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Abstract. In [3], Guan and Spruck prove that if Γ in Rn+1 (n ≥ 2) bounds a suitable locally convex hypersurface
Σ with Gauss curvature KΣ, then Γ bounds a locally convex K-hypersurface whose Gauss curvature is less than
inf KΣ. In this article we are particularly interested in K-hypersurfaces which are not global graphs and will
extend several results in [3]. The first main result is to establish the estimate KM ≥ ( diamM/2)−n for the
Gauss curvature KM of a K-hypersurface M which satisfies Condition A below. The second main task is that,

in case Σ above is not a global graph, we construct a K-hypersurface M̃ whose Gauss curvature K
M̃

is slighter
greater than inf KΣ. If, in addition, the hypersurface Σ satisfies Condition B below, then for each number K,
0 < K ≤ (diamΣ/2)−n, we show that there exists a locally convex immersed hypersurface M1 in Rn+1 with
∂M1 = Γ and the Gauss curvature KM1 ≡ K.

1. Introduction

In the paper [3], Guan and Spruck are concerned with the problem of finding hypersurfaces of constant

Gauss-Kronecker curvature (K-hypersurfaces) with prescribed boundary Γ in Rn+1 (n ≥ 2). They prove

that if Γ bounds a suitable locally convex hypersurface Σ, then Γ bounds a locally convex K-hypersurface.

Here a surface Σ in Rn+1 is said to be locally convex if at every point p ∈ Σ there exists a neighborhood

which is the graph of a convex function xn+1 = u(x), x ∈ Rn, for a suitable coordinate system in Rn+1, such

that locally the region xn+1 ≥ u(x) always lies on a fixed side of Σ. More precisely, they proved:

Theorem 1 (Theorem 1.1 in [3]). Assume that there exists a locally convex immersed hypersurface Σ

in Rn+1 with ∂Σ = Γ and the Gauss curvature KΣ. Let K0 = inf KΣ. Suppose, in addition, that, in a

tubular neighborhood of its boundary Γ, Σ is C2 and locally strictly convex. Then there exists a smooth

(up to the boundary) locally strictly convex hypersurface M with ∂M = Γ such that KM ≡ K0. Moreover,

M is homeomorphic to Σ.
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Note that a locally convex hypersurface is necessarily of class C0,1 in the interior. For a locally convex

hypersurface Σ which is not C2, we refer to [5] the definition of Gauss curvature in weak sense.

As noted in [3], Theorem 1 is a huge jump in generality from the previous results in, e.g., [3], for it deals

with general immersed K-hypersurfaces and not just graphs. In this article we are particularly interested in

K-hypersurfaces which are not global graphs. We will extend several results in [3]. The first main result is

concerning an estimate for the Gauss curvature KM of a K-hypersurface M , which satisfies Condition A

below. We shall establish the estimate KM ≥ ( diam M/2)−n for such a K-hypersurface M . To introduce

Condition A, let pi, 1 ≤ i ≤ k, be the vertices of the hypersurface M . Let Di be the maximal domain

(i.e. the largest simply connected region) on M containing pi which, as a hypersurface in Rn+1, can be

represented as the graph of a convex function ui defined in a domain Ωi, 1 ≤ i ≤ k.

Condition A. There exists some number m, 1 ≤ m ≤ k, such that the maximal domain Dm lies in the

interior of M .

We shall establish the following theorem, which is an immediate consequence of the proof of Theorem 3.5 in

[3].

Theorem 2. Assume that M is a smooth locally strictly convex K-hypersurface and also fulfills Condition

A. Then there holds

(1) KM ≥ ( diam M/2)−n.

We may notice that this result does not hold for proper subsets of a hemisphere, which does not fulfill

Condition A. Also notice that the graph of any function does not fulfill Condition A.

