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ABSTRACT. In [3], Guan and Spruck prove that if I' in R?*1 (n > 2) bounds a suitable locally convex hypersurface
Y with Gauss curvature Ky, then I' bounds a locally convex K-hypersurface whose Gauss curvature is less than
inf K. In this article we are particularly interested in K-hypersurfaces which are not global graphs and will
extend several results in [3]. The first main result is to establish the estimate Kj; > (diam M/2)~™ for the
Gauss curvature Kp; of a K-hypersurface M which satisfies Condition A below. The second main task is that,

in case X above is not a global graph, we construct a K-hypersurface M whose Gauss curvature K ; is slighter

greater than inf Ky. If, in addition, the hypersurface 3 satisfies Condition B below, then for each number K,
0 < K < (diamX/2)™™, we show that there exists a locally convex immersed hypersurface M; in R**! with
OM; =T and the Gauss curvature Kp;, = K.

1. Introduction

In the paper [3], Guan and Spruck are concerned with the problem of finding hypersurfaces of constant
Gauss-Kronecker curvature (K-hypersurfaces) with prescribed boundary T' in R"*! (n > 2). They prove
that if I' bounds a suitable locally convex hypersurface X, then I' bounds a locally convex K-hypersurface.
Here a surface ¥ in R™*! is said to be locally convex if at every point p € X there exists a neighborhood
which is the graph of a convex function x, 1 = u(x), * € R", for a suitable coordinate system in R"*! such

that locally the region x,,11 > u(z) always lies on a fixed side of ¥. More precisely, they proved:

Theorem 1 (Theorem 1.1 in [3]). Assume that there exists a locally convex immersed hypersurface ¥
in R"* with 0% = I' and the Gauss curvature Ks.. Let Ky = inf Kyx. Suppose, in addition, that, in a
tubular neighborhood of its boundary T', ¥ is C? and locally strictly convex. Then there exists a smooth
(up to the boundary) locally strictly convex hypersurface M with OM =T such that Kj; = Ky. Moreover,

M is homeomorphic to X..
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Note that a locally convex hypersurface is necessarily of class C%! in the interior. For a locally convex

hypersurface ¥ which is not C?, we refer to [5] the definition of Gauss curvature in weak sense.

As noted in [3], Theorem 1 is a huge jump in generality from the previous results in, e.g., [3], for it deals
with general immersed K-hypersurfaces and not just graphs. In this article we are particularly interested in
K-hypersurfaces which are not global graphs. We will extend several results in [3]. The first main result is
concerning an estimate for the Gauss curvature K, of a K-hypersurface M, which satisfies Condition A
below. We shall establish the estimate Kjp; > (diam M/2)~™ for such a K-hypersurface M. To introduce
Condition A, let p;, 1 < i < k, be the vertices of the hypersurface M. Let D; be the maximal domain
(i.e. the largest simply connected region) on M containing p; which, as a hypersurface in R"™!, can be

represented as the graph of a convex function w; defined in a domain ;, 1 <i < k.

Condition A. There exists some number m, 1 < m < k, such that the maximal domain D,, lies in the

interior of M.

We shall establish the following theorem, which is an immediate consequence of the proof of Theorem 3.5 in

[3].

Theorem 2. Assume that M is a smooth locally strictly convex K-hypersurface and also fulfills Condition

A. Then there holds
(1) K]u Z (dlamM/Q)_"

We may notice that this result does not hold for proper subsets of a hemisphere, which does not fulfill
Condition A. Also notice that the graph of any function does not fulfill Condition A.

As a consequence of Theorem 2, we obtain:
Corollary 1. Assume that M is a smooth locally strictly convex K -hypersurface and there holds
Ky < (diam M/2)™",
then M does not satisfy Condition A; that is, each maximal domain ﬁi, 1 <i <k, meets OM.
The second main task of this paper is to prove that, if 3 satisfies the hypotheses in Theorem 1, and if we

assume, in addition, that ¥ cannot globally be represented as the graph of any function, then we are able

2



to construct a K-hypersurface M whose Gauss curvature K 77 is slighter greater than inf K. In order to
prove this, it suffices, in view of Theorem 1, to establish Proposition 1 below.To put precisely, we let py € X,
£=1,2,--- ,E, be those vertices where Ky achieves the minimum value, i.e. K(py) = infs K, 1 </ < k.
Also, we let ﬁg be the maximal domain on ¥ which, as a hypersurface in R**!, can be represented as the

graph of the convex function iy defined in the domain ﬁg, 1</ < k.

