EXISTENCE AND SOME ESTIMATES OF HYPERSURFACES OF CONSTANT GAUSS CURVATURE WITH PRESCRIBED BOUNDARY

Fei-tsen Liang
Institute of Mathematics, Academia Sinica, Taipei, Taiwan
E-mail: liang@math.sinica.edu.tw

Abstract

In [3], Guan and Spruck prove that if Γ in $\mathbb{R}^{n+1}(n \geq 2)$ bounds a suitable locally convex hypersurface Σ with Gauss curvature K_{Σ}, then Γ bounds a locally convex K-hypersurface whose Gauss curvature is less than $\inf K_{\Sigma}$. In this article we are particularly interested in K-hypersurfaces which are not global graphs and will extend several results in [3]. The first main result is to establish the estimate $K_{M} \geq(\operatorname{diam} M / 2)^{-n}$ for the Gauss curvature K_{M} of a K-hypersurface M which satisfies Condition A below. The second main task is that, in case Σ above is not a global graph, we construct a K-hypersurface \widetilde{M} whose Gauss curvature $K_{\widetilde{M}}$ is slighter greater than $\inf K_{\Sigma}$. If, in addition, the hypersurface Σ satisfies Condition \mathbf{B} below, then for each number K, $0<K \leq(\operatorname{diam} \Sigma / 2)^{-n}$, we show that there exists a locally convex immersed hypersurface M_{1} in \mathbb{R}^{n+1} with $\partial M_{1}=\bar{\Gamma}$ and the Gauss curvature $K_{M_{1}} \equiv K$.

1. Introduction

In the paper [3], Guan and Spruck are concerned with the problem of finding hypersurfaces of constant Gauss-Kronecker curvature (K-hypersurfaces) with prescribed boundary Γ in $\mathbb{R}^{n+1}(n \geq 2)$. They prove that if Γ bounds a suitable locally convex hypersurface Σ, then Γ bounds a locally convex K-hypersurface. Here a surface Σ in \mathbb{R}^{n+1} is said to be locally convex if at every point $p \in \Sigma$ there exists a neighborhood which is the graph of a convex function $x_{n+1}=u(x), x \in \mathbb{R}^{n}$, for a suitable coordinate system in \mathbb{R}^{n+1}, such that locally the region $x_{n+1} \geq u(x)$ always lies on a fixed side of Σ. More precisely, they proved:

Theorem 1 (Theorem 1.1 in [3]). Assume that there exists a locally convex immersed hypersurface Σ in \mathbb{R}^{n+1} with $\partial \Sigma=\Gamma$ and the Gauss curvature K_{Σ}. Let $K_{0}=\inf K_{\Sigma}$. Suppose, in addition, that, in a tubular neighborhood of its boundary Γ, Σ is C^{2} and locally strictly convex. Then there exists a smooth (up to the boundary) locally strictly convex hypersurface M with $\partial M=\Gamma$ such that $K_{M} \equiv K_{0}$. Moreover, M is homeomorphic to Σ.

[^0]Key words and phrase: constant Gauss curvature, prescribed boundary

Note that a locally convex hypersurface is necessarily of class $C^{0,1}$ in the interior. For a locally convex hypersurface Σ which is not C^{2}, we refer to [5] the definition of Gauss curvature in weak sense.

As noted in [3], Theorem 1 is a huge jump in generality from the previous results in, e.g., [3], for it deals with general immersed K-hypersurfaces and not just graphs. In this article we are particularly interested in K-hypersurfaces which are not global graphs. We will extend several results in [3]. The first main result is concerning an estimate for the Gauss curvature K_{M} of a K-hypersurface M, which satisfies Condition A below. We shall establish the estimate $K_{M} \geq(\operatorname{diam} M / 2)^{-n}$ for such a K-hypersurface M. To introduce Condition A, let $\mathbf{p}_{i}, 1 \leq i \leq k$, be the vertices of the hypersurface M. Let D_{i} be the maximal domain (i.e. the largest simply connected region) on M containing \mathbf{p}_{i} which, as a hypersurface in \mathbb{R}^{n+1}, can be represented as the graph of a convex function u_{i} defined in a domain $\Omega_{i}, 1 \leq i \leq k$.

Condition A. There exists some number $m, 1 \leq m \leq k$, such that the maximal domain D_{m} lies in the interior of M.

We shall establish the following theorem, which is an immediate consequence of the proof of Theorem 3.5 in [3].

Theorem 2. Assume that M is a smooth locally strictly convex K-hypersurface and also fulfills Condition
A. Then there holds

$$
\begin{equation*}
K_{M} \geq(\operatorname{diam} M / 2)^{-n} . \tag{1}
\end{equation*}
$$

We may notice that this result does not hold for proper subsets of a hemisphere, which does not fulfill
Condition A. Also notice that the graph of any function does not fulfill Condition A.
As a consequence of Theorem 2, we obtain:

Corollary 1. Assume that M is a smooth locally strictly convex K-hypersurface and there holds

$$
K_{M} \leq(\operatorname{diam} M / 2)^{-n}
$$

then M does not satisfy Condition A; that is, each maximal domain $\bar{D}_{i}, 1 \leq i \leq k$, meets ∂M.

