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Abstract Due to the dependence on Internet-based services, many efforts
have been conceived to mitigate the impact of disasters on service provision.
In this context, cloud computing has become an interesting alternative for
implementing disaster tolerant services due to its resource on-demand and
pay-as-you-go models. This paper proposes a sensitivity analysis approach to
assess the parameters that most impact the availability of cloud data centers,
taking into account disaster occurrence, hardware and software failures, as
well as recovery actions. The analysis adopts continuous-time Markov chains,
and the results indicate that disaster issues should not be neglected. Hardware
failure rate and time for migration of VMs are the critical factors pointed out
for the system modeled in our analysis. Moreover, the location where data
centers are placed has a significant impact on system availability, due to time
for migrating VMs from a backup server.

Keywords Sensitivity analysis · cloud computing · continuous time Markov
chains.

1 Introduction

Internet-based services have become critical to several businesses in which
many aspects of our lives depend on (e.g., online banking, collaborative work,
video conferencing). Business continuity is a remarkable property and a real
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concern for many companies, since service disruption may cause huge revenue
and market share losses. Thus, many organizations have relied on disaster
tolerant services to avert disasters from generating service outages [1]. Disas-
ters contemplate both natural and manmade events. Hurricanes, flooding, and
earthquakes are examples of natural causes of disasters. Manmade disasters
might occur due to an intentionally set fire, or even an unintentional event,
such as a car accident that leaded to a power cut affecting Amazon’s data
center [2].

Over the last years, cloud computing has turned into an interesting alterna-
tive for implementing disaster tolerant services due to its resource on-demand
and pay-as-you-go models [3]. More specifically, additional resources, such as
virtual machines (VMs), are only allocated when a disaster takes place, and
the automated virtual platform also performs a transparent recovery and min-
imizes the time to restore the service.

Availability is a prominent indicator to assess cloud provider’s quality-of-
service (QoS). This metric takes into account the effects of failure/recovery
behavior of data center systems. For prominent cloud providers, the quality
level is regulated by adopting a Service Level Agreement (SLA) which specifies,
for instance, the maximum downtime per year. Penalties may be applied if
the defined quality level is not satisfied. Thus, to meet SLA requirements,
cloud providers need to evaluate the availability level of their environment,
considering also the possibility of disasters.

A disaster recovery plan requires the utilization of different data centers
located far enough apart to mitigate the effects of unforeseen citywide dis-
asters (e.g., earthquakes) [4]. If multiple data centers are located in different
geographical locations (considering disaster independent places), the availabil-
ity level of the whole system will improve. On the other hand, VM migration
time increases due to distance between data centers.

Consequently, dependability evaluation [5] is of utmost importance to as-
sess availability in distributed cloud systems with disaster recovery mecha-
nisms. Dependability takes into account techniques and modeling approaches,
which evaluate the impact of failures on service provision. In this context, sen-
sitivity analysis [6,7] is a prominent technique that allows the identification of
parameters that most influence availability related measures.

Sensitivity analysis is often adopted to evaluate how “sensitive” a met-
ric is to variations in the value of a parameter (parametric) or to changes in
the model (structural). Traditionally, parametric sensitivity analysis is per-
formed by a discrete variation of input parameters over their value ranges,
and graphing the effects on output measures. Another technique for perform-
ing parametric sensitivity analysis is the differential sensitivity analysis. This
approach calculates the partial derivatives of the measure of interest with re-
spect to each input parameter. The main advantages of differential sensitivity
analysis is the reduced computation time when compared to other methods
(e.g., discrete method) [8].

This work presents an approach based on differential parametric sensitiv-
ity analysis to identify the parameters that most impact the availability of
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cloud data centers. The analysis is based on continuous time Markov chains
(CTMC) for assessing system availability considering hardware and software
failures, disaster occurrence, recovery, and VM migration. Using the proposed
approach, cloud providers can determine the parameters that deserve more
attention in order to meet SLA requirements. We also evaluate the distance
between data centers and backup server, which indicates a significant influence
on system availability.

The paper is organized as follows. Section 2 highlights the related works,
and Section 3 presents important concepts. Section 4 describes the cloud com-
puting system adopted in this work. Section 5 presents the case study, which
includes the analytical model and results. Finally, Section 6 concludes this
paper and introduces future works.

