EXISTENCE AND SOME ESTIMATES OF HYPERSURFACES OF CONSTANT GAUSS CURVATURE WITH PRESCRIBED BOUNDARY

Fei-tsen Liang

Institute of Mathematics, Academia Sinica, Taipei, Taiwan E-mail: liang@math.sinica.edu.tw

ABSTRACT. In [3], Guan and Spruck prove that if Γ in \mathbb{R}^{n+1} $(n \geq 2)$ bounds a suitable locally convex hypersurface Σ with Gauss curvature K_{Σ} , then Γ bounds a locally convex K-hypersurface whose Gauss curvature is less than inf K_{Σ} . In this article we are particularly interested in K-hypersurfaces which are not global graphs and will extend several results in [3]. The first main result is to establish the estimate $K_M \geq (\dim M/2)^{-n}$ for the Gauss curvature K_M of a K-hypersurface M which satisfies **Condition A** below. The second main task is that, in case Σ above is not a global graph, we construct a K-hypersurface \widetilde{M} whose Gauss curvature $K_{\widetilde{M}}$ is slighter greater than inf K_{Σ} . If, in addition, the hypersurface Σ satisfies **Condition B** below, then for each number K, $0 < K \leq (\dim \Sigma/2)^{-n}$, we show that there exists a locally convex immersed hypersurface M_1 in \mathbb{R}^{n+1} with $\partial M_1 = \Gamma$ and the Gauss curvature $K_{M_1} \equiv K$.

1. Introduction

In the paper [3], Guan and Spruck are concerned with the problem of finding hypersurfaces of constant Gauss-Kronecker curvature (K-hypersurfaces) with prescribed boundary Γ in \mathbb{R}^{n+1} ($n \geq 2$). They prove that if Γ bounds a suitable locally convex hypersurface Σ , then Γ bounds a locally convex K-hypersurface. Here a surface Σ in \mathbb{R}^{n+1} is said to be locally convex if at every point $p \in \Sigma$ there exists a neighborhood which is the graph of a convex function $x_{n+1} = u(x), x \in \mathbb{R}^n$, for a suitable coordinate system in \mathbb{R}^{n+1} , such that locally the region $x_{n+1} \geq u(x)$ always lies on a fixed side of Σ . More precisely, they proved:

Theorem 1 (Theorem 1.1 in [3]). Assume that there exists a locally convex immersed hypersurface Σ in \mathbb{R}^{n+1} with $\partial \Sigma = \Gamma$ and the Gauss curvature K_{Σ} . Let $K_0 = \inf K_{\Sigma}$. Suppose, in addition, that, in a tubular neighborhood of its boundary Γ , Σ is C^2 and locally strictly convex. Then there exists a smooth (up to the boundary) locally strictly convex hypersurface M with $\partial M = \Gamma$ such that $K_M \equiv K_0$. Moreover,

M is homeomorphic to Σ .

²⁰¹⁰ Mathematics Subject Classification: 53A05, 58J32

Key words and phrase: constant Gauss curvature, prescribed boundary

Note that a locally convex hypersurface is necessarily of class $C^{0,1}$ in the interior. For a locally convex hypersurface Σ which is not C^2 , we refer to [5] the definition of Gauss curvature in weak sense.

As noted in [3], Theorem 1 is a huge jump in generality from the previous results in, e.g., [3], for it deals with general immersed K-hypersurfaces and not just graphs. In this article we are particularly interested in K-hypersurfaces which are not global graphs. We will extend several results in [3]. The first main result is concerning an estimate for the Gauss curvature K_M of a K-hypersurface M, which satisfies **Condition A** below. We shall establish the estimate $K_M \ge (\operatorname{diam} M/2)^{-n}$ for such a K-hypersurface M. To introduce **Condition A**, let \mathbf{p}_i , $1 \le i \le k$, be the vertices of the hypersurface M. Let D_i be the maximal domain (i.e. the largest simply connected region) on M containing \mathbf{p}_i which, as a hypersurface in \mathbb{R}^{n+1} , can be represented as the graph of a convex function u_i defined in a domain Ω_i , $1 \le i \le k$.

Condition A. There exists some number $m, 1 \le m \le k$, such that the maximal domain D_m lies in the interior of M.

We shall establish the following theorem, which is an immediate consequence of the proof of Theorem 3.5 in [3].

Theorem 2. Assume that M is a smooth locally strictly convex K-hypersurface and also fulfills ConditionA. Then there holds

(1)
$$K_M \ge (\operatorname{diam} M/2)^{-n}.$$

We may notice that this result does not hold for proper subsets of a hemisphere, which does not fulfill **Condition A**. Also notice that the graph of any function does not fulfill **Condition A**.

As a consequence of Theorem 2, we obtain:

Corollary 1. Assume that M is a smooth locally strictly convex K-hypersurface and there holds

$$K_M \le (\operatorname{diam} M/2)^{-n},$$

then M does not satisfy Condition A; that is, each maximal domain \overline{D}_i , $1 \le i \le k$, meets ∂M .

