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Abstract
The processes that help to obtain necessary and sufficient conditions to determine the local stability of lin-

earized systems is paramount. In this paper, a corollary of the Gershgorin’s circle theorem was used to establish
the local stability of different epidemic models with 3 states or more including, a Tuberculosis model, an SEIRS
model, and malaria model. It was observed that no matter the state or the dimension of the system or matrix this
corollary can be used to analyse local stability for both disease free and endemic equilibrium, by establishing that
when R0 < 1, the Jacobian matrix will have negative eigenvalues or negative real part eigenvalues. Thus, disease
free equilibrium is stable but when R0 > 1, the Jacobian matrix will have negative eigenvalues or negative real
part eigenvalues making the endemic equilibrium is stable.
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1 Introduction
Mathematical modelling plays an important role in epidemiology by providing better understanding of the under-
lying mechanisms for the spread of occurrence and reoccurrence of infectious diseases and suggesting effective
control strategies [6]. It is an important tool that helps to understand the dynamics of infectious diseases and to
support the development of control strategies [12]. Mathematical models for Infectious diseases is the represen-
tation of the dynamic transmission cycle, involving interactions between infected and susceptible hosts that are
generally expressed as a set of ordinary differential equations (ODEs) [14].
The stability of an equilibrium point (stationary states) of a mathematical model for an infectious disease helps
to determine whether the solutions remain near the equilibrium point or get further away or not. The equilibrium
point can be either stable or unstable or a saddle point [7, 10].
The main method use to analyze the local stability of the equilibrium points of epidemic models is the Lyapunov’s
indirect method that is, to determine whether the eigenvalues of the Jacobian matrix evaluated at the equilibrium
points of the system are negative or have negative real part (that is, equilibrium points lie in the left half of the com-
plex plane). Since the characteristic equation for an n− dimensional system is a polynomial equation of degree n
for which it may be difficult or impossible to find all roots explicitly, different methods such as the Routh-Hurwitz
criterion gives necessary and sufficient conditions for the eigenvalues to lie in the left half of the complex plane.
In this case, the reproduction number can be obtained from the constant term. Whether the reproduction number
is greater or less than 1 determines the sign of the constant term [8]. In most of these methods, it is complicated to
apply in problem of many dimensions [2].
In this study, we investigate the local stability of some selected epidemic model using a corollary of Gershgorin’s
circle theorem. The Gershgorin’s theorem also provides sufficient conditions for the eigenvalues to lie in the left
half of the complex plane [1, 11, 9]. That is, the local stability can be established without the need to calculate
the eigenvalues, instead the basic reproduction number which also gives a condition for an equilibrium point to
be stable is used for the analysis. The Gershgorin circle theorem is a theorem which may be used to bound the
size of the eigenvalues of a square matrix. It was first published by Belorussian mathematician Semyon Aranovich
Gershgorin in 1931. Informally, the theorem says that if the off-diagonal entries of a square matrix over the com-
plex numbers have small norms then its eigenvalues are similar in norm to the diagonal entries of the matrix. This
theorem is a very useful tool in numerical analysis, particularly in perturbation theory [5].
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Corollary 1.1 (Corollary of Gershgorin Circle Theorem) Let A be an n× n matrix with real entries. If the
diagonal elements aii of A satisfy

aii <−ri

where

ri =
n

∑
j=1, j 6=i

| ai j | (1)

for i = 1, ...,n, then the eigenvalues of A are negative or have negative real parts [1].

The paper is organized as follows: In Section 2, we established the local stability of a tuberculosis model . We
establisheded the local stability of SEIRS model in Section 3. In Section 4, we investigated the local stability of a
malaria model and gave a short conclusion in section 5.