As a consequence of Theorem 2, we obtain:

Corollary 1. Assume that M is a smooth locally strictly convex K-hypersurface and there holds

KM ≤ ( diam M/2)−n,

then M does not satisfy Condition A; that is, each maximal domain Di, 1 ≤ i ≤ k, meets ∂M .

The second main task of this paper is to prove that, if Σ satisfies the hypotheses in Theorem 1, and if we

assume, in addition, that Σ cannot globally be represented as the graph of any function, then we are able
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to construct a K-hypersurface M̃ whose Gauss curvature K
M̃

is slighter greater than inf KΣ. In order to

prove this, it suffices, in view of Theorem 1, to establish Proposition 1 below.To put precisely, we let p̂` ∈ Σ,

` = 1, 2, · · · , k̂, be those vertices where KΣ achieves the minimum value, i.e. K(p̂`) = infΣ K, 1 ≤ ` ≤ k̂.

Also, we let D̂` be the maximal domain on Σ which, as a hypersurface in Rn+1, can be represented as the

graph of the convex function û` defined in the domain Ω̂`, 1 ≤ ` ≤ k̂.

Proposition 1. Suppose the hypersurface Σ satisfies the hypotheses of Theorem 1. Assume Σ is not a

global graph and and KΣ is not constant inside D̂` for any `, 1 ≤ ` ≤ k̂. Then there exists a locally convex

immersed hypersurface Σ1 in Rn+1 with ∂Σ1 = Γ and Gauss curvature KΣ1 > inf KΣ everywhere. Moreover,

in a tubular neighborhood of its boundary Γ, Σ1 is C2 and locally strictly convex.

From Proposition 1 and Theorem 1 we obtain the following result.

Theorem 3. Suppose the hypersurface Σ satisfies the hypotheses of Proposition 1. Then there exists a

number K1 > inf KΣ such that, for each number 0 < K < K1, there exists a smooth (up to the boundary)

locally strictly convex hypersurface M with ∂M = Γ and KM ≡ K; moreover, M is homeomorphic to Σ.

We will further improve Theorem 1 in case Σ satisfies Condition B below. We introduce:

Condition B. For each `, 1 ≤ ` ≤ k̂, the maximal domain D̂` lies in the interior of M .

We shall show the following.

Proposition 2. If the hypersurface Σ satisfies the hypotheses in Proposition 1 and Condition B, then there

exists a locally convex immersed hypersurface Σ2 in Rn+1 with ∂Σ2 = Γ and inf KΣ2 > min
1≤`≤k̂

(diam∂D̂`/2)−n.

Moreover, in a tubular neighborhood of its boundary Γ, Σ2 is C2 and locally strictly convex.

From this and Theorem 1 we obtain:

Theorem 4. Suppose the hypersurface Σ satisfies the hypotheses in Theorem 1 and Condition B. Then

for each number K, 0 < K ≤ (diamΣ/2)−n, there exists a locally convex immersed hypersurface M1 in Rn+1

with ∂M1 = Γ and the Gauss curvature KM1 ≡ K. Moreover, in a tubular neighborhood of its boundary Γ,

M1 is C2 and locally strictly convex.
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The key observation in proving Proposition 1 and Proposition 2 is that along ∂D̂` \ Γ, the tangent

hyperplane to Σ is vertical to the plane where Ω̂` lies, and hence replacing D̂` by a graph ”below” it while

keeping Σ \ D̂` fixed we obtain another locally convex hypersurface.

2. Proofs of Theorems

2.1. Proof of Theorem 2.

We may first observe:

Lemma 1. If M is a compact K-surface without boundary, then there holds

KM ≥ ( diam M/2)−n.

Indeed, let a and b be the points on M with d :=dist (a,b) =diamM . Let 0 be the midpoint of the

segment ab. Consider the ball B := Bd/2(0) centered at 0 and of radius d/2, of which the segment ab is a

diameter. Then the sphere ∂B and the hypersurface M meet tangentially at the points a and b. We treat

two cases separetely.