Proposition 1. Suppose the hypersurface ¥ satisfies the hypotheses of Theorem 1. Assume Y. is not a
global graph and and Ky is not constant inside ﬁg forany £,1 </{< k. Then there exists a locally convex
immersed hypersurface Y1 in R"™! with 0%, = I' and Gauss curvature Ky, > inf Ky, everywhere. Moreover,

in a tubular neighborhood of its boundary T, 3, is C? and locally strictly convex.

From Proposition 1 and Theorem 1 we obtain the following result.

Theorem 3. Suppose the hypersurface ¥ satisfies the hypotheses of Proposition 1. Then there exists a
number K; > inf Ky, such that, for each number 0 < K < K, there exists a smooth (up to the boundary)

locally strictly convex hypersurface M with OM =T and Kj; = K; moreover, M is homeomorphic to X.
We will further improve Theorem 1 in case X satisfies Condition B below. We introduce:

Condition B. Foreach?,1 </ < %, the maximal domain ﬁg lies in the interior of M.
We shall show the following.

Proposition 2. Ifthe hypersurface X satisfies the hypotheses in Proposition 1 and Condition B, then there

exists a locally convex immersed hypersurface X9 in R"*! with %5 = T and inf Ky, > minA(diam()lA)g /2)7".
1<e<k

Moreover, in a tubular neighborhood of its boundary T', ¥y is C? and locally strictly convex.
From this and Theorem 1 we obtain:

Theorem 4. Suppose the hypersurface ¥ satisfies the hypotheses in Theorem 1 and Condition B. Then
for each number K, 0 < K < (diamX/2)~", there exists a locally convex immersed hypersurface M; in R"+1
with OM, =T and the Gauss curvature K, = K. Moreover, in a tubular neighborhood of its boundary T',

M is C?% and locally strictly convex.



The key observation in proving Proposition 1 and Proposition 2 is that along BIA)g \ T, the tangent
hyperplane to ¥ is vertical to the plane where ﬁ[ lies, and hence replacing Bg by a graph ”below” it while

keeping ¥\ ZA)Z fixed we obtain another locally convex hypersurface.
2. Proofs of Theorems

2.1. Proof of Theorem 2.

We may first observe:

Lemma 1. If M is a compact K -surface without boundary, then there holds
K]u Z (dlamM/Q)_"

Indeed, let a and b be the points on M with d :=dist (a,b) =diam M. Let 0 be the midpoint of the
segment ab. Consider the ball B := B,/5(0) centered at 0 and of radius d/2, of which the segment ab is a
diameter. Then the sphere 0B and the hypersurface M meet tangentially at the points a and b. We treat
two cases separetely.

Caes 1. M contacts OB from the inner side of B at a or b; i.e. an open nighborhood of a or b on M
lies in the inner side of B. Therefore the Gauss curvature of M at a or b is greater than that of B at a or
b, which is (diam M/2)~™.

Case 2. An open subset Dy of M whose closure Dy contains a lies outside B. Since d :=dist (a, b)
=diam M, we know that some nonempty open subset of M lies in the interior of B. Therefore Dy is included
in a region D§ whose boundary 0Dg is an (n — 2)-dimensional closed subset of 0B without boundary. A
part of the region D¢ and a part of OB including p can be respectively represented as the graphs of uy and
a function u over a domain §2j such that up = u along 9€}j and up < u in 25. Were the Gauss curvature of
D§ less than that of 0B, the maximum principle would imply that up > u in €, which would not be the
case. Therefore over some point ¢ € Qf the Gauss curvature of Dy at (g, uo(q)) is greater than that of 0B

at (g,u(q)). Thus again we conclude that K > (diam M/2)~™.