2 Related Work

Over the last years, some authors have been devoting efforts to study de-
pendability issues on cloud computing systems. Longo et al. [9] proposed an
approach for availability analysis of cloud computing systems based on Petri
nets and Markov chains. The authors also developed closed-form equations
and demonstrated that their approach can scale for large systems. In [10],
a performability analysis for cloud systems is presented. The authors quan-
tify the effects of variations in workload, failure rate and system capacity on
service quality. In [11], the authors investigate the software aging effects on
Eucalyptus framework [12], and they also propose a strategy to mitigate such
issues during system execution.

Bradford et al [13] describe a system design approach for supporting trans-
parent migration of VMs adopting local storage for their persistent state. The
approach is transparent to the migrated VM, and it does not interrupt open
network connections during VM migration. In [14], the authors present a case
study that quantifies the effect of VM live migrations in the performance of an
Internet application. Such study helps data center designers to plan environ-
ments in which SLAs determine a desired level for the specified metrics, such
as service availability and responsiveness. Dantas et al. [15] present a study on
warm-standby mechanisms in Eucalyptus-based private clouds. Their results
demonstrate that replacing machines by more reliable counterparts would not
produce significant improvements in system availability, whereas some tech-
niques of fault-tolerance can indeed increase dependability levels.

In [16], the authors present an sensitivity analysis for a variant of Hadoop
Distributed File System (HDFS), which contemplates energy saving tech-
niques. The proposed system divides the cluster data in Hot and Cold Zones.
In this approach, data that present long periods (i.e., several days) of idleness
are allocated in the Cold Zone. That analysis also shows the energy-saving
behavior considering the variation of file system parameters.

The work presented in [17] adopts a two-level hierarchical modeling ap-
proach for virtualized systems which uses fault trees in the upper level, and
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CTMC in the lower level. The support for sensitivity analysis in these ana-
lytical models is important for detecting bottlenecks in system availability. In
[18], the authors show four different sensitivity analysis techniques to deter-
mine the parameters that cause the greatest impact on the availability of a
mobile cloud system. The authors use a combined evaluation of results from
different analysis techniques to deal with the evaluation of the system. Their
results show that the availability can be effectively improved by changing a
reduced set of parameters.

Unlike previous works, this paper proposes a differential parametric sen-
sitivity analysis for evaluating cloud computing systems deployed into geo-
graphically distributed data centers, considering VM migration and disaster
occurrence. The proposed approach also adopts continuous time Markov chains
(CTMC) [5] to evaluate availability and to identify parameters that are critical
for such a metric.

3 Background

This section presents fundamental concepts for providing a better understand-
ing of this paper.

3.1 Dependability

Dependability is the capacity of a system to offer a service in a reliable way [5].
An important concept is system failure, which happens when the system stops
providing the respective service. A fault concerns the failure of a system com-
ponent (or subsystem), which may cause other faults or system failure. De-
pendability comprises several metrics, and, in this work, the metrics of interest
are:

– Reliability: probability of a system executing its functions without failures
for a specified period of time [5]: R(t) = P{T ≥ t}, in which T is the
random variable representing the time to failure of the system (or a single
component, depending on the target analysis).

– Mean Time to Failure: MTTF =
∫∞
0
R(t)dt;

– Mean Time to Repair: MTTR =
∫∞
0

1 − Fm(t). Fm(t) is the cumulative
distribution function representing the probability that a repair will occur
within time t;

– Availability: probability of a system being in a working condition. It con-
siders the alternation of operational and non-operational states [5]. Steady-
state availability (A) is commonly adopted, and it is represented by A =
MTTF/(MTTF +MTTR).

State-based analytical models are very prominent in estimating depend-
ability metrics, since they allow the representation of complex interactions be-
tween components, such as dynamic redundancy mechanisms. In general, they
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model a system behavior by its states and event occurrences [5]. However,
state-based models may suffer from state space explosion. Continuous-time
Markov chains (CTMC) as well as stochastic Petri nets (SPN) are prominent
state-based models [5].

CTMC is graphically represented by a labelled transition system (e.g.,
Figure 1), in which edges are annotated with rates. Q denotes its infinitesi-
mal generator matrix, in which qij is the rate from state i to state j; qii =
−
∑n
j=1,j 6=i qij; and n is the amount of states. Steady-state probabilities (π)

are calculated using a system of linear equations

πQ = 0,
n∑
i=1

π(i) = 1, (1)

in which π(i) represents the probability of state i.