Caes 1. M contacts ∂B from the inner side of B at a or b; i.e. an open nighborhood of a or b on M

lies in the inner side of B. Therefore the Gauss curvature of M at a or b is greater than that of ∂B at a or

b, which is ( diam M/2)−n.

Case 2. An open subset D0 of M whose closure D0 contains a lies outside B. Since d :=dist (a,b)

=diamM , we know that some nonempty open subset of M lies in the interior of B. Therefore D0 is included

in a region D∗
0 whose boundary ∂D∗

0 is an (n − 2)-dimensional closed subset of ∂B without boundary. A

part of the region D∗
0 and a part of ∂B including p can be respectively represented as the graphs of u0 and

a function u over a domain Ω∗
0 such that u0 = u along ∂Ω∗

0 and u0 < u in Ω∗
0. Were the Gauss curvature of

D∗
0 less than that of ∂B, the maximum principle would imply that u0 > u in Ω∗

0, which would not be the

case. Therefore over some point q ∈ Ω∗
0 the Gauss curvature of D0 at (q, u0(q)) is greater than that of ∂B

at (q, u(q)). Thus again we conclude that KM ≥ ( diam M/2)−n.

This result will not be used in the rest of this article. However, the reasoning which leads to this result

will be used in the proof of Lemma 2 below, Proposition 1 in 2.2 and Proposition 2 in 2.3.
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Next we observe that the following result is essentially proved in the last paragraph of the proof of Theorem

3.5 in [3].

Proposition 3. Assume that M is a smooth locally strictly convex K-hypersurface. Denote by κmax[M ]

the maximum of all principal curvatures of M . If κmax[M ] is achieved at an interior point p of M , and we

choose coordinates in Rn+1 with origin at p such that the tangent hyperplane at p is given by xn+1 = 0 and

M locally is written as a strictly convex graph xn+1 = u(x1, · · · , xn), then

(1) κmax(p) ≤ C0K,

with

(2) C0 = (x0
n+1)

n−1;

here x0 = (x0
1, · · · , x0

n, x0
n+1) ∈ Rn+1 is so chosen that the function ρ̂ := |x − x0|, x ∈ M , achieves its local

maximum value at p.

Indeed, in the last paragraph of the proof of Theorem 3.5 in [3], this estimate of κmax is obtained at a

local maximum point of the function κeρ, the maximum being taken for all the normal curvatures κ over

M , where ρ = |x − x0|2, x ∈ M and x0 ∈ Rn+1 is a fixed point. However, in order to obtain an estimate of

κmax(p), the point x0 has to be so chosen that the function ρ̂ = |x−x0|, x ∈ M , achieves its local maximum

value at p. Using the argument in [3] we are able to derive

0 ≥ 2n
(κmax(p)

K

) 1
n−1 − 2nx0

n+1,

from which follows (1). We notice that, in the fourth and fifth lines from the bottom in page 295 of [3], we

should append the number n before the parentheses.

We are now able to formulate the following.

Corollary 2. Under the hypotheses of Proposition 1 on M and p, we have

K = K(p) ≥ C
−n/(n−1)
0 ,
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where C0 is the constant introduced in (2).

Indeed, from Proposition 1, we have

K(p) = κ1κ2 · · ·κn ≤ (C0K(p))n,

from which we obtain Corollary 1.

Instead of obtaining an estimate of the constant C0, we make the following observation, from which and

Corollary 2 we obtain Theorem 2.

Lemma 2. Under the hypotheses of Proposition 1 on M and p and under Condition A with pm = p, we

have either

(3) C0 ≤ ( diam M/2)n−1,

or

(4) KM ≥ ( diam M/2)−n.

Proof. As indicated in Condition A, Dm ⊂ M is the maximal domain on M which can be represented as

the graph of a convex function um defined in a domain Ωm. Let Pm be the plane where Ωm lies. We notice

that the tangent hyperplane to M along ∂Dm is orthogonal to the plane Pm.