The second main task of this paper is to prove that, if Σ satisfies the hypotheses in Theorem 1, and if we assume, in addition, that Σ cannot globally be represented as the graph of any function, then we are able

to construct a K-hypersurface \widetilde{M} whose Gauss curvature $K_{\widetilde{M}}$ is slighter greater than $\inf K_{\Sigma}$. In order to prove this, it suffices, in view of Theorem 1, to establish Proposition 1 below. To put precisely, we let $\hat{\mathbf{p}}_{\ell} \in \Sigma$, $\ell = 1, 2, \dots, \hat{k}$, be those vertices where K_{Σ} achieves the minimum value, i.e. $K(\hat{\mathbf{p}}_{\ell}) = \inf_{\Sigma} K$, $1 \leq \ell \leq \hat{k}$. Also, we let \hat{D}_{ℓ} be the maximal domain on Σ which, as a hypersurface in \mathbb{R}^{n+1} , can be represented as the graph of the convex function \hat{u}_{ℓ} defined in the domain $\hat{\Omega}_{\ell}$, $1 \leq \ell \leq \hat{k}$.

Proposition 1. Suppose the hypersurface Σ satisfies the hypotheses of Theorem 1. Assume Σ is not a global graph and and K_{Σ} is not constant inside \hat{D}_{ℓ} for any ℓ , $1 \leq \ell \leq \hat{k}$. Then there exists a locally convex immersed hypersurface Σ_1 in \mathbb{R}^{n+1} with $\partial \Sigma_1 = \Gamma$ and Gauss curvature $K_{\Sigma_1} > \inf K_{\Sigma}$ everywhere. Moreover, in a tubular neighborhood of its boundary Γ , Σ_1 is C^2 and locally strictly convex.

From Proposition 1 and Theorem 1 we obtain the following result.

Theorem 3. Suppose the hypersurface Σ satisfies the hypotheses of Proposition 1. Then there exists a number $K_1 > \inf K_{\Sigma}$ such that, for each number $0 < K < K_1$, there exists a smooth (up to the boundary) locally strictly convex hypersurface M with $\partial M = \Gamma$ and $K_M \equiv K$; moreover, M is homeomorphic to Σ .

We will further improve Theorem 1 in case Σ satisfies **Condition B** below. We introduce:

Condition B. For each ℓ , $1 \le \ell \le \hat{k}$, the maximal domain \hat{D}_{ℓ} lies in the interior of M.

We shall show the following.

Proposition 2. If the hypersurface Σ satisfies the hypotheses in Proposition 1 and Condition B, then there exists a locally convex immersed hypersurface Σ_2 in \mathbb{R}^{n+1} with $\partial \Sigma_2 = \Gamma$ and $\inf K_{\Sigma_2} > \min_{1 \le \ell \le \hat{k}} (\operatorname{diam} \partial \hat{D}_{\ell}/2)^{-n}$. Moreover, in a tubular neighborhood of its boundary Γ , Σ_2 is C^2 and locally strictly convex.

From this and Theorem 1 we obtain:

Theorem 4. Suppose the hypersurface Σ satisfies the hypotheses in Theorem 1 and Condition B. Then for each number K, $0 < K \leq (\text{diam}\Sigma/2)^{-n}$, there exists a locally convex immersed hypersurface M_1 in \mathbb{R}^{n+1} with $\partial M_1 = \Gamma$ and the Gauss curvature $K_{M_1} \equiv K$. Moreover, in a tubular neighborhood of its boundary Γ , M_1 is C^2 and locally strictly convex. The key observation in proving Proposition 1 and Proposition 2 is that along $\partial \hat{D}_{\ell} \setminus \Gamma$, the tangent hyperplane to Σ is vertical to the plane where $\hat{\Omega}_{\ell}$ lies, and hence replacing \hat{D}_{ℓ} by a graph "below" it while keeping $\Sigma \setminus \hat{D}_{\ell}$ fixed we obtain another locally convex hypersurface.

2. Proofs of Theorems

2.1. Proof of Theorem 2.

We may first observe:

Lemma 1. If M is a compact K-surface without boundary, then there holds

$$K_M \ge (\operatorname{diam} M/2)^{-n}$$

Indeed, let **a** and **b** be the points on M with $d := \text{dist}(\mathbf{a}, \mathbf{b}) = \text{diam } M$. Let **0** be the midpoint of the segment $\overline{\mathbf{ab}}$. Consider the ball $B := B_{d/2}(\mathbf{0})$ centered at **0** and of radius d/2, of which the segment $\overline{\mathbf{ab}}$ is a diameter. Then the sphere ∂B and the hypersurface M meet tangentially at the points **a** and **b**. We treat two cases separetely.

Caes 1. M contacts ∂B from the inner side of \overline{B} at **a** or **b**; i.e. an open nighborhood of **a** or **b** on M lies in the inner side of \overline{B} . Therefore the Gauss curvature of M at **a** or **b** is greater than that of ∂B at **a** or **b**, which is $(\operatorname{diam} M/2)^{-n}$.