2 Tuberculosis Model
Using the [3], the population under consideration is sub-divided into three epidemiological classes: susceptible S,
latent or exposed E, and infectious I. The incidence rate given by βSI (using the mass action law). A portion pβSI
gives rise to immediate active cases (fast progression), while the rest (1− p)βSI gives rise to latent-TB cases with
a low risk of progressing to active TB (slow progression). The progression rate from latent TB to active TB is
assumed to be proportional to the number of latent-TB cases, that is, it is given by κE. The total incidence rate is
pβSI +κE. The model is given by the following system:

Ṡ = Λ−βSI−µS

Ė = (1− p)βSI−κE−µE

İ = pβSI +κE−µI−δI

(2)

Let S be Susceptible individuals, E be Latently infected individuals or exposed individuals and I be Infectious
individuals. Let Λ be recruitment rate of susceptible individuals, µ be natural death rate, β be transmission rate of
active TB, κ be the progression rate from latent TB to active TB (Rate of slow progression), δ death rate due to TB
infection and p rate of fast progression.

2.1 The Equilibrium Points
The equilibruim points of model (2) are

1. Disease free equilibrium point (P0) given as(
S0,E0, I0

)
=
(

Λ

µ
,0,0

)
2. Endemic equilibrium point(P∗) given as(

S∗,E∗, I∗
)
=
( (δκ+δµ+κµ+µ2)

(β(µp+κ))
,

− (p−1)(Λβµp+Λβκ−δκµ−δµ2−κµ2−µ3)

((µp+κ)(µ+κ)β)
,

(Λβµp+Λβκ−δκµ−δµ2−κµ2−µ3)

(β(δκ+δµ+κµ+µ2))

)
The basic reproduction number of the tuberculosis model is given as

R0 =
βΛ(κ+µp)

µ(κ+µ)(γ+µ+δ)

The endemic equilibrium point (P∗) can now be expressed in terms of R0 as

(P∗) = (S∗,E∗, I∗) =
(

Λ

µR0
,− (p−1)(R0−1)µ(µ+δ)

(µp+κ)β
,
(R0−1)µ

β

)
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2.2 Local Stability Analysis of the Disease free Equilibrium
We analyze the local stability of the disease free Equilibrium by applying the theorem which follows.

Theorem 2.1 The disease free equilibrium is locally asymptotically stable if R0 < 1.

Proof 2.1 The Jacobian matrix J of the system (2) is

J =

 −βI−µ 0 −βS
(1− p)βI −(κ+µ) (1− p)βS

pβI κ pβS−δ−µ

 (3)

Evaluating the matrix (3) at the disease free equilibrium gives

J0 =


−µ 0 −βΛ

µ

0 −(κ+µ)
(1− p)βΛ

µ

0 κ
pβΛ

µ
− (µ+δ)

 (4)

The disease free equilibrium point will be locally asymptotically stable if the eigenvalues of the Jacobian matrix
are negative or have negative real parts. The matrix J0 has one eigenvalue −µ which is negative. The remaining
sub-matrix is given by

Jr =

 −(κ+µ)
(1− p)βΛ

µ

κ
pβΛ

µ
− (µ+δ)


According to the corollary of Gershgorin’s circle theorem, the matrix (Jr) will have negative eigenvalues if the
following inequalities are satisfied:

(κ+µ)>
(1− p)βΛ

µ
(5a)

− pβΛ

µ
+(µ+δ)> κ (5b)

Dividing (5a) through by (κ+δ) yields

1 >
(1− p)βΛ

µ(κ+µ)
(6)

Also dividing (5b) through by κ yields

− pβΛ

µκ
+

(µ+δ)

κ
> 1

−pβΛ+µ(µ+δ)

µκ
> 1 (7)

From (6) and (7) we have,

−pβΛ+µ(µ+δ)

µκ
> 1 >

(1− p)βΛ

µ(κ+µ)

⇒ 1 >
(κ+µp)βΛ

µ(δ+µ)(κ+µ)
⇒ 1 > R0

R0 < 1

Epidemiologically, if R0 < 1, the epidemic is expected to be eliminated and should persist if R0 > 1. Therefore,
we conclude that from the above proof the disease free equilibrium (E0) is locally asymptotically stable.
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2.3 Local Stability Analysis of the Endemic Equilibrium Point
We now investigate the local stability of the endemic equilibrium Point.

Theorem 2.2 The endemic equilibrium is locally asymptotically stable if
R0 > 1.