The second main task of this paper is to prove that, if Σ satisfies the hypotheses in Theorem 1 , and if we assume, in addition, that Σ cannot globally be represented as the graph of any function, then we are able
to construct a K-hypersurface \widetilde{M} whose Gauss curvature $K_{\widetilde{M}}$ is slighter greater than inf K_{Σ}. In order to prove this, it suffices, in view of Theorem 1, to establish Proposition 1 below. To put precisely, we let $\widehat{\mathbf{p}}_{\ell} \in \Sigma$, $\ell=1,2, \cdots, \widehat{k}$, be those vertices where K_{Σ} achieves the minimum value, i.e. $K\left(\widehat{\mathbf{p}}_{\ell}\right)=\inf _{\Sigma} K, 1 \leq \ell \leq \widehat{k}$. Also, we let \widehat{D}_{ℓ} be the maximal domain on Σ which, as a hypersurface in \mathbb{R}^{n+1}, can be represented as the graph of the convex function \widehat{u}_{ℓ} defined in the domain $\widehat{\Omega}_{\ell}, 1 \leq \ell \leq \widehat{k}$.

Proposition 1. Suppose the hypersurface Σ satisfies the hypotheses of Theorem 1. Assume Σ is not a global graph and and K_{Σ} is not constant inside \widehat{D}_{ℓ} for any $\ell, 1 \leq \ell \leq \widehat{k}$. Then there exists a locally convex immersed hypersurface Σ_{1} in \mathbb{R}^{n+1} with $\partial \Sigma_{1}=\Gamma$ and Gauss curvature $K_{\Sigma_{1}}>\inf K_{\Sigma}$ everywhere. Moreover, in a tubular neighborhood of its boundary Γ, Σ_{1} is C^{2} and locally strictly convex.

From Proposition 1 and Theorem 1 we obtain the following result.

Theorem 3. Suppose the hypersurface Σ satisfies the hypotheses of Proposition 1. Then there exists a number $K_{1}>\inf K_{\Sigma}$ such that, for each number $0<K<K_{1}$, there exists a smooth (up to the boundary) locally strictly convex hypersurface M with $\partial M=\Gamma$ and $K_{M} \equiv K$; moreover, M is homeomorphic to Σ.

We will further improve Theorem 1 in case Σ satisfies Condition B below. We introduce:

Condition B. For each $\ell, 1 \leq \ell \leq \widehat{k}$, the maximal domain \widehat{D}_{ℓ} lies in the interior of M.

We shall show the following.

Proposition 2. If the hypersurface Σ satisfies the hypotheses in Proposition 1 and Condition \mathbf{B}, then there exists a locally convex immersed hypersurface Σ_{2} in \mathbb{R}^{n+1} with $\partial \Sigma_{2}=\Gamma$ and $\inf K_{\Sigma_{2}}>\min _{1 \leq \ell \leq \widehat{k}}\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$. Moreover, in a tubular neighborhood of its boundary Γ, Σ_{2} is C^{2} and locally strictly convex.

From this and Theorem 1 we obtain:

Theorem 4. Suppose the hypersurface Σ satisfies the hypotheses in Theorem 1 and Condition B. Then for each number $K, 0<K \leq(\operatorname{diam} \Sigma / 2)^{-n}$, there exists a locally convex immersed hypersurface M_{1} in \mathbb{R}^{n+1} with $\partial M_{1}=\Gamma$ and the Gauss curvature $K_{M_{1}} \equiv K$. Moreover, in a tubular neighborhood of its boundary Γ, M_{1} is C^{2} and locally strictly convex.

The key observation in proving Proposition 1 and Proposition 2 is that along $\partial \widehat{D}_{\ell} \backslash \Gamma$, the tangent hyperplane to Σ is vertical to the plane where $\widehat{\Omega}_{\ell}$ lies, and hence replacing \widehat{D}_{ℓ} by a graph "below" it while keeping $\Sigma \backslash \widehat{D}_{\ell}$ fixed we obtain another locally convex hypersurface.

2. Proofs of Theorems

2.1. Proof of Theorem 2.

We may first observe:

Lemma 1. If M is a compact K-surface without boundary, then there holds

$$
K_{M} \geq(\operatorname{diam} M / 2)^{-n}
$$

Indeed, let \mathbf{a} and \mathbf{b} be the points on M with $d:=\operatorname{dist}(\mathbf{a}, \mathbf{b})=\operatorname{diam} M$. Let $\mathbf{0}$ be the midpoint of the segment $\overline{\mathbf{a b}}$. Consider the ball $B:=B_{d / 2}(\mathbf{0})$ centered at $\mathbf{0}$ and of radius $d / 2$, of which the segment $\overline{\mathbf{a b}}$ is a diameter. Then the sphere ∂B and the hypersurface M meet tangentially at the points a and \mathbf{b}. We treat two cases separetely.

Caes 1. M contacts ∂B from the inner side of \bar{B} at \mathbf{a} or \mathbf{b}; i.e. an open nighborhood of \mathbf{a} or \mathbf{b} on M lies in the inner side of \bar{B}. Therefore the Gauss curvature of M at \mathbf{a} or \mathbf{b} is greater than that of ∂B at \mathbf{a} or \mathbf{b}, which is $(\operatorname{diam} M / 2)^{-n}$.