3.2 Sensitivity Analysis of Analytical Models

The creation of analytical models enables the evaluation of many system at-
tributes, such as those related to performance, dependability, and energy con-
sumption. One important activity of analytical modeling is the assessment
that some parameters may have on a metric of interest, usually referred to as
sensitivity analysis [6,7]. The main aim is to predict the effect on outputs with
respect to variations in input parameters [6].

When dealing with analytic models such as Markov models, stochastic Petri
nets, and queueing networks, parametric sensitivity analysis is particularly
important to find performance, reliability, and availability bottlenecks, or in
guiding an optimization process [19,8]. The parametric sensitivity analysis
may be done by repeatedly varying one parameter at a time, while keeping
the others fixed. When applying this method, a sensitivity ranking is obtained
by noting the corresponding changes in the measure of interest. The slopes
of lines in a scatter plot are commonly used to determine the difference of
influence from one parameter to another.

Numerical sensitivity indices can provide a view that is more accurate
than a graphical analysis of the variation of one parameter at a time. Differ-
ential sensitivity analysis, also called direct method, enable the identification
of a measure’s sensitivity index for each parameter of the model. Birnbaum’s
Component Importance [20] – also known as Reliability Importance – is a
well known sensitivity index which is based on the idea of differential analysis,
but it is specific for reliability evaluation. In the context of availability assess-
ment, Barabady and Kumar [21] propose an availability importance measure
which is also based on differentiation. In a general sense, differential sensitivity
analysis is performed by computing the partial derivatives of the measure of
interest with respect to each input parameter. Subsequently, the sensitivity of
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a given measure Y , which depends on a specific parameter λ, is computed as
in Equation 2, or 3 for a scaled sensitivity.

Sλ(Y ) =
∂Y

∂λ
, (2)

SSλ(Y ) =
λ

Y

∂Y

∂λ
. (3)

A scaled (also called relative) sensitivity index may be employed to coun-
terbalance the effect caused by large differences between absolute parameter
values. The property just mentioned may be explained by the indirect rela-
tion between scaled sensitivity functions and logarithms, mentioned in [6] and
shown in Equation 4.

∂ ln Y

∂ ln λ
=

∂ Y

Y
∂ λ

λ

= Sλ(Y )
λ

Y
= SSλ(Y ) (4)

There is a case in which the logarithm may be applied only in the parame-
ters, because the measure Y might already be a logarithmic measure. In such
a case, the scaled sensitivity will be described by Equation 5. In this kind of
scaling, the sensitivity is multiplied only by the parameter, instead of the ratio

between parameter and measure of interest.
︷︸︸︷
SSλ(Y ) is also referred to as a

semi-relative sensitivity function.︷︸︸︷
SSλ(Y ) =

∂ Y

∂ lnλ
=

∂ Y

∂ λ/λ
= λSλ(Y ) (5)

-

Fig. 1: Representation of sensitivity ranking for a CTMC model

Many papers have already described how to apply parametric sensitivity
analysis through partial derivatives in a variety of analytic models, including
CTMC [19] [8] [22], Markov reward models [23], generalized stochastic Petri
nets [24], and queueing networks [25]. Those approaches are helpful for ob-
taining the sensitivity ranking in cases when there is no direct closed-form
equations for the measure of interest. Figure 1 depicts a sensitivity ranking for
a specific CTMC measure. The parameters which have the highest impact on
the measure of interest are located in the top positions of the ranking, since
the sensitivity indices are in decreasing order. The ranking provides a simple
and accurate view of the importance of each parameter, enabling objective
comparisons and decision making.
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3.3 Disaster Recovery and Tolerance

Disaster recovery is the practice of making a system capable of surviving un-
expected or extraordinary failures [26]. The models and analyses discussed in
this paper are closely related to the development of a disaster recovery plan
(DRP). A DRP is an information system-focused plan designed to restore op-
eration of the target system, application, or computer facility infrastructure
at an alternate site after an emergency [27]. Note that a DRP shall be ac-
tivated only after major system disruptions with long-term effects, because
it usually involves operations that might be too costly for occasions of brief
service interruptions.

A typical disaster recovery service works by replicating application state
(e.g., database contents) between two data centers; if the primary data center
undergoes a disaster, then the backup site can take over, activating a new
copy of the application using the most recently replicated data [3]. In order
to be effective, a disaster recovery solution must address some key require-
ments, related to variables such as financial costs of system downtime and
affordable data loss. Among those requirements are: recovery time objective
(RTO), recovery point objective (RPO), performance, consistency, and geo-
graphic separation [3] [26]. RTO refers the amount of time between an outage
and the restoration of the system capabilities following an unplanned event
or disaster. RPO is the maximum acceptable level of data loss following an
unplanned event or disaster. Since disasters may be citywide (e.g., hurricanes)
or even reach multiple countries simultaneously (e.g., the 2004 South Asian
tsunami), the geographic separation is of utmost importance. Therefore, ideal
disaster recovery mechanisms should employ continuous synchronous replica-
tion of data between geographically separated sites, through dedicated high-
bandwidth connections [26].