Let a and b be the points on ∂Dm such that d0 :=dist (a,b)=diam ∂Dm. Let 0 be the midpoint of the

segment ab, d1 := dist (0,pm) and d := max(d1, d0/2). Consider the ball B := Bd(0) centered at 0 and of

radius d. We treat two cases separately.

Case 1. If d = d0/2 ≥ d1, then the segment ab is a diameter of the ball B. Since the tangent hyperplane

to M along ∂Dm is vertical to the plane Pm, we know that the sphere ∂B and the hypersurface M meet

tangentially at the points a and b. Since d0 =(diam ∂Dm)/2 ≥ d1 :=dist (0,pm), an open subset of the

boundary ∂Dm, together with the vertex pm, lies inside the ball B. The reasoning leading to Lemma 1 can

be applied here to conclude that one of the following holds:

(i) M contacts ∂B from the inner side of B at a or b and therefore (4) holds.
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(ii) An open subset D0
m of Dm whose closure contains a lies outside B. Since pm lies inside B, we know

that D0
m is included in a region D∗

m whose boundary ∂D∗
m is an (n − 2)-dimensional subset of ∂B without

boundary. The reasoning in Case 2 in the proof of Lemma 1 again enables us to conclude (4).

Case 2. If d = d1 ≥ d0/2, then the sphere ∂B meets the hypersurface M tangentially at the point pm.

We shall treat two possibilities separately.

(i) If the function ρ̂0 := |x − 0|, x ∈ M , achieves its local maximum value at pm, then we are allowed to

take x0 = 0 in Proposition 3, from which we obtain |x0| =
√

(x0
1)2 + · · · + (x0

n+1)2 = d1 and hence (3).

(ii) If the function ρ̂0 = |x − 0|, x ∈ M , fails to take its local maximum value at pm, then, since M

meets ∂B tangentially, an open subset D̂′
m of Dm whose closure contains pm lies outside B. However, since

d1 ≥ d0/2, we know that some open subset of ∂Dm lies in the interior of B. Therefore D̂′
m is included in a

region D̂′′
m whose boundary ∂D̂′′

m is an (n − 2)-dimensional subset of ∂B without boundary. The reasoning

in Case 2 in the proof of Lemma 1 again yields (4). ♦

2.2. Proof of Proposition 1 and Theorem 3.

We first recall the approach taken in [3]. Namely, according to [1], if Σ is the graph of a locally convex

function xn+1 = u(x) over a domain Ω in Rn, then KΣ = K if and only if u is a viscosity solution of the

Gauss curvature equation

(5) det(uij) = K(1 + |∇u|2)
n+2

2 in Ω.

A major difficulty in proving Theorem 1 lies in the lack of global coordinate systems to reduce the problem

to solving certain boundary value problem for this Monge-Ampère type equation. To overcome the difficulty,

Guan and Spruck [3] adopted a Perron method to deform Σ into a K-hypersurface by solving the Dirichlet

problem for the equation (5) locally. They consider a disk on Σ which can be represented as the graph of a

function and use the following existence result to replace such a disk by another graph of less curvature.

Lemma 3 (Theorem 1.1. [2], Theorem 2.1 [3]). Let Ω be a bounded domain in Rn with ∂Ω ∈ C0,1.

Suppose there exists a locally convex viscosity subsolution u ∈ C0,1(Ω) of (5), i.e.

(6) det(uij) ≥ K(1 + |∇u|2)
n+2

2 in Ω,

7



where K ≥ 0 is a constant. Then there exists a unique locally convex viscosity solution u ∈ C0,1(Ω) of (5)

satisfying u = u on ∂Ω.