Case 2. An open subset D_0 of M whose closure \overline{D}_0 contains **a** lies outside B. Since d :=dist (**a**, **b**) =diam M, we know that some nonempty open subset of M lies in the interior of B. Therefore D_0 is included in a region D_0^* whose boundary ∂D_0^* is an (n-2)-dimensional closed subset of ∂B without boundary. A part of the region D_0^* and a part of ∂B including **p** can be respectively represented as the graphs of u_0 and a function u over a domain Ω_0^* such that $u_0 = u$ along $\partial \Omega_0^*$ and $u_0 < u$ in Ω_0^* . Were the Gauss curvature of D_0^* less than that of ∂B , the maximum principle would imply that $u_0 > u$ in Ω_0^* , which would not be the case. Therefore over some point $q \in \Omega_0^*$ the Gauss curvature of D_0 at $(q, u_0(q))$ is greater than that of ∂B at (q, u(q)). Thus again we conclude that $K_M \geq (\operatorname{diam} M/2)^{-n}$.

This result will not be used in the rest of this article. However, the reasoning which leads to this result will be used in the proof of Lemma 2 below, Proposition 1 in **2.2** and Proposition 2 in **2.3**.

Next we observe that the following result is essentially proved in the last paragraph of the proof of Theorem 3.5 in [3].

Proposition 3. Assume that M is a smooth locally strictly convex K-hypersurface. Denote by $\kappa_{\max}[M]$ the maximum of all principal curvatures of M. If $\kappa_{\max}[M]$ is achieved at an interior point \mathbf{p} of M, and we choose coordinates in \mathbb{R}^{n+1} with origin at \mathbf{p} such that the tangent hyperplane at \mathbf{p} is given by $x_{n+1} = 0$ and M locally is written as a strictly convex graph $x_{n+1} = u(x_1, \dots, x_n)$, then

(1)
$$\kappa_{\max}(\mathbf{p}) \le C_0 K$$

with

(2)
$$C_0 = (x_{n+1}^0)^{n-1};$$

here $\mathbf{x}^0 = (x_1^0, \cdots, x_n^0, x_{n+1}^0) \in \mathbb{R}^{n+1}$ is so chosen that the function $\widehat{\rho} := |\mathbf{x} - \mathbf{x}^0|, \mathbf{x} \in M$, achieves its local maximum value at \mathbf{p} .

Indeed, in the last paragraph of the proof of Theorem 3.5 in [3], this estimate of κ_{\max} is obtained at a local maximum point of the function κe^{ρ} , the maximum being taken for all the normal curvatures κ over M, where $\rho = |\mathbf{x} - \mathbf{x}^0|^2$, $\mathbf{x} \in M$ and $\mathbf{x}^0 \in \mathbb{R}^{n+1}$ is a fixed point. However, in order to obtain an estimate of $\kappa_{\max}(\mathbf{p})$, the point \mathbf{x}^0 has to be so chosen that the function $\hat{\rho} = |\mathbf{x} - \mathbf{x}^0|$, $\mathbf{x} \in M$, achieves its local maximum value at \mathbf{p} . Using the argument in [3] we are able to derive

$$0 \ge 2n \left(\frac{\kappa_{\max}(\mathbf{p})}{K}\right)^{\frac{1}{n-1}} - 2nx_{n+1}^0,$$

from which follows (1). We notice that, in the fourth and fifth lines from the bottom in page 295 of [3], we should append the number n before the parentheses.

We are now able to formulate the following.

Corollary 2. Under the hypotheses of Proposition 1 on M and p, we have

$$K = K(\mathbf{p}) \ge C_0^{-n/(n-1)}$$

where C_0 is the constant introduced in (2).

Indeed, from Proposition 1, we have

$$K(\mathbf{p}) = \kappa_1 \kappa_2 \cdots \kappa_n \le (C_0 K(\mathbf{p}))^n,$$

from which we obtain Corollary 1.

Instead of obtaining an estimate of the constant C_0 , we make the following observation, from which and Corollary 2 we obtain Theorem 2.

Lemma 2. Under the hypotheses of Proposition 1 on M and **p** and under **Condition A** with $\mathbf{p}_m = \mathbf{p}$, we have either

(3)
$$C_0 \le (\operatorname{diam} M/2)^{n-1}$$

or

(4)
$$K_M \ge (\operatorname{diam} M/2)^{-n}.$$

Proof. As indicated in **Condition A**, $D_m \subset M$ is the maximal domain on M which can be represented as the graph of a convex function u_m defined in a domain Ω_m . Let P_m be the plane where Ω_m lies. We notice that the tangent hyperplane to M along ∂D_m is orthogonal to the plane P_m .

Let **a** and **b** be the points on ∂D_m such that $d_0 := \text{dist}(\mathbf{a}, \mathbf{b}) = \text{diam} \partial D_m$. Let **0** be the midpoint of the segment $\overline{\mathbf{ab}}$, $d_1 := \text{dist}(\mathbf{0}, \mathbf{p}_m)$ and $d := \max(d_1, d_0/2)$. Consider the ball $B := B_d(\mathbf{0})$ centered at **0** and of radius d. We treat two cases separately.