Systems administrators must deal with the trade-off between cost, speed,
and effectiveness of recovery, since solutions which provide zero data loss, in-
stantaneous recovery time, full performance and consistency are not always
feasible. One approach discussed in recent years (to enable business continuity
at low cost) is the employment of cloud computing platforms to provide dis-
aster recovery solutions [28] [3], benefiting from the pay-as-you-go model. Due
to data privacy concerns, some companies and organizations might decide to
build and use their own private clouds or virtualized data centers instead of
third-party services such as public clouds, despite the possible higher costs.

4 System Architecture of Reliable Distributed Data Centers

This section presents an overview of the cloud computing system considered
in this work, which contemplates a set of components, distributed over dis-
tinct data centers (Figure 2). The Infrastructure-as-a-Service (IaaS) model is
adopted, considering delivery of computing resources on-demand as virtual
machines (VM).
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The system is composed of d data centers, each with two sets of machines,
namely, hot and warm pools. The hot pool is composed of n physical machines
(PM), which are active and running virtual machines (VM). The warm pool
consists ofm PMs that are active, but without running VMs. Thus, the number
of PMs in a data center is t = m+ n.

Fig. 2: Distributed Cloud System Example

Depending on the capacity of each PM, it is possible to run multiple VMs
in the same host. In this study, we assume all physical machines are identi-
cal, in the sense that they adopt the same services, hardware, and software
components. PMs may share a common network attached storage (NAS) or a
storage area network (SAN) to provide distributed storage and to allow the
migration of a virtual machine from one server to another in the same data
center [29]. In case of failure, a VM must be instantiated in another physical
machine of the same data center. If there is no available PM in the current
data center, the VM image is moved to another data center.

Furthermore, a Backup Server (BS) is assumed to provide backup of VM
data. This component receives a copy of each VM image during data center
operation. Hence, whenever a disaster makes one data center unavailable, BS
sends VM copies to an operational data center. In this work, the number of
running VMs (w) is compared with a threshold (k) to evaluate the availability
of cloud computing system. Hence, if w ≥ k the system is assumed operational.

4.1 High Level IaaS Model

This section presents a high level model to represent the proposed architecture
[30]. A geographically distributed IaaS system corresponds to the tuple G =
(Flt, Tdi, Tre,MTT, Tfhw, Trhw) in which:

– Flt is a finite set of facilities, including data centers and backup servers,
such that Flt = D∪BS. D is a finite set of data centers and BS represents
the set of backup servers;

– Tdi : Flt → fdi denotes the disaster occurrence function. For each facility
dc ∈ Flt, a probability distribution function (PDF) fdi is associated. The
function fdi provides the probability of a disaster for each instant t;
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– Tre : Flt → fre represents the disaster recovery function. Similarly to the
previous function, it associates a PDF (fre) with each facility dc ∈ Flt. For
each time t a probability of disaster recovery is provided;

– MTT : Flt × Flt → fMTT denotes the VM transmission function. The
function relates a pair of facilities (dc1, dc2) ∈ Flt × Flt to a PDF fMTT .
The resulted function fMTT provides the probability of finishing the data
transmission between dc1 and dc2 at time t;

– Tfhw : Flt → ffhw represents the function for the failure due to hardware
or software error. Each facility dc ∈ Flt presents a probability distribution
function ffhw for representing the probability of failure occurrence at time
t;

– Trhw : Flt → frhw means the function for repair hardware or software
components (from non-disaster failures). It is analogous to Tfhw but frhw
is represents the repair probability at time t.

A data center dc ∈ D corresponds to the ordered pair (Pd, Cd), where Pd
represents a represents a physical machine finite set. Cd represents the finite
set of basic components of network infrastructure.