Motivated by the approach taken in [3], we now proceed to establish Proposition 1. We consider a disk on

Σ which can be represented as the graph of a function and contains a point at which the Gauss curvature takes

the value inf KΣ and then, instead of using Lemma 3, we shall replace such a disk by a graph whose Gauss

curvature is everywhere greater than inf KΣ. Namely, as introduced before, we let p̂` ∈ Σ, ` = 1, 2, · · · , k̂,

be those vertices where KΣ achieves the minimum value, i.e. K(p̂`) = infΣ K, 1 ≤ ` ≤ k̂, and let D̂` be

the maximal domain on Σ which, as a hypersurface in Rn+1, can be represented as the graph of a convex

function û` defined in a domain Ω̂`, 1 ≤ ` ≤ k̂. Then the tangent hyperplane to M along ∂D̂` \ Γ is vertical

to the plane P`.

For 1 ≤ ` ≤ k̂, let Ω̂`,δ be the tubular neighborhood with width δ along ∂Ω̂`, i.e.

Ω̂`,δ = {x ∈ Ω` : dist (x, ∂Ω̂`) ≤ δ}.

We shall construct a convex function ũ` defined over Ω̂` with ũ` = û` along ∂Ω̂` and ũ` < û` in Ω̂`,δ \ ∂Ω̂`

for some δ > 0. The graph of the function ũ` over Ω̂` is then a convex hypersurface D̃`. This naturally

induces a C0,1-diffeomorphism ΨΣ̃ : Σ → Σ̃ := ∪D̃` ∪ (Σ \∪D̂`) which is fixed on Σ \∪D̂`. Since the tangent

hyperplane to D̃` along ∂D̂` \ Γ is vertical to the plane P`, ũ` = û` over ∂Ω̂` and ũ` < û` in Ω̂`,δ \ ∂Ω̂`,

1 ≤ ` ≤ k̂, we know that the hypersurface Σ̃ is locally convex with ∂Σ̃ = ∂Σ.

In order to obtain the inequality inf KΣ̃ > inf KΣ, we choose the coordinate system with p` = u`(0, · · · , 0),

and then, letting p̃` = ũ`(0, · · · , 0), we choose the function ũ` to be strictly convex and to have inf KΣ̃ =

KΣ̃(p̃`) > KΣ(p`). For this, we observe that, since KΣ(p`) = inf KΣ < supD̂`
KΣ, the equality inf KΣ̃ =

KΣ̃(p̃`) can be achieved by choosing v` := û` − ũ` defined over Ω̂` to be nonnegative and small enough.

In order to obtain the strict convexity of ũ`, we make v`(x) strictly decreasing as the distance from x to

(0, · · · , 0) increases. This also yields the inequality KΣ̃(p̃`) > KΣ(p`). Indeed, let en+1 be the unit vector

pointing in the direction of positive xn+1 axis and move the surface D̃` in the direction of en+1 and in

the distance v`(0, · · · , 0) to obtain the parallel surface D̃` + v`(0, · · · , 0)en+1, which is the graph of the

function ũ`(x) + v`(0, · · · , 0) inside Ω̂`. Because v` achieves its maximum value at (0, · · · , 0), the surface
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D̃` + v`(0, · · · , 0)en+1 meets the surface D̂` tangentially at p` and ũ`(x) + v`(0, · · · , 0) > u`(x) inside Ω̂`.

This yields the inequality KΣ̃(p̃`) = KD̃`
(p̃`) = KD̃`+v`(0,··· ,0)en+1

(p`) > KD̂`
(p`) = KΣ(p`). We therefore

obtain Proposition 1 by taking Σ1 = ∪D̃` ∪ (Σ \ ∪D̂`), from which follows Theorem 3.