Case 2. An open subset D_{0} of M whose closure \bar{D}_{0} contains a lies outside B. Since $d:=\operatorname{dist}(\mathbf{a}, \mathbf{b})$ $=\operatorname{diam} M$, we know that some nonempty open subset of M lies in the interior of B. Therefore D_{0} is included in a region D_{0}^{*} whose boundary ∂D_{0}^{*} is an $(n-2)$-dimensional closed subset of ∂B without boundary. A part of the region D_{0}^{*} and a part of ∂B including \mathbf{p} can be respectively represented as the graphs of u_{0} and a function u over a domain Ω_{0}^{*} such that $u_{0}=u$ along $\partial \Omega_{0}^{*}$ and $u_{0}<u$ in Ω_{0}^{*}. Were the Gauss curvature of D_{0}^{*} less than that of ∂B, the maximum principle would imply that $u_{0}>u$ in Ω_{0}^{*}, which would not be the case. Therefore over some point $q \in \Omega_{0}^{*}$ the Gauss curvature of D_{0} at $\left(q, u_{0}(q)\right)$ is greater than that of ∂B at $(q, u(q))$. Thus again we conclude that $K_{M} \geq(\operatorname{diam} M / 2)^{-n}$.

This result will not be used in the rest of this article. However, the reasoning which leads to this result will be used in the proof of Lemma 2 below, Proposition 1 in 2.2 and Proposition 2 in $\mathbf{2 . 3}$.

Next we observe that the following result is essentially proved in the last paragraph of the proof of Theorem 3.5 in [3].

Proposition 3. Assume that M is a smooth locally strictly convex K-hypersurface. Denote by $\kappa_{\max }[M]$ the maximum of all principal curvatures of M. If $\kappa_{\max }[M]$ is achieved at an interior point \mathbf{p} of M, and we choose coordinates in \mathbb{R}^{n+1} with origin at \mathbf{p} such that the tangent hyperplane at \mathbf{p} is given by $x_{n+1}=0$ and M locally is written as a strictly convex graph $x_{n+1}=u\left(x_{1}, \cdots, x_{n}\right)$, then

$$
\begin{equation*}
\kappa_{\max }(\mathbf{p}) \leq C_{0} K \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{0}=\left(x_{n+1}^{0}\right)^{n-1} ; \tag{2}
\end{equation*}
$$

here $\mathbf{x}^{0}=\left(x_{1}^{0}, \cdots, x_{n}^{0}, x_{n+1}^{0}\right) \in \mathbb{R}^{n+1}$ is so chosen that the function $\widehat{\rho}:=\left|\mathbf{x}-\mathbf{x}^{0}\right|, \mathbf{x} \in M$, achieves its local maximum value at \mathbf{p}.

Indeed, in the last paragraph of the proof of Theorem 3.5 in [3], this estimate of $\kappa_{\text {max }}$ is obtained at a local maximum point of the function κe^{ρ}, the maximum being taken for all the normal curvatures κ over M, where $\rho=\left|\mathbf{x}-\mathbf{x}^{0}\right|^{2}, \mathbf{x} \in M$ and $\mathbf{x}^{0} \in \mathbb{R}^{n+1}$ is a fixed point. However, in order to obtain an estimate of $\kappa_{\text {max }}(\mathbf{p})$, the point \mathbf{x}^{0} has to be so chosen that the function $\widehat{\rho}=\left|\mathbf{x}-\mathbf{x}^{0}\right|, \mathbf{x} \in M$, achieves its local maximum value at \mathbf{p}. Using the argument in [3] we are able to derive

$$
0 \geq 2 n\left(\frac{\kappa_{\max }(\mathbf{p})}{K}\right)^{\frac{1}{n-1}}-2 n x_{n+1}^{0}
$$

from which follows (1). We notice that, in the fourth and fifth lines from the bottom in page 295 of [3], we should append the number n before the parentheses.

We are now able to formulate the following.

Corollary 2. Under the hypotheses of Proposition 1 on M and \mathbf{p}, we have

$$
K=K(\mathbf{p}) \geq C_{0}^{-n /(n-1)}
$$

where C_{0} is the constant introduced in (2).

Indeed, from Proposition 1, we have

$$
K(\mathbf{p})=\kappa_{1} \kappa_{2} \cdots \kappa_{n} \leq\left(C_{0} K(\mathbf{p})\right)^{n}
$$

from which we obtain Corollary 1.

Instead of obtaining an estimate of the constant C_{0}, we make the following observation, from which and Corollary 2 we obtain Theorem 2.

Lemma 2. Under the hypotheses of Proposition 1 on M and \mathbf{p} and under Condition \mathbf{A} with $\mathbf{p}_{m}=\mathbf{p}$, we have either

$$
\begin{equation*}
C_{0} \leq(\operatorname{diam~} \mathrm{M} / 2)^{n-1} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
K_{M} \geq(\operatorname{diam~M} / 2)^{-n} \tag{4}
\end{equation*}
$$

Proof. As indicated in Condition A, $D_{m} \subset M$ is the maximal domain on M which can be represented as the graph of a convex function u_{m} defined in a domain Ω_{m}. Let P_{m} be the plane where Ω_{m} lies. We notice that the tangent hyperplane to M along ∂D_{m} is orthogonal to the plane P_{m}.

Let \mathbf{a} and \mathbf{b} be the points on ∂D_{m} such that $d_{0}:=\operatorname{dist}(\mathbf{a}, \mathbf{b})=\operatorname{diam} \partial D_{m}$. Let $\mathbf{0}$ be the midpoint of the segment $\overline{\mathbf{a b}}, d_{1}:=\operatorname{dist}\left(\mathbf{0}, \mathbf{p}_{m}\right)$ and $d:=\max \left(d_{1}, d_{0} / 2\right)$. Consider the ball $B:=B_{d}(\mathbf{0})$ centered at $\mathbf{0}$ and of radius d. We treat two cases separately.