This result will not be used in the rest of this article. However, the reasoning which leads to this result

will be used in the proof of Lemma 2 below, Proposition 1 in 2.2 and Proposition 2 in 2.3.



Next we observe that the following result is essentially proved in the last paragraph of the proof of Theorem

3.5 in [3].

Proposition 3. Assume that M is a smooth locally strictly convex K-hypersurface. Denote by Kmax|[M]
the maximum of all principal curvatures of M. If kmax|[M] is achieved at an interior point p of M, and we

choose coordinates in R"*! with origin at p such that the tangent hyperplane at p is given by x,,,1 = 0 and

M locally is written as a strictly convex graph x,4+1 = u(x1,- -+ ,x,), then

(1) Fmax(P) < CoK,

with

(2) Co = (x?ﬁl)nil;

here x° = (29, ,2%,2%, ) € R""! is so chosen that the function p := |x — x°|, x € M, achieves its local

maximum value at p.

Indeed, in the last paragraph of the proof of Theorem 3.5 in [3], this estimate of Kmax is obtained at a
local maximum point of the function ke”, the maximum being taken for all the normal curvatures x over
M, where p = |x — x"|2, x € M and x° € R"*! is a fixed point. However, in order to obtain an estimate of
Kmax(P), the point x° has to be so chosen that the function p = |x —x°|, x € M, achieves its local maximum

value at p. Using the argument in [3] we are able to derive
1 0
) = 2nxy g,

from which follows (1). We notice that, in the fourth and fifth lines from the bottom in page 295 of [3], we
should append the number n before the parentheses.

We are now able to formulate the following.
Corollary 2. Under the hypotheses of Proposition 1 on M and p, we have

K =K(p) >y,
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where Cy is the constant introduced in (2).

Indeed, from Proposition 1, we have

K(p) = k1kz - ki < (CoK(p))",

from which we obtain Corollary 1.

Instead of obtaining an estimate of the constant Cy, we make the following observation, from which and

Corollary 2 we obtain Theorem 2.

Lemma 2. Under the hypotheses of Proposition 1 on M and p and under Condition A with p,, = p, we

have either

(3) Co < (diam M/2)" 1,
(4) K]u 2 (dlam M/2)7n

Proof. As indicated in Condition A, D,, C M is the maximal domain on M which can be represented as
the graph of a convex function u,, defined in a domain €,,. Let P,, be the plane where 2, lies. We notice
that the tangent hyperplane to M along dD,, is orthogonal to the plane P,,.

Let a and b be the points on dD,, such that dy :=dist (a, b)=diam 0D,,. Let 0 be the midpoint of the
segment ab, d; := dist (0, p,,) and d := max(dy,dy/2). Consider the ball B := B4(0) centered at 0 and of
radius d. We treat two cases separately.

Case 1. If d = dy/2 > dy, then the segment ab is a diameter of the ball B. Since the tangent hyperplane
to M along 0D,, is vertical to the plane P,,, we know that the sphere 0B and the hypersurface M meet
tangentially at the points a and b. Since dy =(diamdD,,,)/2 > d; :=dist (0, p,n), an open subset of the
boundary 0D,,, together with the vertex p,, lies inside the ball B. The reasoning leading to Lemma 1 can
be applied here to conclude that one of the following holds:

(i) M contacts OB from the inner side of B at a or b and therefore (4) holds.
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(ii) An open subset DY of D,, whose closure contains a lies outside B. Since p,, lies inside B, we know
that DY is included in a region D}, whose boundary 8D}, is an (n — 2)-dimensional subset of 9B without
boundary. The reasoning in Case 2 in the proof of Lemma 1 again enables us to conclude (4).

Case 2. If d = dy > dy/2, then the sphere OB meets the hypersurface M tangentially at the point p,,.
We shall treat two possibilities separately.

(1) If the function py := |x — 0], x € M, achieves its local maximum value at p,,, then we are allowed to

take x° = 0 in Proposition 3, from which we obtain |x"| = \/(:6(1))2 + -+ (22 ,1)? = dy and hence (3).