Case 1. If $d = d_0/2 \ge d_1$, then the segment $\overline{\mathbf{ab}}$ is a diameter of the ball B. Since the tangent hyperplane to M along ∂D_m is vertical to the plane P_m , we know that the sphere ∂B and the hypersurface M meet tangentially at the points \mathbf{a} and \mathbf{b} . Since $d_0 = (\operatorname{diam} \partial D_m)/2 \ge d_1 := \operatorname{dist}(\mathbf{0}, \mathbf{p}_m)$, an open subset of the boundary ∂D_m , together with the vertex \mathbf{p}_m , lies inside the ball \overline{B} . The reasoning leading to Lemma 1 can be applied here to conclude that one of the following holds:

(i) M contacts ∂B from the inner side of \overline{B} at **a** or **b** and therefore (4) holds.

(ii) An open subset D_m^0 of D_m whose closure contains **a** lies outside *B*. Since \mathbf{p}_m lies inside *B*, we know that D_m^0 is included in a region D_m^* whose boundary ∂D_m^* is an (n-2)-dimensional subset of ∂B without boundary. The reasoning in **Case 2** in the proof of Lemma 1 again enables us to conclude (4).

Case 2. If $d = d_1 \ge d_0/2$, then the sphere ∂B meets the hypersurface M tangentially at the point \mathbf{p}_m . We shall treat two possibilities separately.

(i) If the function $\hat{\rho}_0 := |\mathbf{x} - \mathbf{0}|, \mathbf{x} \in M$, achieves its local maximum value at \mathbf{p}_m , then we are allowed to take $\mathbf{x}^0 = \mathbf{0}$ in Proposition 3, from which we obtain $|\mathbf{x}^0| = \sqrt{(x_1^0)^2 + \cdots + (x_{n+1}^0)^2} = d_1$ and hence (3).

(ii) If the function $\hat{\rho}_0 = |\mathbf{x} - \mathbf{0}|$, $\mathbf{x} \in M$, fails to take its local maximum value at \mathbf{p}_m , then, since M meets ∂B tangentially, an open subset \hat{D}'_m of D_m whose closure contains \mathbf{p}_m lies outside B. However, since $d_1 \geq d_0/2$, we know that some open subset of ∂D_m lies in the interior of B. Therefore \hat{D}'_m is included in a region \hat{D}''_m whose boundary $\partial \hat{D}''_m$ is an (n-2)-dimensional subset of ∂B without boundary. The reasoning in **Case 2** in the proof of Lemma 1 again yields (4). \diamond

2.2. Proof of Proposition 1 and Theorem 3.

We first recall the approach taken in [3]. Namely, according to [1], if Σ is the graph of a locally convex function $x_{n+1} = u(x)$ over a domain Ω in \mathbb{R}^n , then $K_{\Sigma} = K$ if and only if u is a viscosity solution of the Gauss curvature equation

(5)
$$\det(u_{ij}) = K(1 + |\nabla u|^2)^{\frac{n+2}{2}} \quad \text{in } \Omega$$

A major difficulty in proving Theorem 1 lies in the lack of global coordinate systems to reduce the problem to solving certain boundary value problem for this Monge-Ampère type equation. To overcome the difficulty, Guan and Spruck [3] adopted a Perron method to deform Σ into a K-hypersurface by solving the Dirichlet problem for the equation (5) locally. They consider a disk on Σ which can be represented as the graph of a function and use the following existence result to replace such a disk by another graph of less curvature.

Lemma 3 (Theorem 1.1. [2], Theorem 2.1 [3]). Let Ω be a bounded domain in \mathbb{R}^n with $\partial \Omega \in C^{0,1}$. Suppose there exists a locally convex viscosity subsolution $\underline{u} \in C^{0,1}(\overline{\Omega})$ of (5), i.e.

(6)
$$\det(\underline{u}_{ij}) \ge K(1 + |\nabla \underline{u}|^2)^{\frac{n+2}{2}} \quad \text{in } \Omega_{\underline{i}}$$

where $K \ge 0$ is a constant. Then there exists a unique locally convex viscosity solution $u \in C^{0,1}(\overline{\Omega})$ of (5) satisfying $u = \underline{u}$ on $\partial\Omega$.

Motivated by the approach taken in [3], we now proceed to establish Proposition 1. We consider a disk on Σ which can be represented as the graph of a function and contains a point at which the Gauss curvature takes the value inf K_{Σ} and then, instead of using Lemma 3, we shall replace such a disk by a graph whose Gauss curvature is everywhere greater than inf K_{Σ} . Namely, as introduced before, we let $\hat{\mathbf{p}}_{\ell} \in \Sigma$, $\ell = 1, 2, \dots, \hat{k}$, be those vertices where K_{Σ} achieves the minimum value, i.e. $K(\hat{\mathbf{p}}_{\ell}) = \inf_{\Sigma} K$, $1 \leq \ell \leq \hat{k}$, and let \hat{D}_{ℓ} be the maximal domain on Σ which, as a hypersurface in \mathbb{R}^{n+1} , can be represented as the graph of a convex function \hat{u}_{ℓ} defined in a domain $\hat{\Omega}_{\ell}$, $1 \leq \ell \leq \hat{k}$. Then the tangent hyperplane to M along $\partial \hat{D}_{\ell} \setminus \Gamma$ is vertical to the plane P_{ℓ} .