Proof 2.2 Evaluating the matrix (3) at the endemic equilibrium gives

Js
e =


−(R0−1)µ−µ 0 − βΛ

R0µ

−(1− p)(1−R0)µ −(κ+µ)
(1− p)βΛ

R0µ

−p(1−R0)µ κ
pβΛ

R0µ
− (µ+δ)

 (8)

According to equation the corollary of Gershgorin’s circle theorem, the matrix (Js
e) will have negative eigenvalues

if the following inequalities are satisfied:

(R0−1)µ+µ >
βΛ

R0µ
(9a)

(κ+µ)> (1− p)(1−R0)µ+
(1− p)βΛ

R0µ
(9b)

− pβΛ

R0µ
+(µ+δ)− p(1−R0)µ > κ (9c)

Dividing (9b) through by (κ+µ) gives

1 >
(1− p)(1−R0)µ

(κ+µ)
+

(1− p)βΛ

R0µ(κ+µ)
.

Thus,

1 >
(1− p)R0µ(1−R0)µ+(1− p)βΛ

R0µ(κ+µ)
(10)

Dividing (9c) through by κ gives

− pβΛ

R0µκ
+

(µ+δ)

κ
− p(1−R0)µ

κ
> 1.

Thus,
−pβΛ+(µ+δ)R0µ− pR0µ(1−R0)µ

R0µκ
> 1 (11)

From (10) and (11)

−pβΛ+(µ+δ)R0µ− pR0µ(1−R0)µ
R0µκ

> 1 >
(1− p)R0µ(1−R0)µ+(1− p)βΛ

R0µ(κ+µ)
(12)

Expanding and simplifying (12) gives

0 > µ(1−R0)(µp+κ)

⇒ R0 > 1

This shows that the Endemic Equilibrium point is locally asymptotically stable if R0 > 1.
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3 SEIRS Model
The SEIRS model consists of four compartments, but the individual looses immunity after some time and moves
back into the S class (that is, the individual becomes susceptible again).

Let S be the proportion of susceptible individuals, E, be the proportion of exposed individuals, (infected but are
not yet infectious), I, be the proportion of infectious individuals, and R, is the proportion of recovered individuals,
(with temporary immunity). Furthermore, let the contact rate be given by β, Λ is the recruitment rate, µ is the birth
rate (equal to the natural death rate), κ be the progression rate from E to I, γ the recovery rate, δ is the additional
rate of disease-induced mortality, ρ is the rate of lost of immunity, α is the vaccination rate and N is the total
population.

Ṡ = Λ− βIS
N
− (µ+α)S+ρR (13)

Ė =
βIS
N
− (κ+µ)E

İ = κE− (µ+ γ+δ)I

Ṙ = γI− (µ+ρ)R+αS

The system (13) has two equilibrium points;

(i) a disease freee equilibrium point P0, given by P0 = (S0,E0, I0,R0) = (
Λ(µ+ρ)

µ(α+µ+ρ)
,0,0,

Λα

µ(α+µ+ρ)
)

and

(ii) and endemic equilibrium point P∗ = (S∗,E∗, I∗,R∗), where

S∗ =
(δκ+δµ+ γκ+ γµ+κµ+µ2)

(βκ)
,

E∗ = (µ+ γ+δ)(Λβκµ+Λβκρ−αδκµ−αδµ2−αγκµ−αγµ2−ακµ2−αµ3−δκµ2−δκµρ−δµ3−δµ2ρ−
γκµ2− γκµρ− γµ3− γµ2ρ−κµ3−κµ2ρ− µ4− µ3ρ)/(β(δκµ+ δκρ+ δµ2 + δµρ+ γκµ+ γµ2 + γµρ+κµ2 +
κµρ+µ3 +µ2ρ)κ),
I∗=(Λβκµ+Λβκρ−αδκµ−αδµ2−αγκµ−αγµ2−ακµ2−αµ3−δκµ2−δκµρ−δµ3−δµ2ρ−γκµ2−γκµρ−
γµ3−γµ2ρ−κµ3−κµ2ρ−µ4−µ3ρ)/(β(δκµ+δκρ+δµ2+δµρ+γκµ+γµ2+γµρ+κµ2+κµρ+µ3+µ2ρ)),
and
R∗=(Λβγκ2+αδ2κ2+2αδ2κµ+αδ2µ2+αδγκ2+3αδγκµ+2αδγµ2+2αδκ2µ+4αδκµ2+2αδµ3+αγ2κµ+
αγ2µ2+αγκ2µ+3αγκµ2+2αγµ3+ακ2µ2+2ακµ3+αµ4−δγκ2µ−δγκµ2−γ2κ2µ−γ2κµ2−γκ2µ2−γκµ3)/(βκ(δκµ+
δκρ+δµ2 +δµρ+ γκµ+ γµ2 + γµρ+κµ2 +κµρ+µ3 +µ2ρ)).