(ii) If the function py = |x — 0|, x € M, fails to take its local maximum value at p,,, then, since M
meets 0B tangentially, an open subset ﬁ;n of D,, whose closure contains p,, lies outside B. However, since
dy > do/2, we know that some open subset of dD,, lies in the interior of B. Therefore ﬁ;n is included in a
region ZA);; whose boundary 315;,’1 is an (n — 2)-dimensional subset of 9B without boundary. The reasoning

in Case 2 in the proof of Lemma 1 again yields (4).

2.2. Proof of Proposition 1 and Theorem 3.

We first recall the approach taken in [3]. Namely, according to [1], if ¥ is the graph of a locally convex
function z,4+1 = u(x) over a domain  in R™, then Ky = K if and only if u is a viscosity solution of the

Gauss curvature equation

n+2

(5) det(ui;) = K(1+ |Vul|?)™=  in Q.

A major difficulty in proving Theorem 1 lies in the lack of global coordinate systems to reduce the problem
to solving certain boundary value problem for this Monge-Ampere type equation. To overcome the difficulty,
Guan and Spruck [3] adopted a Perron method to deform ¥ into a K-hypersurface by solving the Dirichlet
problem for the equation (5) locally. They consider a disk on ¥ which can be represented as the graph of a

function and use the following existence result to replace such a disk by another graph of less curvature.
Lemma 3 (Theorem 1.1. [2], Theorem 2.1 [3]). Let Q be a bounded domain in R™ with 0Q € C%!.
Suppose there exists a locally convex viscosity subsolution u € C%1(Q) of (5), i.e.

n+2

(6) det(u;;) > K(1+|Vul[*)™>  inQ,
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where K > 0 is a constant. Then there exists a unique locally convex viscosity solution u € C%*(Q) of (5)

satisfying u = w on 0f).

Motivated by the approach taken in [3], we now proceed to establish Proposition 1. We consider a disk on
3> which can be represented as the graph of a function and contains a point at which the Gauss curvature takes
the value inf Ky and then, instead of using Lemma 3, we shall replace such a disk by a graph whose Gauss
curvature is everywhere greater than inf Kx. Namely, as introduced before, we let p, € ¥, £ = 1,2,--- ,E,
be those vertices where Ky achieves the minimum value, i.e. K(py) = infy K, 1 < /¢ < E, and let Bg be
the maximal domain on ¥ which, as a hypersurface in R"!, can be represented as the graph of a convex
function @, defined in a domain ﬁg, 1<i< . Then the tangent hyperplane to M along 8132 \ T is vertical
to the plane Pj.

For 1</ < %, let QM be the tubular neighborhood with width § along Bﬁg, ie.
ﬁe,a ={z € Q: dist (:v,(’“)ﬁg) < 6}.

We shall construct a convex function u, defined over Qg with %y, = 1y along 8@@ and uy < Uy in ﬁf,é \ 8@@
for some § > 0. The graph of the function u, over Qg is then a convex hypersurface Dy. This naturally
induces a C%!-diffeomorphism ¥ : & — 3 := UD, U (X \ UD;) which is fixed on ¥\ UD,. Since the tangent
hyperplane to 5@ along Bﬁg \ T is vertical to the plane Py, u, = 1, over Bﬁg and uy < Uy in KAZM \ Bﬁg,
1<¢< E, we know that the hypersurface S is locally convex with 9%y = 0%.

In order to obtain the inequality inf Ky > inf K, we choose the coordinate system with py = u(0, - - ,0),
and then, letting p¢ = w,(0,---,0), we choose the function @, to be strictly convex and to have inf Ky =
Kg(pe) > Kx(pe). For this, we observe that, since Kx(p¢) = inf Ky < supp, K, the equality inf Kg =
K§(pe) can be achieved by choosing vy := iy — ¢ defined over ﬁ_[ to be nonnegative and small enough.
In order to obtain the strict convexity of g, we make vy(z) strictly decreasing as the distance from z to
(0,---,0) increases. This also yields the inequality Kg(pe) > Kx(pe). Indeed, let e, 11 be the unit vector
pointing in the direction of positive x,4; axis and move the surface ﬁg in the direction of e,4; and in
the distance v;(0,---,0) to obtain the parallel surface ﬁg + vg(0,- -+ ,0)e,+1, which is the graph of the
function @(z) + ve(0,--- ,0) inside €. Because vy achieves its maximum value at (0,--- ,0), the surface
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5@ + v7(0, -+ ,0)e,41 meets the surface ﬁg tangentially at py and @g(z) + ve(0,---,0) > we(z) inside ﬁg.