A physical machine p ∈ Pd corresponds to the tuple (Vp, Sp, os, hw,m)
where:

– Vp represents a virtual machine finite set assigned to the physical machine
at cloud system start up;

– Sp : Vp → fp provides the virtual machine set up time probability distri-
bution function;

– os ∈ Op corresponds to the physical machines’s software component;
– hw ∈ Hp represents the hardware of the physical machine;
– m ∈ N denotes the maximum number of VMs that the physical machine

can execute;

Op and Hp are finite sets of software and hardware components related
to physical machines. C (C = Cd ∪ Op ∪Hp ∪ Vp) corresponds to a finite set
of all data center’s basic components. Tfr : C → ffr represents the failure
probability distribution function associated with a component c ∈ C, and
Trp : C → frp represents the repair PDF associated with a component c ∈ C.

4.2 VM Transmission (MTT) estimation

To estimate the Mean Time to VM Transmission (MTT ), we consider the
approach presented in [31] that provides an equation to assess the network
throughput based on the distance between the communication nodes. The
VM transmission rate is obtained as follows:

Rate < (MSS/RTT )× (1/
√
p) (6)

where Rate (kbps) is the TCP transfer rate, MSS (bytes) is the maximum
segment size per package, RTT (ms) is the round trip time, and p is the
packet loss ratio. The following equation is adopted to estimate the RTT:
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RTT =
Dist

α× 100
(7)

in which Dist means the distance in kilometers. The equation associates a
constant α with network directness, in which values close to one mean the
path between the hosts follows a direct path. Values much smaller than one
mean the path is very indirect.

5 Case study: A disaster recovery architecture

This section presents our analytical model for a cloud data center concerning
disaster issues, and a sensitivity analysis of such model to assess the impact
of each parameter on system availability. Mercury tool [32] was adopted for
CTMC modeling and sensitivity analysis.

5.1 System description

Fig. 3: Cloud System Architecture

Figure 3 depicts the infrastructure adopted (Flt = D ∪ BS) as our case
study, which contemplates two data centers (D = {D1, D2}) and a backup
server (BS = {B}). Each data center is composed by one physical machine
(PM) (D1 = (PD1 = {Pmc1}, CD1),D2 = (PD2 = {Pmc2}, CD2) that con-
templates hardware and basic software (CD1 and CD2) for running at most
2 virtual machines (m = 2). Backup server B is responsible for periodically
saving the states of all VMs. Thus, whenever a data center fails, a VM is
transmitted to the other data center (assuming it is operational) using the
snapshot available in the backup server [33].

The system has 2 VMs and both must be operating. In other words, if a
single VM fails, the system stops providing the service. Data center 1 is the
primary center, and data center 2 is considered the spare component. The
following assumptions were considered for this particular study:

– The backup server is not affected by disasters;
– VM migration is only possible if the backup server is operational;
– During VM migration, other components do not fail;



Title Suppressed Due to Excessive Length 11

– Whenever the backup server is on a failure state, only VMs can fail;
– VM migration only occurs when the data center executing both VMs stops.

If a single VM fails, it is recovered on the same data center;
– VM migration time also includes the time for initialization of both VMs in

the new data center;
– Data center 1 has greater priority over Data center 2 considering recovery;
– Disaster recovery is complete, in the sense that it also considers hardware

and VM recovery;
– Two simultaneous disasters are not possible. In other words, if a disaster

is affecting one data center, the other data center cannot fail due to a
disaster. However, the latter can fail due to hardware or software issues;

– A data center recovering from a hardware failure has priority over the
recovery of a data center impacted by disasters.

Such assumptions exclude some rare simultaneous events and were carefully
evaluated to not cause significant changes on results, while avoiding the state
space explosion.

Fig. 4: CTMC Model
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5.2 Analytical model

Figure 4 depicts the conceived CTMC model. As previously mentioned, the
proposed model takes into account a set of assumptions for representing the
data center behavior (see Section Section 5.1). The rates and notation are de-
scribed in Table 1 and 2, respectively. The rates have been obtained from [17],
[34], [35], [36] and the VM migration time was estimated using the approach
described in Section 4.2.

As an example of state notation, state D1V1i D2d Bf represents the fol-
lowing situation: (i) data center 1 is operational with 1 running VM and 1
VM being instantiated; (ii) data center 2 is failed due to a disaster; and
(iii) the backup server is not operational. The metric of interest is steady-
state availability (A), in which the operational condition is two running VMs.
Therefore, the system is available in the following states: UP={D1V2 D2V0,
D1V2 D2V0 Bf, D1d D2V2 Bf, D1V2 D2f, D1V2 D2d, D1d D2V2, D1V2 D2f Bf,
D1f D2V2, D1V2 D2d Bf, D1V0 D2V2, D1f D2V2 Bf , D1V0 D2V2 Bf}.