For $1 \leq \ell \leq \hat{k}$, let $\widehat{\Omega}_{\ell,\delta}$ be the tubular neighborhood with width δ along $\partial \widehat{\Omega}_{\ell}$, i.e.

$$\widehat{\Omega}_{\ell,\delta} = \{ x \in \Omega_{\ell} : \text{dist} (x, \partial \widehat{\Omega}_{\ell}) \le \delta \}.$$

We shall construct a convex function \tilde{u}_{ℓ} defined over $\widehat{\Omega}_{\ell}$ with $\tilde{u}_{\ell} = \widehat{u}_{\ell}$ along $\partial \widehat{\Omega}_{\ell}$ and $\tilde{u}_{\ell} < \widehat{u}_{\ell}$ in $\widehat{\Omega}_{\ell,\delta} \setminus \partial \widehat{\Omega}_{\ell}$ for some $\delta > 0$. The graph of the function \tilde{u}_{ℓ} over $\widehat{\Omega}_{\ell}$ is then a convex hypersurface \widetilde{D}_{ℓ} . This naturally induces a $C^{0,1}$ -diffeomorphism $\Psi_{\widetilde{\Sigma}} : \Sigma \to \widetilde{\Sigma} := \bigcup \widetilde{D}_{\ell} \cup (\Sigma \setminus \bigcup \widehat{D}_{\ell})$ which is fixed on $\Sigma \setminus \bigcup \widehat{D}_{\ell}$. Since the tangent hyperplane to \widetilde{D}_{ℓ} along $\partial \widehat{D}_{\ell} \setminus \Gamma$ is vertical to the plane P_{ℓ} , $\widetilde{u}_{\ell} = \widehat{u}_{\ell}$ over $\partial \widehat{\Omega}_{\ell}$ and $\widetilde{u}_{\ell} < \widehat{u}_{\ell}$ in $\widehat{\Omega}_{\ell,\delta} \setminus \partial \widehat{\Omega}_{\ell}$, $1 \leq \ell \leq \hat{k}$, we know that the hypersurface $\widetilde{\Sigma}$ is locally convex with $\partial \widetilde{\Sigma} = \partial \Sigma$.

In order to obtain the inequality inf $K_{\tilde{\Sigma}} > \inf K_{\Sigma}$, we choose the coordinate system with $\mathbf{p}_{\ell} = u_{\ell}(0, \dots, 0)$, and then, letting $\tilde{\mathbf{p}}_{\ell} = \tilde{u}_{\ell}(0, \dots, 0)$, we choose the function \tilde{u}_{ℓ} to be strictly convex and to have $\inf K_{\tilde{\Sigma}} = K_{\tilde{\Sigma}}(\tilde{\mathbf{p}}_{\ell}) > K_{\Sigma}(\mathbf{p}_{\ell})$. For this, we observe that, since $K_{\Sigma}(\mathbf{p}_{\ell}) = \inf K_{\Sigma} < \sup_{\tilde{D}_{\ell}} K_{\Sigma}$, the equality $\inf K_{\tilde{\Sigma}} = K_{\tilde{\Sigma}}(\tilde{\mathbf{p}}_{\ell})$ can be achieved by choosing $v_{\ell} := \hat{u}_{\ell} - \tilde{u}_{\ell}$ defined over $\overline{\hat{\Omega}_{\ell}}$ to be nonnegative and small enough. In order to obtain the strict convexity of \tilde{u}_{ℓ} , we make $v_{\ell}(x)$ strictly decreasing as the distance from x to $(0, \dots, 0)$ increases. This also yields the inequality $K_{\tilde{\Sigma}}(\tilde{\mathbf{p}}_{\ell}) > K_{\Sigma}(\mathbf{p}_{\ell})$. Indeed, let \mathbf{e}_{n+1} be the unit vector pointing in the direction of positive x_{n+1} axis and move the surface \tilde{D}_{ℓ} in the direction of \mathbf{e}_{n+1} and in the distance $v_{\ell}(0, \dots, 0)$ to obtain the parallel surface $\tilde{D}_{\ell} + v_{\ell}(0, \dots, 0)\mathbf{e}_{n+1}$, which is the graph of the function $\tilde{u}_{\ell}(x) + v_{\ell}(0, \dots, 0)$ inside $\hat{\Omega}_{\ell}$. Because v_{ℓ} achieves its maximum value at $(0, \dots, 0)$, the surface $\widetilde{D}_{\ell} + v_{\ell}(0, \cdots, 0)\mathbf{e}_{n+1}$ meets the surface \widehat{D}_{ℓ} tangentially at \mathbf{p}_{ℓ} and $\widetilde{u}_{\ell}(x) + v_{\ell}(0, \cdots, 0) > u_{\ell}(x)$ inside $\widehat{\Omega}_{\ell}$. This yields the inequality $K_{\widetilde{\Sigma}}(\widetilde{\mathbf{p}}_{\ell}) = K_{\widetilde{D}_{\ell}}(\widetilde{\mathbf{p}}_{\ell}) = K_{\widetilde{D}_{\ell}+v_{\ell}(0,\cdots,0)\mathbf{e}_{n+1}}(\mathbf{p}_{\ell}) > K_{\widehat{D}_{\ell}}(\mathbf{p}_{\ell}) = K_{\Sigma}(\mathbf{p}_{\ell})$. We therefore obtain Proposition 1 by taking $\Sigma_1 = \bigcup \widetilde{D}_{\ell} \cup (\Sigma \setminus \bigcup \widehat{D}_{\ell})$, from which follows Theorem 3.