This yields the inequality Kg(pe) = Kp,(pe) = K (pe) > Kp,(pe) = Kx(pe). We therefore

Dy+ve (0, ,0)en 41

obtain Proposition 1 by taking ¥, = UD, U (X \ UDy), from which follows Theorem 3.
2.3. Proof of Proposition 2 and Theorem 4.

We now proceed to prove Proposition 2. It suffices to construct, for each ¢, 1 < / < @, a strictly convex
hypersurface Eg with 852 = 8132 and inf Kf)[ > (diam 8ﬁg/2)’”, for we can then take ¥o = UZN)ZU (E\Uﬁg)
to complete the proof of Proposition 2. For this purpose, we fix ¢, 1 < ¢ < k. Let ay and by be the points
on 8ﬁg such that dy :=dist (a,, by) =diam 8ﬁg. Let 0y be the midpoint of the segment a;b,. Consider the
ball By := By, ;2(0¢) centered at 0, and of radius dy/2, of which the segment ayby is a diameter. Since the
tangent hyperplane to ﬁg along 8ﬁg is vertical to the plane P, the sphere 0By and the hypersurface ﬁg

meet tangentially at the points a; and by,. We claim

Lemma 4. The whole Bﬁg lies inside By.

Proof. 1t suffices to claim that each curve which is cut from BIA)g by a plane containing a, and by lies in By.
Indeed, consider such a curve I'g. Since dy :=dist (ag, by) =diam 8ﬁg, an open subset fo of T'y lies in By.
Suppose another open subset of I'y does not lie in By. We shall derive respective contradictions in two cases
below and finish the proof.

Case i. Suppose the curvature of I'y is increasing from a, to a point ¢ € I'y and then decreasing from c
to by. Then near ay and by the curvature of Ty is less than (diam 8132/2)*1, and hence this part of I'g lies
outside By. Since fo lies in By, I'y intersects OB, at points ¢; and co such that ay is nearer to ¢; than cs.
The maximum principle produces two points with curvature greater than (diam 8ﬁg /2)~! one of which is
between a; and c1, and the other is between by and cy. Therefore the part of I'y between ¢; and co, which
lies inside By, has curvature greater than (diam Bﬁg /2)~! everywhere, contradicting the maximum principle.

Case ii. Suppose the curvature of 'y is decreasing from a, to a point cg € I'g and then increasing from
co to by. We first claim that in this case near a, and by the curve I'y lies inside B, and the curvatures of I'y
at a; and by are greater than (diam 8ﬁg / 2)_1. Indeed, would a part of I'y between a, and some point c3 lie
outside By, then the maximum principle would produce a point with curvature greater than (diam 0D, /2)71
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in this part of I'g. Therefore the curvature at a, would be greater than (diam dDy /2)~ 1, contradicting the
assumption that near a, the curve I'g lies outside B,. Hence near a; the curve I'y lies inside B, and hence
the curvature of Ty at ay is greater than (diamdDy/2)~'. The behavior of the curve Iy near by can be
understood analogously.

If I'y intersects 0By at some points ¢4 other than a, and by, then the part of I'g between ¢4 and some
other point cs lies outside By, which provides us with a point with curvature greater than (diam Bﬁg /2)7 1
by the maximum principle. This implies that the part of I'g between a, and ¢4, which lies inside By, has

curvature greater than (diam @D;/2)~* everywhere, contradicting the maximum principle. ¢

To proceed further, we consider two cases separately.
Case I. The point py lies inside By.
We proceed to prove the following.
Lemma 5. In Case I, the whole ZA)Z lies in By.