More specifically, A =
∑
s∈UP π(s), in which π(s) denotes the steady-state

probability of state s. From the system of linear equations of a CTMC (see
Section 3.1), a closed-form equation can be obtained for A, but this work
omits it due to the excessive length of such expression. The evaluation process
was conducted by using the sensitivity analysis feature of Mercury tool [32].
This approach calculates the partial derivatives of the measure of interest with
respect to each input parameter (Section 3.2).

Table 1: Rates for CTMC model

Parameter Description Value (h)

1/i v Mean time to instantiate a VM (Sp) 0.008

1/λ v Mean time to VM failure 2880.000

1/λ b Mean time to failure of backup server (Tfhw) 5000.000

1/µ b Mean time to repair of backup server (Trhw) 0.500

1/λ h Mean time to failure of a data center due to hardware or software (Tfhw) 800.000

1/µ h Mean time to repair a data center due to hardware or software (Trhw) 0.500

1/λ d Mean time to disaster occurrence for a data center (MTT ) 87600.000

1/µ d Mean time to repair a data center due to disaster (Tre) 4320.000

1/md v Mean time to migrate and instantiate all VMs (2×MTT + 2× Sp) 4.083

5.3 Sensitivity Analysis Results

Table 1 presents the parameters ψ adopted in this work (see Figure 4). Equa-
tion (8) defines the scaled sensitivity of system availability.
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Table 2: State Notation

Notation Description

DxVn Data center x is operational, and n VMs are running (n ∈ {0, 2})
DxVmi m VMs are running on data center x (0 ≤ m ≤ 1), and VMs are being instantiated

Dxd Data center x is not operational due to a disaster

Dxf Data center x is not operational due to hardware or software failure

Bf Backup server is failed.

Table 3: Sensitivity ranking based on partial derivatives for steady-state avail-
ability

Parameter |SS(A)|
λ h 5.481× 10−3

md v 4.557× 10−3

µ h 9.653× 10−4

λ d 6.364× 10−4

µ d 5.951× 10−4

i v 1.151× 10−4

λ v 5.754× 10−6

λ b 4.557× 10−7

µ b 4.557× 10−7

SSψ(A) =
ψ

A

∂A

∂ψ
=

ψ

(
∑
s∈UP π(s))

×
∂(
∑
s∈UP π(s))

∂ψ
. (8)

Fig. 5: Availability Results - Varying Component’s MTTF

Table 3 depicts the sensitivity ranking, which indicates that hardware fail-
ure (λ h) has the largest impact on system availability. The time for migration
of VMs (md v) is the second most important parameter.

It is important to stress that the steady-state availability in the baseline
scenario – i.e., assigning all parameters to values of Table 1 – is 0.99423684,
equivalent to an annual downtime of 50.48 hours. The scaled sensitivity indices
for λ h and md v are both within the order of 10−3. Therefore, these param-
eters may change the system availability in the third decimal place, raising
it to about 0.999, or bringing it down to 0.99, depending whether a decrease
or increase is applied on them. Table 3 also shows that both disaster-related
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parameters (lambda d and mu d) affect significantly the availability, but the
failure rate (λ d) has a greater impact than the respective recovery ((µ d).

The results can be verified using the plots depicted in Figure 5, 6 and 7.
The plots are separated because failure and recovery parameters have different
magnitudes (i.e., recovery actions takes less time than failures). The recovery is
also split into two plots, as only parameters i v and µ b are in the order of min-
utes. Nevertheless, in all plots, we kept the parameters fixed using the values
in Table 1; only one parameter is varied at a time; then system availability is
calculated. Whilst a larger time for a failure event positively contributes to an
improved availability, a larger time for a recovery action decreases availability.

Fig. 6: Availability Results - Varying µ d, md v and µ h

Fig. 7: Availability Results - Varying µ b and i v

Notice that lines for the hardware and disaster failures (1/λ h and 1/λ d)
in Figure 5 have the largest slopes, confirming their importance as also shown
in Table 3. On the other hand, failures of VMs and the backup server yield a
negligible impact on the availability when compared to the other failure-related
parameters. Such an issue is also exposed by the low sensitivity indices of λ v
and λ b, indicating effect only on the seventh decimal place of the steady-state
availability measure.