Case 1. If $d=d_{0} / 2 \geq d_{1}$, then the segment $\overline{\mathbf{a b}}$ is a diameter of the ball B. Since the tangent hyperplane to M along ∂D_{m} is vertical to the plane P_{m}, we know that the sphere ∂B and the hypersurface M meet tangentially at the points a and \mathbf{b}. Since $d_{0}=\left(\operatorname{diam} \partial D_{m}\right) / 2 \geq d_{1}:=\operatorname{dist}\left(\mathbf{0}, \mathbf{p}_{m}\right)$, an open subset of the boundary ∂D_{m}, together with the vertex \mathbf{p}_{m}, lies inside the ball \bar{B}. The reasoning leading to Lemma 1 can be applied here to conclude that one of the following holds:
(i) M contacts ∂B from the inner side of \bar{B} at \mathbf{a} or \mathbf{b} and therefore (4) holds.
(ii) An open subset D_{m}^{0} of D_{m} whose closure contains a lies outside B. Since \mathbf{p}_{m} lies inside B, we know that D_{m}^{0} is included in a region D_{m}^{*} whose boundary ∂D_{m}^{*} is an $(n-2)$-dimensional subset of ∂B without boundary. The reasoning in Case 2 in the proof of Lemma 1 again enables us to conclude (4).

Case 2. If $d=d_{1} \geq d_{0} / 2$, then the sphere ∂B meets the hypersurface M tangentially at the point \mathbf{p}_{m}. We shall treat two possibilities separately.
(i) If the function $\widehat{\rho}_{0}:=|\mathbf{x}-\mathbf{0}|, \mathbf{x} \in M$, achieves its local maximum value at \mathbf{p}_{m}, then we are allowed to take $\mathbf{x}^{0}=\mathbf{0}$ in Proposition 3, from which we obtain $\left|\mathbf{x}^{0}\right|=\sqrt{\left(x_{1}^{0}\right)^{2}+\cdots+\left(x_{n+1}^{0}\right)^{2}}=d_{1}$ and hence (3).
(ii) If the function $\widehat{\rho}_{0}=|\mathbf{x}-\mathbf{0}|, \mathbf{x} \in M$, fails to take its local maximum value at \mathbf{p}_{m}, then, since M meets ∂B tangentially, an open subset \widehat{D}_{m}^{\prime} of D_{m} whose closure contains \mathbf{p}_{m} lies outside B. However, since $d_{1} \geq d_{0} / 2$, we know that some open subset of ∂D_{m} lies in the interior of B. Therefore \widehat{D}_{m}^{\prime} is included in a region $\widehat{D}_{m}^{\prime \prime}$ whose boundary $\partial \widehat{D}_{m}^{\prime \prime}$ is an $(n-2)$-dimensional subset of ∂B without boundary. The reasoning in Case 2 in the proof of Lemma 1 again yields (4). \diamond

2.2. Proof of Proposition 1 and Theorem 3.

We first recall the approach taken in [3]. Namely, according to [1], if Σ is the graph of a locally convex function $x_{n+1}=u(x)$ over a domain Ω in \mathbb{R}^{n}, then $K_{\Sigma}=K$ if and only if u is a viscosity solution of the Gauss curvature equation

$$
\begin{equation*}
\operatorname{det}\left(u_{i j}\right)=K\left(1+|\nabla u|^{2}\right)^{\frac{n+2}{2}} \quad \text { in } \Omega \tag{5}
\end{equation*}
$$

A major difficulty in proving Theorem 1 lies in the lack of global coordinate systems to reduce the problem to solving certain boundary value problem for this Monge-Ampère type equation. To overcome the difficulty, Guan and Spruck [3] adopted a Perron method to deform Σ into a K-hypersurface by solving the Dirichlet problem for the equation (5) locally. They consider a disk on Σ which can be represented as the graph of a function and use the following existence result to replace such a disk by another graph of less curvature.

Lemma 3 (Theorem 1.1. [2], Theorem 2.1[3]). Let Ω be a bounded domain in \mathbb{R}^{n} with $\partial \Omega \in C^{0,1}$. Suppose there exists a locally convex viscosity subsolution $\underline{u} \in C^{0,1}(\bar{\Omega})$ of (5), i.e.

$$
\begin{equation*}
\operatorname{det}\left(\underline{u}_{i j}\right) \geq K\left(1+|\nabla \underline{u}|^{2}\right)^{\frac{n+2}{2}} \quad \text { in } \Omega \tag{6}
\end{equation*}
$$

where $K \geq 0$ is a constant. Then there exists a unique locally convex viscosity solution $u \in C^{0,1}(\bar{\Omega})$ of (5) satisfying $u=\underline{u}$ on $\partial \Omega$.