E0 and E1 are the disease free and endemic equilibrium points respectively. The Basic Reproduction number R0was
computed using the Next Generation Matrix approach given as

R0 =
Λ

µ
κ

(κ+µ)
(µ+ρ)

(α+µ+ρ)

β

(γ+µ+δ)
.

We now express the endemic equilibrium point in terms of R0 as

S∗ =
Λ(µ+ρ)

R0(α)µ(α+µ+ρ)
,

E∗ =
(µ+ γ+δ)(R0−1)µ[(µ+κ)(α+µ+ρ)(γ+µ+δ)]

ακ(δ+µ)+µ((α+µ+ρ)(γ+µ+δ))
,

I∗ =
(R0−1)µ[(µ+κ)(α+µ+ρ)(γ+µ+δ)]

ακ(δ+µ)+µ((α+µ+ρ)(γ+µ+δ))
,

and

R∗ = [µR0κγ(α+µ+ρ)− (−δκρ−δµρ+ γκµ− γµρ−κµρ−µ2
ρ)]µ(µ+κ)(α+µ+ρ)

(γ+µ+δ)/µ(α+µ+ρ)[ακ(δ+µ)+µ((α+µ+ρ)(γ+µ+δ))].
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3.1 Local Stability Analysis for the Disease free Equilibrium Point
The following theorem gives conditions for the disease free equilibrium point to belocally asymptotically stable.

Theorem 3.1 The disease free equilibrium point (P0) is locally asymptotically stable if R0 < 1.

Proof 3.1 The Jacobian matrix J for the system (13) is

J =


−βI− (µ+α) 0 −βS ρ

βI −(κ+µ) βS 0
0 κ −(γ+µ+δ) 0
α 0 γ −(µ+ρ)

 (14)

Evaluating the matrix J at the disease free equilibrium gives

J0 =


−(µ+α) 0 − βΛ(µ+ρ)

µ(α+µ+ρ)
ρ

0 −(κ+µ)
βΛ(µ+ρ)

µ(α+µ+ρ)
0

0 κ −(γ+µ+δ) 0
α 0 γ −(µ+ρ)

 (15)

According to the corollary of Gershgorin’s circle theorem, the matrix (J0) will have negative eigenvalues if the
following inequalities are satisfied

(i)

(µ+α)>
βΛ(µ+ρ)

µ(α+µ+ρ)
+ρ,

(ii)

(κ+µ)>
βΛ(µ+ρ)

µ(α+µ+ρ)
,

(iii)
(γ+µ+δ)> κ,

(iv)
(µ+ρ)> (α+ γ).

Combining (ii) and (iii) gives

1 >
βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)
, (16)

and
(γ+µ+δ)

κ
> 1, (17)

From (16) and (17) we have,
(γ+µ+δ)

κ
> 1 >

βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)

which implies that
(γ+µ+δ)

κ
>

βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)
.

It follows that

1 >
βΛ(µ+ρ)κ

µ(α+µ+ρ)(µ+κ)(γ+µ+δ)
= R0.
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3.2 Local Stability Analysis for the Endemic Equilibrium
Theorem 3.2 The Endemic equilibrium (P∗) is locally asymptotically stable if R0 > 1.