2.3. Proof of Proposition 2 and Theorem 4.

We now proceed to prove Proposition 2. It suffices to construct, for each `, 1 ≤ ` ≤ k̂, a strictly convex

hypersurface D̃` with ∂D̃` = ∂D̂` and inf KD̃`
≥ (diam ∂D̂`/2)−n, for we can then take Σ2 = ∪D̃`∪(Σ\∪D̂`)

to complete the proof of Proposition 2. For this purpose, we fix `, 1 ≤ ` ≤ k̂. Let a` and b` be the points

on ∂D̂` such that d` :=dist (a`,b`) =diam∂D̂`. Let 0` be the midpoint of the segment a`b`. Consider the

ball B` := Bd`/2(0`) centered at 0` and of radius d`/2, of which the segment a`b` is a diameter. Since the

tangent hyperplane to D̂` along ∂D̂` is vertical to the plane P`, the sphere ∂B` and the hypersurface D̂`

meet tangentially at the points a` and b`. We claim

Lemma 4. The whole ∂D̂` lies inside B`.

Proof. It suffices to claim that each curve which is cut from ∂D̂` by a plane containing a` and b` lies in B`.

Indeed, consider such a curve Γ0. Since d` :=dist (a`,b`) =diam∂D̂`, an open subset Γ̃0 of Γ0 lies in B`.

Suppose another open subset of Γ0 does not lie in B`. We shall derive respective contradictions in two cases

below and finish the proof.

Case i. Suppose the curvature of Γ0 is increasing from a` to a point c ∈ Γ0 and then decreasing from c

to b`. Then near a` and b` the curvature of Γ0 is less than (diam ∂D̂`/2)−1, and hence this part of Γ0 lies

outside B`. Since Γ̃0 lies in B`, Γ0 intersects ∂B` at points c1 and c2 such that a` is nearer to c1 than c2.

The maximum principle produces two points with curvature greater than (diam ∂D̂`/2)−1 one of which is

between a` and c1, and the other is between b` and c2. Therefore the part of Γ0 between c1 and c2, which

lies inside B`, has curvature greater than (diam ∂D̂`/2)−1 everywhere, contradicting the maximum principle.

Case ii. Suppose the curvature of Γ0 is decreasing from a` to a point c0 ∈ Γ0 and then increasing from

c0 to b`. We first claim that in this case near a` and b` the curve Γ0 lies inside B` and the curvatures of Γ0

at a` and b` are greater than (diam ∂D̂`/2)−1. Indeed, would a part of Γ0 between a` and some point c3 lie

outside B`, then the maximum principle would produce a point with curvature greater than (diam ∂D̂`/2)−1
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in this part of Γ0. Therefore the curvature at a` would be greater than (diam ∂D̂`/2)−1, contradicting the

assumption that near a` the curve Γ0 lies outside B`. Hence near a` the curve Γ0 lies inside B` and hence

the curvature of Γ0 at a` is greater than (diam ∂D̂`/2)−1. The behavior of the curve Γ0 near b` can be

understood analogously.

If Γ0 intersects ∂B` at some points c4 other than a` and b`, then the part of Γ0 between c4 and some

other point c5 lies outside B`, which provides us with a point with curvature greater than (diam ∂D̂`/2)−1

by the maximum principle. This implies that the part of Γ0 between a` and c4, which lies inside B`, has

curvature greater than (diam ∂D̂`/2)−1 everywhere, contradicting the maximum principle. ♦

To proceed further, we consider two cases separately.

Case I. The point p` lies inside B`.

We proceed to prove the following.

Lemma 5. In Case I, the whole D̂` lies in B`.

Proof. Consider the plane P̃` containing a`b` and the point p`. Let Γ` := P̃` ∩ B` and Γ̂` := P̃` ∩ D̂`. We

first observe that in Case I the curve Γ̂` in D` lies inside B`; in other words, Γ̂` situates “above” Γ`. Indeed,

would some part of Γ̂` lie outside B`, then we would, analogously to the proof of Lemma 4, derive respective

contradictions in two cases. From this observation, Lemma 4 and the assumption that p` ∈ B`, we conclude

that each curve in D̂` which is cut by a plane containing 0`p` lies inside B`. This enables us to conclude

that the whole D̂` lies in B`. ♦

In view of Lemma 5, it is easy to construct a C0,1 convex surface D0,` passing through Γ` as well as ∂D̂`,

which situates ”below” D̂` and ”above” ∂B` in the sense that D0,` and a portion of ∂B` can be represented

respectively as the graphs of functions u0,` and v` in Ω̂` such that v` ≤ u0,` ≤ û` in Ω̂`. We may replace D̂`

by D0,` while fixing Σ \ D̂`. This provides us with a C0,1 hypersurface Σ̃0. Since the tangent hyperplane to