Motivated by the approach taken in [3], we now proceed to establish Proposition 1. We consider a disk on Σ which can be represented as the graph of a function and contains a point at which the Gauss curvature takes the value $\inf K_{\Sigma}$ and then, instead of using Lemma 3, we shall replace such a disk by a graph whose Gauss curvature is everywhere greater than $\inf K_{\Sigma}$. Namely, as introduced before, we let $\widehat{\mathbf{p}}_{\ell} \in \Sigma, \ell=1,2, \cdots, \widehat{k}$, be those vertices where K_{Σ} achieves the minimum value, i.e. $K\left(\widehat{\mathbf{p}}_{\ell}\right)=\inf _{\Sigma} K, 1 \leq \ell \leq \widehat{k}$, and let \widehat{D}_{ℓ} be the maximal domain on Σ which, as a hypersurface in \mathbb{R}^{n+1}, can be represented as the graph of a convex function \widehat{u}_{ℓ} defined in a domain $\widehat{\Omega}_{\ell}, 1 \leq \ell \leq \widehat{k}$. Then the tangent hyperplane to M along $\partial \widehat{D}_{\ell} \backslash \Gamma$ is vertical to the plane P_{ℓ}.

For $1 \leq \ell \leq \widehat{k}$, let $\widehat{\Omega}_{\ell, \delta}$ be the tubular neighborhood with width δ along $\partial \widehat{\Omega}_{\ell}$, i.e.

$$
\widehat{\Omega}_{\ell, \delta}=\left\{x \in \Omega_{\ell}: \operatorname{dist}\left(x, \partial \widehat{\Omega}_{\ell}\right) \leq \delta\right\}
$$

We shall construct a convex function \widetilde{u}_{ℓ} defined over $\widehat{\Omega}_{\ell}$ with $\widetilde{u}_{\ell}=\widehat{u}_{\ell}$ along $\partial \widehat{\Omega}_{\ell}$ and $\widetilde{u}_{\ell}<\widehat{u}_{\ell}$ in $\widehat{\Omega}_{\ell, \delta} \backslash \partial \widehat{\Omega}_{\ell}$ for some $\delta>0$. The graph of the function \widetilde{u}_{ℓ} over $\widehat{\Omega}_{\ell}$ is then a convex hypersurface \widetilde{D}_{ℓ}. This naturally induces a $C^{0,1}$-diffeomorphism $\Psi_{\widetilde{\Sigma}}: \Sigma \rightarrow \widetilde{\Sigma}:=\cup \widetilde{D}_{\ell} \cup\left(\Sigma \backslash \cup \widehat{D}_{\ell}\right)$ which is fixed on $\Sigma \backslash \cup \widehat{D}_{\ell}$. Since the tangent hyperplane to \widetilde{D}_{ℓ} along $\partial \widehat{D}_{\ell} \backslash \Gamma$ is vertical to the plane $P_{\ell}, \widetilde{u}_{\ell}=\widehat{u}_{\ell}$ over $\partial \widehat{\Omega}_{\ell}$ and $\widetilde{u}_{\ell}<\widehat{u}_{\ell}$ in $\widehat{\Omega}_{\ell, \delta} \backslash \partial \widehat{\Omega}_{\ell}$, $1 \leq \ell \leq \widehat{k}$, we know that the hypersurface $\widetilde{\Sigma}$ is locally convex with $\partial \widetilde{\Sigma}=\partial \Sigma$.

In order to obtain the inequality $\inf K_{\widetilde{\Sigma}}>\inf K_{\Sigma}$, we choose the coordinate system with $\mathbf{p}_{\ell}=u_{\ell}(0, \cdots, 0)$, and then, letting $\widetilde{\mathbf{p}}_{\ell}=\widetilde{u}_{\ell}(0, \cdots, 0)$, we choose the function \widetilde{u}_{ℓ} to be strictly convex and to have $\inf K_{\widetilde{\Sigma}}=$ $K_{\widetilde{\Sigma}}\left(\widetilde{\mathbf{p}}_{\ell}\right)>K_{\Sigma}\left(\mathbf{p}_{\ell}\right)$. For this, we observe that, since $K_{\Sigma}\left(\mathbf{p}_{\ell}\right)=\inf K_{\Sigma}<\sup _{\widehat{D}_{\ell}} K_{\Sigma}$, the equality inf $K_{\widetilde{\Sigma}}=$ $K_{\widetilde{\Sigma}}\left(\widetilde{\mathbf{p}}_{\ell}\right)$ can be achieved by choosing $v_{\ell}:=\widehat{u}_{\ell}-\widetilde{u}_{\ell}$ defined over $\widehat{\widehat{\Omega}}_{\ell}$ to be nonnegative and small enough. In order to obtain the strict convexity of \widetilde{u}_{ℓ}, we make $v_{\ell}(x)$ strictly decreasing as the distance from x to $(0, \cdots, 0)$ increases. This also yields the inequality $K_{\widetilde{\Sigma}}\left(\widetilde{\mathbf{p}}_{\ell}\right)>K_{\Sigma}\left(\mathbf{p}_{\ell}\right)$. Indeed, let \mathbf{e}_{n+1} be the unit vector pointing in the direction of positive x_{n+1} axis and move the surface \widetilde{D}_{ℓ} in the direction of \mathbf{e}_{n+1} and in the distance $v_{\ell}(0, \cdots, 0)$ to obtain the parallel surface $\widetilde{D}_{\ell}+v_{\ell}(0, \cdots, 0) \mathbf{e}_{n+1}$, which is the graph of the function $\widetilde{u}_{\ell}(x)+v_{\ell}(0, \cdots, 0)$ inside $\widehat{\Omega}_{\ell}$. Because v_{ℓ} achieves its maximum value at $(0, \cdots, 0)$, the surface
$\widetilde{D}_{\ell}+v_{\ell}(0, \cdots, 0) \mathbf{e}_{n+1}$ meets the surface \widehat{D}_{ℓ} tangentially at \mathbf{p}_{ℓ} and $\widetilde{u}_{\ell}(x)+v_{\ell}(0, \cdots, 0)>u_{\ell}(x)$ inside $\widehat{\Omega}_{\ell}$. This yields the inequality $K_{\widetilde{\Sigma}}\left(\widetilde{\mathbf{p}}_{\ell}\right)=K_{\widetilde{D}_{\ell}}\left(\widetilde{\mathbf{p}_{\ell}}\right)=K_{\widetilde{D}_{\ell}+v_{\ell}(0, \cdots, 0) \mathbf{e}_{n+1}}\left(\mathbf{p}_{\ell}\right)>K_{\widehat{D}_{\ell}}\left(\mathbf{p}_{\ell}\right)=K_{\Sigma}\left(\mathbf{p}_{\ell}\right)$. We therefore obtain Proposition 1 by taking $\Sigma_{1}=\cup \widetilde{D}_{\ell} \cup\left(\Sigma \backslash \cup \widehat{D}_{\ell}\right)$, from which follows Theorem 3 .