Proof 3.2 The Jacobian matrix J evaluated at the endemic equilibrium gives

J1 =


b− (α+µ) 0 − (µ+κ)(µ+ γ+δ)

κ
ρ

−b −(κ+µ)
(µ+κ)(µ+ γ+δ)

κ
0

0 κ −(γ+µ+δ) 0
α 0 γ −(µ+ρ)

 (18)

where b =
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
According to the corollary of Gershgorin’s circle theorem, the matrix (J0) will have negative eigenvalues if the
following inequalities are satisfied

(i) − (α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(R0−1)
µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))

− (α+µ)

<−
( (µ+κ)(µ+ γ+δ)

κ
+ρ

)
(ii) −(κ+µ)<−

( (α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+κ)(µ+ γ+δ)

κ

)
(iii) −(µ+δ+ γ)<−κ

(iv) −(µ+ρ)<−(α+ γ)

The inequalities (i) to (iv) can be rewritten as

(i∗)
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(R0−1)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+(α+µ)>

(µ+κ)(µ+ γ+δ)

κ
+ρ

(ii∗) (κ+µ)>
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+κ)(µ+ γ+δ)

κ

(iii∗) (µ+δ+ γ)> κ

(iv∗) (µ+ρ)> α+ γ

Dividing (ii∗) through by (κ+µ) gives

1 >
(α+µ+ρ)(µ)(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+ γ+δ)

κ
(19)

and dividing (iii∗) through by κ gives
(µ+δ+ γ)

κ
> 1 (20)

From inequalities (19) and (20)

0 >
(α+µ+ρ)(µ)κ(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
.

The above inequality holds if
0 > 1−R0.

that is, if
R0 > 1.
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This means that the endemic equilibrium point is stable if R0 > 1.

Even though the disease malaria, falls under the infectious diseases that can be modelled using the SEIRS com-
partment, the next section looks at transmission dynamic model between the Host (human) and vector (mosquito).

4 Malaria model
In this section, a malaria model as an SEIRS for the host population and SEI for the vector population similar to
that of [4] is analyzed. The model divides the human population into 4 classes: Susceptible, Sh, (People enter the
susceptible class, either through birth or immigration at a constant rate); then comes the Exposed, Lh, the Latent or
exposed. When an infectious mosquito bites a susceptible human, symptoms usually appear 10-15 days after the
bite [13] (people become infectious and progress to infectious class). Ih, people who have been infected and are
capable of spreading the disease to those in the susceptible class and finally, the recovered (immune), Rh, people
who recover from the infection through clinical treatment with temporary immunity . The recovered humans have
some immunity to the disease and do not get clinically ill, but after some period of time, they lose their immunity
and return to the susceptible class. These humans can not transmit the infection to the vector because we assume
that they have no plasmodium parasites in their bodies.
The vector population is divided into 3 classes: Susceptible, Sv, Latent or Exposed, Lv and Infectious, Iv.
Let Λh be Humans birth rate, µh be Humans death rate, κ be Transition rate from Latent class to infectious class
at time t, γ be recovery rate of human, βh be Transmission rate of host (bite rate plus probability of transmission
of disease), δ be Disease-induced death rate for humans, ρ be Rate of loss of immunity for humans, λv be Vector
birth rate = vector death rate.

Ṡh = Λh−βhShIv−αSh +ρRh−Shµh (21)
L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µ+δ)Ih

Ṙh = γIh−µRh +αSh−ρRh

Ṡv = λv−βvSvIh−λvSv

L̇v = βvSvIh− (θ+λv)Lv

İv = θLv−λvIv

4.1 Equilibrium Points of the malaria model
Steady state solutions or equilibrium points are the roots or solutions of the system of equations when the right-
hand side of a nonlinear system is set to zero. That is, using the nonlinear system (21), we have

Λh−βhShIv−αSh +ρRh−Shµh = 0 (22)
βhShIv +(κ+µh)Lh = 0
κLh +(γ+µ+δ)Ih = 0

γIh−µRh +αSh−ρRh = 0
λv−βvSvIh−λvSv = 0

βvSvIh− (θ+λv)Lv = 0
θLv−λvIv = 0

Let (S∗h,L
∗
h, I
∗
h ,R

∗
h,S
∗
v ,L
∗
v , I
∗
v ) be the steady state of (22) which can be obtained by solving. The system (21) has

two equilibrium, namely;