Figure 6 confirms that varying time to hardware repair (1/mu h), time
for migration of VMs (1/md v), and time for disaster recovery (1/µ d) cause
changes to the availability that are more significant than those produced by
the other recovery parameters: VMs instantiation time, and time to repair the
backup server.

We can also see the impact of each parameter on the availability through
the sensitivity ranking for the metric number of nines. This metric is calcu-
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Table 4: Sensitivity ranking based on partial derivatives for the number of
nines

Parameter |
︷︸︸︷
SS (Nines)|

λ h 4.186× 10−1

md v 3.481× 10−1

µ h 7.373× 10−2

λ d 4.861× 10−2

µ d 4.546× 10−2

λ v 4.395× 10−4

i v 4.395× 10−4

λ b 3.481× 10−5

µ b 3.481× 10−5

lated using −log10(1−A) (in which A refers to availability). For instance, the
baseline availability 0.99434554 can be presented as −log10(1− 0.99423684) =
2.23933932 nines.

Equation (9) is used to compute the semi-relative sensitivity index [6] of
this metric with respect to each parameter ψ of the model. We do not use
the same scaling approach as done for the steady-state availability because
the metric number of nines is logarithmic, and as seen in Section 3.2, a semi-
relative sensitivity function better suits this kind of measure.

Ŝψ(Nines) = ψ × ∂(−log10(1−A))

∂ψ
=

ψ × Sψ(A)

log(10)− log(10)×A

(9)

The ranking of Table 4 presents the same order of parameters as shown
in the ranking for the sensitivity of steady-state availability. This is expected
because the number of nines is only a different view for the availability. The
sensitivity indices for λ h and md v are 4.186×10−1 and 3.481×10−1, respec-
tively, indicating that the system might go from the current value of 2.24761
nines to about three nines – what would be a significant improvement – by
gradual adjusts on these parameters.

These results can also be verified using the plots depicted in Figures 8, 9
and 10, which confirm what was already seen in Table 3.

Fig. 8: Availability as Number of Nines - Varying Component’s MTTF
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Fig. 9: Availability as Numberf of Nines - Varying µ d, md v and µ h

Fig. 10: Availability as Number of Nines - Varying µ b and i v

From the results, one important conclusion is disaster issues should not
be neglected when designing data centers as well as the location where such
infrastructures are placed. For instance, the VM migration (md v) is the most
impacting recovery parameter, and it is directly related to the distance be-
tween data centers (which is analyzed further in Section 5.4). Additionally,
the time between disasters (λ d) is the second most important among the
failure parameters. The careful choice of locations rarely affected by natural
disasters is one of the few actions that can effectively change λ d. The usage of
highly reliable hardware and preventive maintenance policies may be instead
affordable decision,s which affect hardware failure rate (λ h) and, therefore,
they will have a significant impact on overall system availability.

5.4 Data Center and Backup Server Locations

Sensitivity analysis indicates md v as an important parameter, as the sensitive
index for md v points out an impact on the third decimal place of system
availability (A). Since system downtime (DT) is calculated as DT = [(1 −
A) × period], a smaller VM migration time can reduce downtime as much as
86400× 0.001 = 8.64 hours in a year.

Thus, the definition of data centers and backup server locations is a promi-
nent design decision. In this section, we consider an experiment, in which Data
center 1 (D1) and Data center 2 (D2) are equidistant to a backup server (B)
located in one of major Brazilian cities: Sao Paulo or Rio de Janeiro (Rio).
Such distances are adopted to estimate md v, considering the migration of 2
VMs. The approach described in Section 4.2 is considered, assuming the fol-
lowing parameters: (i) α = 0.35; (ii) 4 GB for a VM image; and (iii) p = 0.01.
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Table 5: Backup server and data center location

Cities Distance (km) 1/md v (h)
Rio-Brasilia 932 4.435
Rio-Recife 1,877 8.847
Rio-New York 7,765 36.341
Rio-Calcutta 15,088 70.535
Rio-Tokyo 18,580 86.841
Sao Paulo-Rio 353 1.731
Sao Paulo-Brasilia 873 4.159
Sao Paulo-Recife 2,128 10.019
Sao Paulo-New York 7,694 36.009
Sao Paulo-Calcutta 15,440 72.179
Sao Paulo-Tokyo 18,546 86.683

Additionally, Table 5 depicts the pair of cities, which defines the distances
between a data center and a backup server, as well as the estimated values for
md v (in hours).