2.3. Proof of Proposition 2 and Theorem 4.

We now proceed to prove Proposition 2. It suffices to construct, for each ℓ , $1 \leq \ell \leq \hat{k}$, a strictly convex hypersurface \tilde{D}_{ℓ} with $\partial \tilde{D}_{\ell} = \partial \hat{D}_{\ell}$ and $\inf K_{\tilde{D}_{\ell}} \geq (\operatorname{diam} \partial \hat{D}_{\ell}/2)^{-n}$, for we can then take $\Sigma_2 = \cup \tilde{D}_{\ell} \cup (\Sigma \setminus \cup \hat{D}_{\ell})$ to complete the proof of Proposition 2. For this purpose, we fix ℓ , $1 \leq \ell \leq \hat{k}$. Let \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} be the points on $\partial \hat{D}_{\ell}$ such that $d_{\ell} := \operatorname{dist}(\mathbf{a}_{\ell}, \mathbf{b}_{\ell}) = \operatorname{diam} \partial \hat{D}_{\ell}$. Let $\mathbf{0}_{\ell}$ be the midpoint of the segment $\overline{\mathbf{a}_{\ell}\mathbf{b}_{\ell}}$. Consider the ball $B_{\ell} := B_{d_{\ell}/2}(\mathbf{0}_{\ell})$ centered at $\mathbf{0}_{\ell}$ and of radius $d_{\ell}/2$, of which the segment $\overline{\mathbf{a}_{\ell}\mathbf{b}_{\ell}}$ is a diameter. Since the tangent hyperplane to \hat{D}_{ℓ} along $\partial \hat{D}_{\ell}$ is vertical to the plane P_{ℓ} , the sphere ∂B_{ℓ} and the hypersurface \hat{D}_{ℓ} meet tangentially at the points \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} . We claim

Lemma 4. The whole $\partial \widehat{D}_{\ell}$ lies inside \overline{B}_{ℓ} .

Proof. It suffices to claim that each curve which is cut from $\partial \widehat{D}_{\ell}$ by a plane containing \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} lies in \overline{B}_{ℓ} . Indeed, consider such a curve Γ_0 . Since $d_{\ell} := \text{dist}(\mathbf{a}_{\ell}, \mathbf{b}_{\ell}) = \text{diam} \partial \widehat{D}_{\ell}$, an open subset $\widetilde{\Gamma}_0$ of Γ_0 lies in B_{ℓ} . Suppose another open subset of Γ_0 does not lie in B_{ℓ} . We shall derive respective contradictions in two cases below and finish the proof.

Case i. Suppose the curvature of Γ_0 is increasing from \mathbf{a}_{ℓ} to a point $\mathbf{c} \in \Gamma_0$ and then decreasing from \mathbf{c} to \mathbf{b}_{ℓ} . Then near \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} the curvature of Γ_0 is less than $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$, and hence this part of Γ_0 lies outside B_{ℓ} . Since $\widetilde{\Gamma}_0$ lies in B_{ℓ} , Γ_0 intersects ∂B_{ℓ} at points \mathbf{c}_1 and \mathbf{c}_2 such that \mathbf{a}_{ℓ} is nearer to \mathbf{c}_1 than \mathbf{c}_2 . The maximum principle produces two points with curvature greater than $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$ one of which is between \mathbf{a}_{ℓ} and \mathbf{c}_1 , and the other is between \mathbf{b}_{ℓ} and \mathbf{c}_2 . Therefore the part of Γ_0 between \mathbf{c}_1 and \mathbf{c}_2 , which lies inside B_{ℓ} , has curvature greater than $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$ everywhere, contradicting the maximum principle.

Case ii. Suppose the curvature of Γ_0 is decreasing from \mathbf{a}_ℓ to a point $\mathbf{c}_0 \in \Gamma_0$ and then increasing from \mathbf{c}_0 to \mathbf{b}_ℓ . We first claim that in this case near \mathbf{a}_ℓ and \mathbf{b}_ℓ the curve Γ_0 lies inside \overline{B}_ℓ and the curvatures of Γ_0 at \mathbf{a}_ℓ and \mathbf{b}_ℓ are greater than $(\operatorname{diam} \partial \widehat{D}_\ell/2)^{-1}$. Indeed, would a part of Γ_0 between \mathbf{a}_ℓ and some point \mathbf{c}_3 lie outside B_ℓ , then the maximum principle would produce a point with curvature greater than $(\operatorname{diam} \partial \widehat{D}_\ell/2)^{-1}$.

in this part of Γ_0 . Therefore the curvature at \mathbf{a}_{ℓ} would be greater than $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$, contradicting the assumption that near \mathbf{a}_{ℓ} the curve Γ_0 lies outside B_{ℓ} . Hence near \mathbf{a}_{ℓ} the curve Γ_0 lies inside \overline{B}_{ℓ} and hence the curvature of Γ_0 at \mathbf{a}_{ℓ} is greater than $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$. The behavior of the curve Γ_0 near \mathbf{b}_{ℓ} can be understood analogously.