(a) Disease Free equilibrium (E0) = (S0
h,L

0
h, I

0
h ,R

0
h,S

0
v ,L

0
v , I

0
v ) given by

( S0
h =

(ρ+µh)Λh

((α+ρ+µh)µh)
, L0

h = 0, I0
h = 0, R0

h =
αΛh

((α+ρ+µh)µh)
,

S0
v = 1, L0

v = 0, I0
v = 0)
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(b) Endemic equilibrium (E1) = (S∗h,L
∗
h, I
∗
h ,R

∗
h,S
∗
v ,L
∗
v , I
∗
v ) see equation (23)

The Basic Reproduction number R0(0) and R0(α) were computed using the Next Generation Matrix approach
where R0(α) is the basic reproduction number with effective prevention strategy, the basic reproduction number
without effective prevention strategy is R0(0)

R0(α) =

√
βhβvθ(µh +ρ)Λhκ

λv(κ+µh)(µh + γ+δ)(θ+λv)(α+µh +ρ)µh

If α = 0, then we have

R0(0) =

√
βhβvθΛhκ

λv(κ+µh)(µh + γ+δ)(θ+λv)µh

The threshold parameter R0 can be defined as square roots of the product of number of humans one mosquito
infects during its infectious lifetime R0h and number of mosquitoes one human infects during the duration of the
infectious period R0v provided all humans and mosquitoes are susceptible. Therefore,

R0(0) =

√
βh(µh +ρ)Λhκ

(α+µh +ρ)(κ+µh)(γ+µh +δ+µh)
× βvθ

(θ+λv)λv

R0(0) =
√

R0h×R0v

Where:
κ

(κ+µh)
means the probability that a human will survive the exposed state to become infectious.

θ

θ+λv)
is the probability that a vector will survive the exposed state to become infectious.

βhθ

(θ+λv)λv
is the number of humans that one vector infects during its infectious lifetime, provided all humans are

susceptible.
κβv

(κ+µh)(γ+µh +δ)
is the number of vectors that one human infects during the duration of the infectious period,

provided all vectors are susceptible.

The (L∗h, I
∗
h ,L
∗
v , I
∗
v ) and (S∗h,R

∗
h,S
∗
v) of the Endemic equilibrium (E1) can be expressed in terms the basic Repro-

duction number (R 2
0 (α)) and simplified as

(E1) = (S∗h,L
∗
h, I
∗
h ,R

∗
h,S
∗
v ,L
∗
v , I
∗
v ) (23)

given (S∗h,L
∗
h, I
∗
h ,R

∗
h,S
∗
v ,L
∗
v , I
∗
v ) by

S∗h =
a
b

a= (µh+κ)(λv+θ)(γ+µh+δ)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh+δρµh+δµ2
h+γκµh+γρµh+γµ2

h+κρµh+κµ2
h+

ρµ2
h +µ3

h)
)

b = κβv

(
µh(µh+κ)(µh+α+ρ)(λv+θ)(γ+µh+δ)+βhθ(δκρ+δκµh+δρµh+δµ2

h+γκµh+γρµh+γµ2
h+κρµh+

κµ2
h +ρµ2

h +µ3
h)
)

L∗h =
−c
d

c =
(
(1−R 2

0 (α))λvµh(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)
)
(γ+µh +δ)

d = κβv

(
µh(µh+κ)(µh+α+ρ)(λv+θ)(γ+µh+δ)+βhθ(δκρ+δκµh+δρµh+δµ2

h+γκµh+γρµh+γµ2
h+κρµh+

κµ2
h +ρµ2

h +µ3
h)
)

I∗h =
−e
f

−e = (1−R 2
0 (α))λv(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)
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f = βv

(
κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2

h + γκµh + γρµh + γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

S∗v =
g
h

g = λv

(
(µh(µh+κ)(λv+θ)(γ+µh+δ)(µh+α+ρ)+βhθ(δκρ+δκµh+δρµh+δµ2

h+γκµh+γρµh+γµ2
h+κρµh+

κµ2
h +ρµ2

h +µ3
h)
)

h = βhθ

(
κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2

h + γκµh + γρµh + γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

Lv =
−n
m

n = λv(1−R 2
0 (α))λvµh(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)

m = βh(θ+λv)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

Iv =
−q
r

q = (1−R 2
0 (α))λvµh(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)

r = βh(θ+λv)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

4.1.1 The Relationship between R0(α) and R0(0)

From

R 2
0 (α) =

κβhΛhθβm(µh +ρ)