2.3. Proof of Proposition 2 and Theorem 4.

We now proceed to prove Proposition 2. It suffices to construct, for each $\ell, 1 \leq \ell \leq \widehat{k}$, a strictly convex hypersurface \widetilde{D}_{ℓ} with $\partial \widetilde{D}_{\ell}=\partial \widehat{D}_{\ell}$ and $\inf K_{\widetilde{D}_{\ell}} \geq\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$, for we can then take $\Sigma_{2}=\cup \widetilde{D}_{\ell} \cup\left(\Sigma \backslash \cup \widehat{D}_{\ell}\right)$ to complete the proof of Proposition 2. For this purpose, we fix $\ell, 1 \leq \ell \leq \widehat{k}$. Let \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} be the points on $\partial \widehat{D}_{\ell}$ such that $d_{\ell}:=\operatorname{dist}\left(\mathbf{a}_{\ell}, \mathbf{b}_{\ell}\right)=\operatorname{diam} \partial \widehat{D}_{\ell}$. Let $\mathbf{0}_{\ell}$ be the midpoint of the segment $\overline{\mathbf{a}_{\ell} \mathbf{b}_{\ell}}$. Consider the ball $B_{\ell}:=B_{d_{\ell} / 2}\left(\mathbf{0}_{\ell}\right)$ centered at $\mathbf{0}_{\ell}$ and of radius $d_{\ell} / 2$, of which the segment $\overline{\mathbf{a}_{\ell} \mathbf{b}_{\ell}}$ is a diameter. Since the tangent hyperplane to \widehat{D}_{ℓ} along $\partial \widehat{D}_{\ell}$ is vertical to the plane P_{ℓ}, the sphere ∂B_{ℓ} and the hypersurface \widehat{D}_{ℓ} meet tangentially at the points \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ}. We claim

Lemma 4. The whole $\partial \widehat{D}_{\ell}$ lies inside \bar{B}_{ℓ}.

Proof. It suffices to claim that each curve which is cut from $\partial \widehat{D}_{\ell}$ by a plane containing \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} lies in \bar{B}_{ℓ}. Indeed, consider such a curve Γ_{0}. Since $d_{\ell}:=\operatorname{dist}\left(\mathbf{a}_{\ell}, \mathbf{b}_{\ell}\right)=\operatorname{diam} \partial \widehat{D}_{\ell}$, an open subset $\widetilde{\Gamma}_{0}$ of Γ_{0} lies in B_{ℓ}. Suppose another open subset of Γ_{0} does not lie in B_{ℓ}. We shall derive respective contradictions in two cases below and finish the proof.

Case i. Suppose the curvature of Γ_{0} is increasing from \mathbf{a}_{ℓ} to a point $\mathbf{c} \in \Gamma_{0}$ and then decreasing from \mathbf{c} to \mathbf{b}_{ℓ}. Then near \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} the curvature of Γ_{0} is less than $\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-1}$, and hence this part of Γ_{0} lies outside B_{ℓ}. Since $\widetilde{\Gamma}_{0}$ lies in B_{ℓ}, Γ_{0} intersects ∂B_{ℓ} at points \mathbf{c}_{1} and \mathbf{c}_{2} such that \mathbf{a}_{ℓ} is nearer to \mathbf{c}_{1} than \mathbf{c}_{2}. The maximum principle produces two points with curvature greater than (diam $\left.\partial \widehat{D}_{\ell} / 2\right)^{-1}$ one of which is between \mathbf{a}_{ℓ} and \mathbf{c}_{1}, and the other is between \mathbf{b}_{ℓ} and \mathbf{c}_{2}. Therefore the part of Γ_{0} between \mathbf{c}_{1} and \mathbf{c}_{2}, which lies inside B_{ℓ}, has curvature greater than $\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-1}$ everywhere, contradicting the maximum principle.