We have adopted the values presented in Table 1, in the sense that all
parameter values are kept constant, except md v. Next, system availability has
been estimated, and Figure 11 presents the results. There is no major difference
whether backup server is located in Rio or Sao Paulo, for instance, since they
are near cities. However, when the distance between the backup server and data
center increases, availability is affected. Assuming the data center is located in
Rio and backup server is in Sao Paulo (or vice-versa), the system availability
has the highest value. If the data center is located in other Brazilian cities, such
as Brasilia and Recife, the impact on availability is already noticeable. The
impact is even higher as the distance increase to the other parts of the same
continent (e.g., New York). When extremely distant places (e.g., Calcuta and
Tokyo) are taken into account, availability is significantly reduced – reaching
about 0.9 (number of nines equal to 1) – due to the large time to migrate VMs.
Nonetheless, if the assumption of countrywide disasters is not very unlikely,
the first result would not be so high, and intermediate distances would be
preferred. However, such an evaluation is out of scope of this work.

Fig. 11: Availability Results -Different Locations

6 Conclusion

This paper presented an approach based on sensitivity analysis and continuous
time Markov chains to identify the parameters that most impact the availabil-
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ity of cloud data centers. The analysis contemplated hardware and software
failures, disaster occurrence, as well as VM migration. The sensitivity ranking
indicates hardware failures have the most impact on the availability metric,
but the time for VM migration is the second most important parameter. Be-
sides, disaster occurrence and recovery are also on the top of the ranking.

The proposed approach demonstrates that researchers and practitioners
have a prominent technique to assess different parameters that affect the op-
erational state of a data center. The results should guide decision making to
meet SLA requirements by tuning system parameters as well carefully choosing
the place where the infrastructures should be located.

References

1. J. Sterbenz, et al, Evaluation of network resilience, survivability, and disruption toler-
ance: analysis, topology generation, simulation, and experimentation, Telecommunica-
tion Systems 52 (2) (2013) 705–736.

2. R. Miller, Car crash triggers amazon power outage, Data Center Knowledge, available
on http://www.datacenterknowledge.com/archives/2010/05/13/
car-crash-triggers-amazon-power-outage/ (May 2010).

3. T. Wood, E. Cecchet, K. K. Ramakrishnan, P. Shenoy, J. van der Merwe, A. Venkatara-
mani, Disaster recovery as a cloud service: Economic benefits & deployment challenges,
in: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, USENIX Association, Berkeley, CA, USA, 2010, pp. 8–8.
URL http://dl.acm.org/citation.cfm?id=1863103.1863111

4. Hyper-V Live Migration over Distance.
URL http://goo.gl/GzlkNk

5. P. Maciel, K. S. Trivedi, R. Matias, D. S. Kim, Performance and dependability in service
computing: Concepts, techniques and research directions (2011). doi:doi:10.4018/
978-1-60960-794-4.ch003.

6. P. M. Frank, Introduction to System Sensitivity Theory, Academic Press Inc, 1978.
7. D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental

models, Environmental Monitoring and Assessment (1994) 135–154.
8. R. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, K. S. Trivedi, Sensitivity analysis

of server virtualized system availability, Reliability, IEEE Transactions on 61 (4) (2012)
994–1006.

9. F. Longo, R. Ghosh, V. Naik, K. Trivedi, A scalable availability model for infrastructure-
as-a-service cloud, in: Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st In-
ternational Conference on, 2011, pp. 335 –346. doi:10.1109/DSN.2011.5958247.

10. R. Ghosh, K. S. Trivedi, V. K. Naik, D. S. Kim, End-to-end performability analysis for
infrastructure-as-a-service cloud: An interacting stochastic models approach, in: Pro-
ceedings of the 2010 IEEE 16th Pacific Rim International Symposium on Dependable
Computing, PRDC ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 125–
132. doi:10.1109/PRDC.2010.30.
URL http://dx.doi.org/10.1109/PRDC.2010.30

11. J. Araujo, R. Matos, P. Maciel, R. Matias, I. Beicker, Experimental evaluation of soft-
ware aging effects on the Eucalyptus cloud computing infrastructure, in: Proceedings of
the Middleware 2011 Industry Track Workshop, Middleware ’11, ACM, New York, NY,
USA, 2011, pp. 4:1–4:7. doi:10.1145/2090181.2090185.
URL http://doi.acm.org/10.1145/2090181.2090185

12. Open source private and hybrid clouds from Eucalyptus, http://www.eucalyptus.com.
13. R. Bradford, E. Kotsovinos, A. Feldmann, H. Schiöberg, Live wide-area migration of
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