If Γ_0 intersects ∂B_ℓ at some points \mathbf{c}_4 other than \mathbf{a}_ℓ and \mathbf{b}_ℓ , then the part of Γ_0 between \mathbf{c}_4 and some other point \mathbf{c}_5 lies outside B_ℓ , which provides us with a point with curvature greater than $(\operatorname{diam} \partial \widehat{D}_\ell/2)^{-1}$ by the maximum principle. This implies that the part of Γ_0 between \mathbf{a}_ℓ and \mathbf{c}_4 , which lies inside B_ℓ , has curvature greater than $(\operatorname{diam} \partial \widehat{D}_\ell/2)^{-1}$ everywhere, contradicting the maximum principle. \diamondsuit

To proceed further, we consider two cases separately.

Case I. The point \mathbf{p}_{ℓ} lies inside \overline{B}_{ℓ} .

We proceed to prove the following.

Lemma 5. In Case I, the whole \widehat{D}_{ℓ} lies in \overline{B}_{ℓ} .

Proof. Consider the plane \widetilde{P}_{ℓ} containing $\overline{\mathbf{a}_{\ell}\mathbf{b}_{\ell}}$ and the point \mathbf{p}_{ℓ} . Let $\Gamma_{\ell} := \widetilde{P}_{\ell} \cap B_{\ell}$ and $\widehat{\Gamma}_{\ell} := \widetilde{P}_{\ell} \cap \widehat{D}_{\ell}$. We first observe that in Case I the curve $\widehat{\Gamma}_{\ell}$ in \overline{D}_{ℓ} lies inside \overline{B}_{ℓ} ; in other words, $\widehat{\Gamma}_{\ell}$ situates "above" Γ_{ℓ} . Indeed, would some part of $\widehat{\Gamma}_{\ell}$ lie outside \overline{B}_{ℓ} , then we would, analogously to the proof of Lemma 4, derive respective contradictions in two cases. From this observation, Lemma 4 and the assumption that $\mathbf{p}_{\ell} \in \overline{B}_{\ell}$, we conclude that each curve in \widehat{D}_{ℓ} which is cut by a plane containing $\overline{\mathbf{0}_{\ell}\mathbf{p}_{\ell}}$ lies inside \overline{B}_{ℓ} . This enables us to conclude that the whole \widehat{D}_{ℓ} lies in \overline{B}_{ℓ} .

In view of Lemma 5, it is easy to construct a $C^{0,1}$ convex surface $D_{0,\ell}$ passing through Γ_{ℓ} as well as $\partial \hat{D}_{\ell}$, which situates "below" \hat{D}_{ℓ} and "above" ∂B_{ℓ} in the sense that $D_{0,\ell}$ and a portion of ∂B_{ℓ} can be represented respectively as the graphs of functions $u_{0,\ell}$ and v_{ℓ} in $\hat{\Omega}_{\ell}$ such that $v_{\ell} \leq u_{0,\ell} \leq \hat{u}_{\ell}$ in $\hat{\Omega}_{\ell}$. We may replace \hat{D}_{ℓ} by $D_{0,\ell}$ while fixing $\Sigma \setminus \hat{D}_{\ell}$. This provides us with a $C^{0,1}$ hypersurface $\tilde{\Sigma}_0$. Since the tangent hyperplane to Σ along $\partial \hat{D}_{\ell}$ is vertical to the plane P_{ℓ} , the hypersurface $\tilde{\Sigma}_0$ is locally strictly convex. By approximation, we may assume without loss of generality that $D_{0,\ell}$ is C^2 .

Let $\mathbf{p}_{0,\ell}$ be the "lowest" point of $D_{0,\ell}$. Each curve on $D_{0,\ell}$ which is cut by a plane containing $\overline{\mathbf{0}_{\ell}\mathbf{p}_{0,\ell}}$ lies in \overline{B}_{ℓ} and hence has the curvature at $\mathbf{p}_{0,\ell}$ greater than or equal to $(\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-1}$. Therefore the hypersurface

 $\widetilde{\Sigma}_0$ has the Gauss curvature $K_{\widetilde{\Sigma}_0}(\mathbf{p}_{0,\ell}) \ge (\operatorname{diam}(\partial \widehat{D}_\ell))^{-n}$.

We now consider two possibilities separately.