Case ii. Suppose the curvature of Γ_{0} is decreasing from \mathbf{a}_{ℓ} to a point $\mathbf{c}_{0} \in \Gamma_{0}$ and then increasing from \mathbf{c}_{0} to \mathbf{b}_{ℓ}. We first claim that in this case near \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} the curve Γ_{0} lies inside \bar{B}_{ℓ} and the curvatures of Γ_{0} at \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ} are greater than $\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-1}$. Indeed, would a part of Γ_{0} between \mathbf{a}_{ℓ} and some point \mathbf{c}_{3} lie outside B_{ℓ}, then the maximum principle would produce a point with curvature greater than (diam $\left.\partial \widehat{D}_{\ell} / 2\right)^{-1}$
in this part of Γ_{0}. Therefore the curvature at \mathbf{a}_{ℓ} would be greater than ($\left.\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-1}$, contradicting the assumption that near \mathbf{a}_{ℓ} the curve Γ_{0} lies outside B_{ℓ}. Hence near \mathbf{a}_{ℓ} the curve Γ_{0} lies inside \bar{B}_{ℓ} and hence the curvature of Γ_{0} at \mathbf{a}_{ℓ} is greater than (diam $\left.\partial \widehat{D}_{\ell} / 2\right)^{-1}$. The behavior of the curve Γ_{0} near \mathbf{b}_{ℓ} can be understood analogously.

If Γ_{0} intersects ∂B_{ℓ} at some points \mathbf{c}_{4} other than \mathbf{a}_{ℓ} and \mathbf{b}_{ℓ}, then the part of Γ_{0} between \mathbf{c}_{4} and some other point \mathbf{c}_{5} lies outside B_{ℓ}, which provides us with a point with curvature greater than (diam $\left.\partial \widehat{D}_{\ell} / 2\right)^{-1}$ by the maximum principle. This implies that the part of Γ_{0} between \mathbf{a}_{ℓ} and \mathbf{c}_{4}, which lies inside B_{ℓ}, has curvature greater than $\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-1}$ everywhere, contradicting the maximum principle. \diamond

To proceed further, we consider two cases separately.
Case I. The point \mathbf{p}_{ℓ} lies inside \bar{B}_{ℓ}.

We proceed to prove the following.
Lemma 5. In Case I, the whole \widehat{D}_{ℓ} lies in \bar{B}_{ℓ}.
Proof. Consider the plane \widetilde{P}_{ℓ} containing $\overline{\mathbf{a}_{\ell} \mathbf{b}_{\ell}}$ and the point \mathbf{p}_{ℓ}. Let $\Gamma_{\ell}:=\widetilde{P}_{\ell} \cap B_{\ell}$ and $\widehat{\Gamma}_{\ell}:=\widetilde{P}_{\ell} \cap \widehat{D}_{\ell}$. We first observe that in Case I the curve $\widehat{\Gamma}_{\ell}$ in \bar{D}_{ℓ} lies inside $\bar{B}_{\ell} ;$ in other words, $\widehat{\Gamma}_{\ell}$ situates "above" Γ_{ℓ}. Indeed, would some part of $\widehat{\Gamma}_{\ell}$ lie outside \bar{B}_{ℓ}, then we would, analogously to the proof of Lemma 4, derive respective contradictions in two cases. From this observation, Lemma 4 and the assumption that $\mathbf{p}_{\ell} \in \bar{B}_{\ell}$, we conclude that each curve in \widehat{D}_{ℓ} which is cut by a plane containing $\overline{\mathbf{0}_{\ell} \mathbf{p}_{\ell}}$ lies inside \bar{B}_{ℓ}. This enables us to conclude that the whole \widehat{D}_{ℓ} lies in $\bar{B}_{\ell} . \diamond$

In view of Lemma 5 , it is easy to construct a $C^{0,1}$ convex surface $D_{0, \ell}$ passing through Γ_{ℓ} as well as $\partial \widehat{D}_{\ell}$, which situates "below" \widehat{D}_{ℓ} and "above" ∂B_{ℓ} in the sense that $D_{0, \ell}$ and a portion of ∂B_{ℓ} can be represented respectively as the graphs of functions $u_{0, \ell}$ and v_{ℓ} in $\widehat{\Omega}_{\ell}$ such that $v_{\ell} \leq u_{0, \ell} \leq \widehat{u}_{\ell}$ in $\widehat{\Omega}_{\ell}$. We may replace \widehat{D}_{ℓ} by $D_{0, \ell}$ while fixing $\Sigma \backslash \widehat{D}_{\ell}$. This provides us with a $C^{0,1}$ hypersurface $\widetilde{\Sigma}_{0}$. Since the tangent hyperplane to Σ along $\partial \widehat{D}_{\ell}$ is vertical to the plane P_{ℓ}, the hypersurface $\widetilde{\Sigma}_{0}$ is locally strictly convex. By approximation, we may assume without loss of generality that $D_{0, \ell}$ is C^{2}.

Let $\mathbf{p}_{0, \ell}$ be the "lowest" point of $D_{0, \ell}$. Each curve on $D_{0, \ell}$ which is cut by a plane containing $\overline{\mathbf{0}_{\ell} \mathbf{p}_{0, \ell}}$ lies in \bar{B}_{ℓ} and hence has the curvature at $\mathbf{p}_{0, \ell}$ greater than or equal to (diam $\left.\partial \widehat{D}_{\ell} / 2\right)^{-1}$. Therefore the hypersurface
$\widetilde{\Sigma}_{0}$ has the Gauss curvature $K_{\widetilde{\Sigma}_{0}}\left(\mathbf{p}_{0, \ell}\right) \geq\left(\operatorname{diam}\left(\partial \widehat{D}_{\ell}\right)\right)^{-n}$.