Proof. Consider the plane E containing asby and the point py. Let I'y := ]5g N By and fz = ﬁ[ N 132. We
first observe that in Case I the curve fg in Dy lies inside By; in other words, fz situates “above” I'y. Indeed,
would some part of fg lie outside By, then we would, analogously to the proof of Lemma 4, derive respective
contradictions in two cases. From this observation, Lemma 4 and the assumption that p, € By, we conclude
that each curve in ﬁg which is cut by a plane containing O¢py lies inside B,. This enables us to conclude

that the whole ﬁg lies in By. &

In view of Lemma 5, it is easy to construct a C%! convex surface Dy ¢ passing through I'y as well as Bﬁg,
which situates ”below” ZA)Z and "above” 0By in the sense that Dy, and a portion of By can be represented
respectively as the graphs of functions ug ¢ and v, in ﬁ[ such that vy < uge < Uy in ﬁ[. We may replace Bg
by Dy ¢ while fixing ¥\ ﬁg. This provides us with a C%! hypersurface Yo. Since the tangent hyperplane to
3 along aﬁg is vertical to the plane Py, the hypersurface io is locally strictly convex. By approximation,
we may assume without loss of generality that Do is C2.

Let po,¢ be the “lowest” point of Dy ¢. Each curve on Dy, which is cut by a plane containing O¢pg ¢ lies in
By and hence has the curvature at pg ¢ greater than or equal to (diam dD;/2)L. Therefore the hypersurface
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% has the Gauss curvature Ks, (po,) > (diam (8Dy))™™.
We now consider two possibilities separately.

(i) If Kx(x) > (diam 613@/2)’” at each point x € dDy, then by choosing Ty — ugp,¢ small enough, there
still holds Kp,,(x) > (diam dD;/2)™™ at each point x € dD,. Then, since there holds also Kp, ,(Po,) >
(diam &D;/2)~" and Do, is C?, we have Kp, ,(x) > (diam 8Dy/2)™™ at every point x € Dy ¢. Therefore in

this case we take ﬁ[ = Dy ¢ to complete the proof of Proposition 2.

(ii) Suppose Kx(x) < (diam dDy /2)~™ at some points x € dDy. Then we consider a small neighborhood

of 8132 on %

Dys = {X € ¥ dist (X, 613@) < 5}

and replace Dy s by a C? hypersurfacce lN)M with KEM > (diam 3ﬁg/2)’” everywhere and 85&5 = 0Dy,
while keeping ¥\ Dy s fixed. Let lN)} s be the largest region in lN)M which can be represented as the graph of
some function and has 9D, s ﬂﬁg as one component of its boundary. We then apply the previous construction
to the hypersurface 5; s U (Bg \ EM), instead of ZA)Z, and obtain the desired hypersurface Dy to complete

the proof of Proposition 2.
Case II. The point py lies outside By.

In this case, to prove Proposition 2 it suffices to prove the following lemma and then take 5@ = ﬁg.
Lemma 6. In Case II, the Gauss curvature Kx(py) of X at py is greater than (diam 0D,/2)™"™ at py.

Indeed, in this case we choose the coordinate system whose origin 0 is at p, and whose z,,41-axis points in
the normal direction of D, from p; to dBy. Then a portion of ZA)Z and a portion of 9By can be represented
as the graphs of functions @ and v respectively over a neighborhood E of 0. Consider the nonnegative
function w := v — w over E. In view of Lemma 4, the function w achieves its maximum value at 0. We now
use the reasoning used at the last paragraph in the proof of Proposition 1. Namely, Let e,+1 be the unit
vector in the direction of the x,1-axis. By moving the hypesurface ﬁg in the direction of e, 1 and in the
distance of w(0), we obtain the parallel hypersurface Do+ w(0)ep+1, which meets 9By tangentially at po ¢
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and has greater curvature than 9By at py + w(0)e,+1. That is, Kx(ps) = Kf)ﬁw(o)%+1 (pe + w(0)ept1) >

Ko, (pr + w(0)ept1). Since K5 (pe) = inf K5 , we conclude that Ky > (diam dD¢/2)™™. &
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