internal requirements for managing the return/risk trade-off. 

Indeed, they must develop internal risk measures allowing them to manage their activities through 

risks and allocate the necessary equity capital for their business plans. 

 

Reference: 

 Alexander, C. (2003), Operational Risk: Regulation, Analysis and Management, London: FT 

Prentice Hall.  



21 
 

 Ayyub, B.(2001), A Practical Guide on Conducting Expert-Opinion Elicitation of Probabilities 

and Consequences for Corps Facilities, U.S. Army Corps of Engineers Institute. 
https://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/01-R-01.pdf 

 Basel Committee on Banking Supervision (2003), Sound Practices for the Management and 

Supervision of Operational Risk, Bank for International Settlements. 

 Basel Committee on Banking Supervision (2006), International Convergence of Capital 

Measurement and Capital Standards, Bank for International Settlements. 

 Basel Committee on Banking Supervision (2011), Principles for the Sound Management of 

Operational Risk, Bank for International Settlements. 

 Basel Committee on Banking Supervision (2016), Standardised Measurement Approach for 

operational risk, Consultative Document, Bank For International Settlements. 

 Basel Committee on Banking Supervision (2017), Basel III: Finalising post-crisis reforms, 

Bank for International Settlements. 

 Bee, M. (2006), Estimating the Parameters in the Loss Distribution Approach: How Can We 

Deal with Truncated Data, the Advanced Measurement Approach to Operational Risk, london: 

E. Davis, Risk Books. 

 Chernobai, A., Menn, C., Truck, S. and Rachev, ST. (2005), A Note on the Estimation of the 

Frequency and Severity Distribution of Operational Losses. Mathematical Scientist 30(2):87-

97.  

 Chernobai, A.S., Rachev, S.T. and Fabozzi, F.J. (2007), “Operational Risk”. New Jersey: John 

Wiley & Sons, Inc. 

 Cruz, M.G. (2002), modeling, measuring and hedging opérational Risk, Published by John 

Wiley & Sons, Inc. 

 Dhaene, J., Tsanakas, A., Valdez, E. A. and Vanduffel, S. (2012), Optimal Capital Allocation 

Principles, Journal of Risk and Insurance, 79(1), pp. 1-28. 

 Frachot, A., Moudoulaud, O. and Roncalli, T. (2003), Loss Distribution Approach in Practice. 

In The Basel Handbook: A Guide for Financial Practioners, Chicago: Micheal Ong, Risk Books.  

 Helmer, O.(1968), Analysis of the Future: The Delphi Method, https://www.rand.org/pubs/ 

papers/P3558.html. 

 King, J.L. (2001), Operational Risk, Measurement and Modelling. New York: Wiley Finance.  

 Schevchenko, P.V. (2008), Estimation of operational risk capital charge under parameter 

uncertainty. The Journal of Operational Risk 3 (1), 51–63. 

 Schevchenko, P.V. (2010), Implementing Loss Distribution Approach for Operational Risk. 

Applied Stochastic Models in Business and Industry 26(3), pp. 277-307. 

 Schevchenko, P.V. (2011), Modelling operational risk using Bayesian inference. Springer. 

 Schevchenko, P.V. and Temnov, G. (2009), Modeling operational risk data reported above a 

time-varying threshold. The Journal of Operational Risk 4(2), 19–42. 

 Shang, X. and Chen, Z. (2012), Risk Appetite Linkage with Strategy Planning. 

https://web.actuaries.ie/sites/default/files/erm-esources/research_risk_app_link_ report. pdf 

 

https://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/01-R-01.pdf