We now consider two possibilities separately.
(i) If $K_{\Sigma}(\mathbf{x})>\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ at each point $\mathbf{x} \in \partial \widehat{D}_{\ell}$, then by choosing $\widehat{u}_{\ell}-u_{0, \ell}$ small enough, there still holds $K_{D_{0, \ell}}(\mathbf{x})>\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ at each point $\mathbf{x} \in \partial \widehat{D}_{\ell}$. Then, since there holds also $K_{D_{0, \ell}}\left(\mathbf{p}_{0, \ell}\right)>$ $\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ and $D_{0, \ell}$ is C^{2}, we have $K_{D_{0, \ell}}(\mathbf{x})>\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ at every point $\mathbf{x} \in D_{0, \ell}$. Therefore in this case we take $\widetilde{D}_{\ell}=D_{0, \ell}$ to complete the proof of Proposition 2.
(ii) Suppose $K_{\Sigma}(\mathbf{x}) \leq\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ at some points $\mathbf{x} \in \partial \widehat{D}_{\ell}$. Then we consider a small neighborhood of $\partial \widehat{D}_{\ell}$ on Σ

$$
D_{\ell, \delta}=\left\{\mathbf{x} \in \Sigma ; \operatorname{dist}\left(\mathbf{x}, \partial \widehat{D}_{\ell}\right)<\delta\right\}
$$

and replace $D_{\ell, \delta}$ by a C^{2} hypersurfacce $\widetilde{D}_{\ell, \delta}$ with $K_{\widetilde{D}_{\ell, \delta}}>\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n}$ everywhere and $\partial \widetilde{D}_{\ell, \delta}=\partial D_{\ell, \delta}$, while keeping $\Sigma \backslash D_{\ell, \delta}$ fixed. Let $\widetilde{D}_{\ell, \delta}^{*}$ be the largest region in $\widetilde{D}_{\ell, \delta}$ which can be represented as the graph of some function and has $\partial D_{\ell, \delta} \cap \widehat{D}_{\ell}$ as one component of its boundary. We then apply the previous construction to the hypersurface $\widetilde{D}_{\ell, \delta}^{*} \cup\left(\widehat{D}_{\ell} \backslash \widetilde{D}_{\ell, \delta}\right)$, instead of \widehat{D}_{ℓ}, and obtain the desired hypersurface \widetilde{D}_{ℓ} to complete the proof of Proposition 2.

Case II. The point \mathbf{p}_{ℓ} lies outside B_{ℓ}.

In this case, to prove Proposition 2 it suffices to prove the following lemma and then take $\widetilde{D}_{\ell}=\widehat{D}_{\ell}$.

Lemma 6. In Case II, the Gauss curvature $K_{\Sigma}\left(\mathbf{p}_{\ell}\right)$ of Σ at \mathbf{p}_{ℓ} is greater than $\left(\operatorname{diam} \partial D_{\ell} / 2\right)^{-n}$ at \mathbf{p}_{ℓ}.

Indeed, in this case we choose the coordinate system whose origin 0 is at \mathbf{p}_{ℓ} and whose x_{n+1}-axis points in the normal direction of D_{ℓ} from \mathbf{p}_{ℓ} to ∂B_{ℓ}. Then a portion of \widehat{D}_{ℓ} and a portion of ∂B_{ℓ} can be represented as the graphs of functions \widetilde{u} and \widetilde{v} respectively over a neighborhood E of 0 . Consider the nonnegative function $w:=\widetilde{v}-\widetilde{u}$ over E. In view of Lemma 4, the function w achieves its maximum value at 0 . We now use the reasoning used at the last paragraph in the proof of Proposition 1. Namely, Let \mathbf{e}_{n+1} be the unit vector in the direction of the x_{n+1}-axis. By moving the hypesurface \widehat{D}_{ℓ} in the direction of \mathbf{e}_{n+1} and in the distance of $w(0)$, we obtain the parallel hypersurface $\widehat{D}_{\ell}+w(0) \mathbf{e}_{n+1}$, which meets ∂B_{ℓ} tangentially at $\mathbf{p}_{0, \ell}$
and has greater curvature than ∂B_{ℓ} at $\mathbf{p}_{\ell}+w(0) \mathbf{e}_{n+1}$. That is, $K_{\Sigma}\left(\mathbf{p}_{\ell}\right)=K_{\widehat{D}_{\ell}+w(0) \mathbf{e}_{n+1}}\left(\mathbf{p}_{\ell}+w(0) \mathbf{e}_{n+1}\right)>$ $K_{\partial B_{\ell}}\left(\mathbf{p}_{\ell}+w(0) \mathbf{e}_{n+1}\right)$. Since $K_{\widehat{D}_{\ell}}\left(\mathbf{p}_{\ell}\right)=\inf K_{\widehat{D}_{\ell}}$, we conclude that $K_{\Sigma} \geq\left(\operatorname{diam} \partial \widehat{D}_{\ell} / 2\right)^{-n} . \diamond$

References

[1] L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. 131 (1990), 129-134
[2] B. Guan, The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature, Trans. Amer. Math. Soc. 350 (1998), 4955-4971
[3] B. Guan and J. Spruck, The existence of hypersurfaces of constant Gauss curvature with prescribed boundary, J. Diff. Geom. 82 (2002), 259-297
[4] D. Hoffman, H. Rosenberg and J. Spruck, Boundary value problems for surfaces of constant Gauss curvature, Comm. Pure Applied Math. 45 (1992), 1051-1062
[5] A.V. Pogorlov, The Minkowski Multidimensional Problem, Wiston, Washington D.C., 1978.

[^0]: 2010 Mathematics Subject Classification: 53A05, 58J32