µhλv(θ+λv)(α+µh +ρ)(κ+µh)(µh + γ+δ)

It can be seen that

(µh +ρ)

(α+µh +ρ)
< 1

and it is obvious that
κβhΛhθβv(µh +ρ)

µhλv(θ+λv)(α+µh +ρ)(κ+µh)(µh + γ+δ)
<

κβhΛhθβv

µhλv(θ+λv)(κ+µh)(µh + γ+δ)
(24)

4.2 Local Stability Analysis of the malaria model at the Disease Free Equilibrium Point
Theorem 4.1 The disease free equilibrium (E0) with α = 0 is locally asymptotically stable if R0(0)< 1.

Proof 4.1

J =



λ∗ 0 0 ρ 0 0 −βhSh
βhIv −(κ+µh) 0 0 0 0 βhSh

0 κ −(µh + γ+δ) 0 0 0 0
α 0 γ −(µh +ρ) 0 0 0
0 0 −βvSv 0 −Ihβv−λv 0 0
0 0 βvSv 0 Ihβv −(θ+λv) 0
0 0 0 0 0 θ −λv


(25)

where λ∗ =−βhIv−α−µh
If α = 0, then the Jacobian matrix evaluating at the disease free equilibrium (E0) gives

J =



−µh 0 0 ρ 0 0 −βhΛh

µh

0 −(κ+µh) 0 0 0 0
βhΛh

µh
0 κ −(µh + γ+δ) 0 0 0 0
0 0 γ −(µh +ρ) 0 0 0
0 0 −βv 0 −λv 0 0
0 0 βv 0 0 −(θ+λv) 0
0 0 0 0 0 θ −λv


(26)
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Applying the corollary of Gershgorin’s circle theorem gives the following inequalities,

µh > (ρ+
βhΛh

µh
) (27a)

(κ+µh)>
βhΛh

µh
(27b)

(µh + γ+δ)> κ (27c)

(µh +ρ)> γ (27d)

λv > βv (27e)

θ+λv > βv (27f)

θ > λv (27g)

from (27b) we have,

1 >
βhΛh

µh(κ+µh)
. (28)

And from (27c) we obtain,
µh + γ+δ

κ
> 1. (29)

It can be seen from equation (28) and (29) that

1 >
κβhΛh

µh(κ+µh)(µh + γ+δ)
(30)

Also from (27f) and (27g) we obtain,

1 >
βv

θ+λv
(31)

and
λv

θ
> 1 (32)

It can be seen from equations (31) and (32) that,

λv(θ+λv)

θβv
> 1 (33)

From equations (30) and (33) we get,

λv(θ+λv)

θβv
> 1 >

κβhΛh

µh(κ+µh)(µh + γ+δ)

1 > R 2
0 (0) (34)

Since

R 2
0 (0) =

κβhΛhθβv

µhλv(θ+λv)(κ+µh)(µh + γ+δ)
< 1.

Then, from (24) we conclude that
R 2

0 (α)< R 2
0 (0)< 1.

Thus,
R0(α)< 1

This implies
R0(α)< R 2

0 (0)< 1

This satisfies the condition that the disease free equilibrium is stable if R0(α)< 1
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4.3 Local Stability Analysis of the malaria Model at the Endemic Equilibrium Point
Theorem 4.2 The Endemic equilibrium (E1) is locally asymptotically stable if R0(α)> 1.