Σ along ∂D̂` is vertical to the plane P`, the hypersurface Σ̃0 is locally strictly convex. By approximation,

we may assume without loss of generality that D0,` is C2.

Let p0,` be the “lowest” point of D0,`. Each curve on D0,` which is cut by a plane containing 0`p0,` lies in

B` and hence has the curvature at p0,` greater than or equal to (diam ∂D̂`/2)−1. Therefore the hypersurface
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Σ̃0 has the Gauss curvature KΣ̃0
(p0,`) ≥ (diam (∂D̂`))−n.

We now consider two possibilities separately.

(i) If KΣ(x) > (diam ∂D̂`/2)−n at each point x ∈ ∂D̂`, then by choosing û` − u0,` small enough, there

still holds KD0,`
(x) > (diam ∂D̂`/2)−n at each point x ∈ ∂D̂`. Then, since there holds also KD0,`

(p0,`) >

(diam ∂D̂`/2)−n and D0,` is C2, we have KD0,`
(x) > (diam ∂D̂`/2)−n at every point x ∈ D0,`. Therefore in

this case we take D̃` = D0,` to complete the proof of Proposition 2.

(ii) Suppose KΣ(x) ≤ (diam ∂D̂`/2)−n at some points x ∈ ∂D̂`. Then we consider a small neighborhood

of ∂D̂` on Σ

D`,δ = {x ∈ Σ; dist (x, ∂D̂`) < δ}

and replace D`,δ by a C2 hypersurfacce D̃`,δ with KD̃`,δ
> (diam ∂D̂`/2)−n everywhere and ∂D̃`,δ = ∂D`,δ,

while keeping Σ \D`,δ fixed. Let D̃∗
`,δ be the largest region in D̃`,δ which can be represented as the graph of

some function and has ∂D`,δ∩D̂` as one component of its boundary. We then apply the previous construction

to the hypersurface D̃∗
`,δ ∪ (D̂` \ D̃`,δ), instead of D̂`, and obtain the desired hypersurface D̃` to complete

the proof of Proposition 2.

Case II. The point p` lies outside B`.

In this case, to prove Proposition 2 it suffices to prove the following lemma and then take D̃` = D̂`.

Lemma 6. In Case II, the Gauss curvature KΣ(p`) of Σ at p` is greater than (diam ∂D`/2)−n at p`.

Indeed, in this case we choose the coordinate system whose origin 0 is at p` and whose xn+1-axis points in

the normal direction of D` from p` to ∂B`. Then a portion of D̂` and a portion of ∂B` can be represented

as the graphs of functions ũ and ṽ respectively over a neighborhood E of 0. Consider the nonnegative

function w := ṽ − ũ over E. In view of Lemma 4, the function w achieves its maximum value at 0. We now

use the reasoning used at the last paragraph in the proof of Proposition 1. Namely, Let en+1 be the unit

vector in the direction of the xn+1-axis. By moving the hypesurface D̂` in the direction of en+1 and in the

distance of w(0), we obtain the parallel hypersurface D̂` + w(0)en+1, which meets ∂B` tangentially at p0,`
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and has greater curvature than ∂B` at p` + w(0)en+1. That is, KΣ(p`) = KD̂`+w(0)en+1
(p` + w(0)en+1) >

K∂B`
(p` + w(0)en+1). Since KD̂`

(p`) = inf KD̂`
, we conclude that KΣ ≥ (diam ∂D̂`/2)−n. ♦
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