(i) If $K_{\Sigma}(\mathbf{x}) > (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ at each point $\mathbf{x} \in \partial \widehat{D}_{\ell}$, then by choosing $\widehat{u}_{\ell} - u_{0,\ell}$ small enough, there still holds $K_{D_{0,\ell}}(\mathbf{x}) > (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ at each point $\mathbf{x} \in \partial \widehat{D}_{\ell}$. Then, since there holds also $K_{D_{0,\ell}}(\mathbf{p}_{0,\ell}) > (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ and $D_{0,\ell}$ is C^2 , we have $K_{D_{0,\ell}}(\mathbf{x}) > (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ at every point $\mathbf{x} \in D_{0,\ell}$. Therefore in this case we take $\widetilde{D}_{\ell} = D_{0,\ell}$ to complete the proof of Proposition 2.

(ii) Suppose $K_{\Sigma}(\mathbf{x}) \leq (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ at some points $\mathbf{x} \in \partial \widehat{D}_{\ell}$. Then we consider a small neighborhood of $\partial \widehat{D}_{\ell}$ on Σ

$$D_{\ell,\delta} = \{ \mathbf{x} \in \Sigma; \text{dist} (\mathbf{x}, \partial \widehat{D}_{\ell}) < \delta \}$$

and replace $D_{\ell,\delta}$ by a C^2 hypersurface $\widetilde{D}_{\ell,\delta}$ with $K_{\widetilde{D}_{\ell,\delta}} > (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$ everywhere and $\partial \widetilde{D}_{\ell,\delta} = \partial D_{\ell,\delta}$, while keeping $\Sigma \setminus D_{\ell,\delta}$ fixed. Let $\widetilde{D}_{\ell,\delta}^*$ be the largest region in $\widetilde{D}_{\ell,\delta}$ which can be represented as the graph of some function and has $\partial D_{\ell,\delta} \cap \widehat{D}_{\ell}$ as one component of its boundary. We then apply the previous construction to the hypersurface $\widetilde{D}_{\ell,\delta}^* \cup (\widehat{D}_{\ell} \setminus \widetilde{D}_{\ell,\delta})$, instead of \widehat{D}_{ℓ} , and obtain the desired hypersurface \widetilde{D}_{ℓ} to complete the proof of Proposition 2.

Case II. The point \mathbf{p}_{ℓ} lies outside B_{ℓ} .

In this case, to prove Proposition 2 it suffices to prove the following lemma and then take $\widetilde{D}_{\ell} = \widehat{D}_{\ell}$.

Lemma 6. In Case II, the Gauss curvature $K_{\Sigma}(\mathbf{p}_{\ell})$ of Σ at \mathbf{p}_{ℓ} is greater than $(\operatorname{diam} \partial D_{\ell}/2)^{-n}$ at \mathbf{p}_{ℓ} .

Indeed, in this case we choose the coordinate system whose origin 0 is at \mathbf{p}_{ℓ} and whose x_{n+1} -axis points in the normal direction of D_{ℓ} from \mathbf{p}_{ℓ} to ∂B_{ℓ} . Then a portion of \hat{D}_{ℓ} and a portion of ∂B_{ℓ} can be represented as the graphs of functions \tilde{u} and \tilde{v} respectively over a neighborhood E of 0. Consider the nonnegative function $w := \tilde{v} - \tilde{u}$ over E. In view of Lemma 4, the function w achieves its maximum value at 0. We now use the reasoning used at the last paragraph in the proof of Proposition 1. Namely, Let \mathbf{e}_{n+1} be the unit vector in the direction of the x_{n+1} -axis. By moving the hypesurface \hat{D}_{ℓ} in the direction of \mathbf{e}_{n+1} and in the distance of w(0), we obtain the parallel hypersurface $\hat{D}_{\ell} + w(0)\mathbf{e}_{n+1}$, which meets ∂B_{ℓ} tangentially at $\mathbf{p}_{0,\ell}$ and has greater curvature than ∂B_{ℓ} at $\mathbf{p}_{\ell} + w(0)\mathbf{e}_{n+1}$. That is, $K_{\Sigma}(\mathbf{p}_{\ell}) = K_{\widehat{D}_{\ell}+w(0)\mathbf{e}_{n+1}}(\mathbf{p}_{\ell}+w(0)\mathbf{e}_{n+1}) > K_{\partial B_{\ell}}(\mathbf{p}_{\ell}+w(0)\mathbf{e}_{n+1})$. Since $K_{\widehat{D}_{\ell}}(\mathbf{p}_{\ell}) = \inf K_{\widehat{D}_{\ell}}$, we conclude that $K_{\Sigma} \ge (\operatorname{diam} \partial \widehat{D}_{\ell}/2)^{-n}$.

References

- L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. 131 (1990), 129-134
- [2] B. Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature, Trans. Amer. Math. Soc. 350 (1998), 4955-4971
- B. Guan and J. Spruck, The existence of hypersurfaces of constant Gauss curvature with prescribed boundary, J. Diff. Geom. 82 (2002), 259-297
- [4] D. Hoffman, H. Rosenberg and J. Spruck, Boundary value problems for surfaces of constant Gauss curvature, Comm. Pure Applied Math. 45 (1992), 1051-1062
- [5] A.V. Pogorlov, The Minkowski Multidimensional Problem, Wiston, Washington D.C., 1978.