Proof 4.2 The Jacobian matrix evaluating at the Endemic equilibrium (E0) gives

J =



a∗−α−µh 0 0 ρ 0 0 −b∗

−a∗ −(κ+µh) 0 0 0 0 b∗

0 κ −(µh + γ+δ) 0 0 0 0
α 0 γ −(µh +ρ) 0 0 0
0 0 −c∗ 0 d∗−λv 0 0
0 0 c∗ 0 −d∗ −θ−λv 0
0 0 0 0 0 θ −λv


(35)

a∗ =
a1

b1
a1 = (1−R 2

0 (α))λvµh(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)

b1 = βh(θ+λv)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

b∗ =
a2

b2

a2 = βh(µh +κ)(λv +θ)(γ+µh +δ)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +

κµ2
h +ρµ2

h +µ3
h)
)

b2 = κβv

(
µh(µh+κ)(µh+α+ρ)(λv+θ)(γ+µh+δ)+βhθ(δκρ+δκµh+δρµh+δµ2

h+γκµh+γρµh+γµ2
h+κρµh+

κµ2
h +ρµ2

h +µ3
h)
)

c∗ =
a3

b3

a3 = βvλv

(
(µh(µh + κ)(λv + θ)(γ+ µh + δ)(µh +α+ ρ) + βhθ(δκρ+ δκµh + δρµh + δµ2

h + γκµh + γρµh + γµ2
h +

κρµh +κµ2
h +ρµ2

h +µ3
h)
)

b3 = βhθ

(
κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2

h + γκµh + γρµh + γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

d∗ =
a4

b4
a4 = (1−R 2

0 (α))λv(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)

b4 =
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh +δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

Applying a corollary of gershgorin’s circle theorem yields

µh +α > ρ+a∗+b∗ (36a)

1 >
a∗

µh +κ
+

b∗

µh +κ
(36b)

δ+µh + γ

κ
> 1 (36c)

α+ γ

µh +ρ
> 1 (36d)

λv > d∗+ c∗ (36e)

θ+λv >−d∗+ c∗ (36f)

λv > θ (36g)
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From equation (36b) and (36c) we get

δ+µh + γ

κ
> 1 >

a∗

µh +κ
+

b∗

µh +κ

δ+µh + γ

κ
>

a∗

µh +κ
+

b∗

µh +κ

1 >
a∗κ

(µh +κ)(δ+µh + γ)
+

b∗κ
(µh +κ)(δ+µh + γ)

(37)

Let a∗∗ =
a1κ

(µh +κ)(δ+µh + γ)
and b∗∗ =

b1κ

(µh +κ)(δ+µh + γ)
Then equation (37) becomes

1 > a∗∗+b∗∗ (38)

Adding equation (36e) and equation (36f) yields

θ+2λv > 2c∗ (39)

but

2(θ+λv) > 2c∗

⇒ 1 >
c∗

θ+λv
(40)

also from (36g) we get
λv

θ
> 1 (41)

From equation (40) and (41) gives

1 >
c∗θ

(θ+λv)λv
(42)

But
c1θ

(θ+λv)λv
=

1
b∗∗

This implies equation (42) becomes

1 >
1

b∗∗
b∗∗ > 1
−1 > −b∗∗ (43)

Adding equation (38) and (43) gives
a∗∗ =

a11

b11
a11 = κ(1−R 2

0 (α))λvµh(µh +κ)(λv +θ)(γ+µh +δ)(µh +α+ρ)

b11 = βh(θ+λv)
(

κΛhβv(ρ+µh)+λv(δκρ+δκµh+δρµh+δµ2
h+γκµh+γρµh+γµ2

h+κρµh+κµ2
h+ρµ2

h+µ3
h

)
(µh+

κ)(δ+µh + γ))

0 > a∗∗,

0 > (1−R 2
0 (α)),

R 2
0 (α) > 1. (44)

Thus,
R0(α)> 1

This satisfies the condition that the endemic equilibrium is stable if R0(α)> 1
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5 Conclusion
We investigated the local stability of both the disease free and endemic equilibria of SEIRS, a Tuberculosis models
and a malaria model. It was observed that no matter the state or the dimension of the system or the matrix, this
corollary can be used to analyze the local stability for both disease free and endemic equilibrium, by establish-
ing that if R0 < 1, the Jacobian matrix will have negative or negative real part eigenvalues. Thus, disease free
equilibrium is stable but if R0 > 1, the endemic equilibrium is stable.
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