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Abstract

Popular models of finance, fall short of accounting for most empirically found stylized
features of financial time series data, such as volatility clustering, skewness and leptokurtic
nature of log returns. In this study we propose a general framework for modeling asset
returns which account for serial dependencies in higher moments and leptokurtic nature of
scaled GARCH filtered residuals. Such residuals are calibrated to normal inverse Gaussian
and hyperbolic distribution. Dynamics of risky assets assumed in Black Scholes model,
Duans GARCH model and other benchmark models for contract valuation, are shown to
be nested in the the proposed framework.
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1 Introduction

Uncertainty is central to much of modern finance theory. In option pricing for example, the
uncertainty associated with future return of the underlying asset, is the most important deter-
minant in the pricing function. Popular models such as the Black and Scholes [1973] model,
based on the geometric Brownian motion have very nice mathematical properties which have
been extensively used to value contracts. Empirical evidence suggest that the dynamics of the
underlying process under the physical measure P follow a more complicated process than the
standard geometric Brownian motion with constant volatility.

Various studies have shown that the normal distribution does not accurately describe ob-
served stock return data. In literature, for example Eberlein and Keller [1995], Barndorff-Nielsen
[1998], Carr et al. [2002] and references therein, it is proposed that daily log returns, could be
modeled by an exponential Lévy processes and geometric Lévy process, generating a lot of lit-
erature applied in pricing derivatives. Moreover, other studies suggest that a more improved
model would include both stochastic volatility and a jump component (see Carr and Wu [2004]).
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Over the past several decades, several stylized facts have emerged about the statistical behav-
ior of speculative market daily returns such as aggregational Gaussianity, volatility clustering,
changing variance, Taylor effect, leptokurtic residuals etc, see Rydberg [2000], Cont [2001],Tsay
[2002], Stentoft [2008] and Rogers and Zhang [2011] for further documentation.

A typical finding concerning the return characteristic is that one period asset return, con-
ditional on the most up-to-date information, exhibit a fat tail behaviour in addition to varying
second order moments. The ARCH family of models introduced by Engle [1982] and generalized
by Bollerslev [1986] has in the recent years gained prominence for modeling such dynamics. In
the last few years, much interest has been given to the discrete-time GARCH option pricing
models for instance see Pagan and Schwert [1990], Glosten et al. [1993], and Bollerslev et al.
[1994]. Option pricing in GARCH models has been typically done using the local risk neu-
tral valuation relationship (LRNVR) pioneered by Duan [1995]. The crucial assumptions in his
GARCH model construction, are the conditional normal distribution of the asset returns under
the physical probability measure P and the invariance of the conditional volatility to the change
of measure. The main objective of this study is to propose a general framework for modeling
the underlying uncertainty driving heteroscedastic and leptokurtic daily stock market returns.

This article is organized as follows, the next section presents ACH type model and class of
generalized hyperbolic distribution for modeling some of the basic stylized facts of returns. In
section three, we state the proposed general framework followed by several examples of popular
benchmark models nested within the framework. Empirical analysis and parameter estimation
are stated in section four, and section five concludes the study.

2 Preliminary considerations

Stock returns tend to exhibit a significant serial dependency in second moments. ARCH class
models and several class of statistical distributions say NIG etc are known to models skewness
and excess kurtosis of log returns.

2.1 ARCH models: Changing variance

ARCH model models have become popular for modeling financial time series because they are
able to account for several empirical features like volatility clustering and leptokurtic in the dis-
tribution of returns. Most ARCH-type models involve a sequence of innovations whose variance
is random. Conditioned on the past the variance depends only on the previous innovations and
the previous conditional variances, and standard Wiener process generate the filtration. Most
studies of daily stock returns using GARCH models and conditioned on normal distribution
for the innovations; the re-scaled residuals showed excess kurtosis which violates the normal-
ity assumption. We investigate AR(1)-GARCH(1,1) model conditioned on normal distribution.
Thus

Xt = loge St − loge St−1

= µ̂+ φXt−1 + σt(Zt + Lt), Zt ∼ N(0, 1)

σ2
t = ω + aσ2

t−1Z
2
t−1 + bσ2

t−1

Parameter estimates µ̂, φ, ω, a, b are presented in Table 1 and Table 2.
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A typical finding concerning the return characteristic is that one period asset return condi-
tional on the most up to date information, continues to exhibit a fat tailed behaviour. This fat
tailed behaviour is also known as conditionally leptokurtic, and can be modeled by a limiting
class of generalized hyperbolic distribution.

2.2 Generalized hyperbolic distribution

The probability density function of the one-dimensional Generalized Hyperbolic distribution is
given by the following:

fGH(x;α, β, δ, µ, λ) =
(γ/δ)λ√

2πKλ(δγ)
.
Kλ− 1

2
(α
√
δ2 + (x− µ)2)

(
√
δ2 + (x− µ)2/α)

1
2
−λ

.eβ(x−µ) (2.1)

where Kλ is a modified Bessel function of the third kind with the index λ.

Kλ(ω) =
1

2

∫ ∞
0

exp
[
−ω

2
(v−1 + v)

]
vλ−1dv (2.2)

In all cases, µ is the location parameter and can take any real value, δ is a scale parameter;
α and β determine the distribution shape and λ defines the subclasses of GH and is related to
the tail flatness.

Many distributions are obtained as limiting distributions of the generalized hyperbolic dis-
tribution and by varying parameter λ to obtain subclasses for example, hyperbolic distribution
and normal inverse Gaussian.

2.2.1 Hyperbolic distributions

When λ = 1, we obtain the subclass of hyperbolic distribution with probability density function
(see Eberlein and Keller [1995],)

fhyp(x;α, β, δ, µ) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp
[
−α
√
δ2 + (x− µ)2 + β(x− µ)

]
. (2.3)

The mean and variance of hyperbolic function given respectively by the followings

E(X) = µ+
βδ√
α2 − β2

K2(η)

K1(η)
(2.4)

V ar(X) = δ2

(
K2(η)

ηK1(η)
+

β2

α2 − β2

[
K3(η)

K1(η)
−
(
K2(η)

K1(η)

)2
])

(2.5)

where η = δ
√
α2 − β2. The first two parameters αandβ determine the shape of the distribution,

while the other two δ and µ are scale and location parameters.
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2.2.2 NIG distribution

A random variable X ∼ NIG(α, β, δ, µ) if ( see Barndorff-Nielsen [1998])

fNIG(x;α, β, δ, µ) =
α

π
exp

(
δ
[√

α2 − β2 + βζ(x)
]) K1(αδ

√
1 + ζ(x)2)√

1 + ζ(x)2

where ζ(x) = (x− µ)/δ and K1 is the modified Bessel function of third kind,
with the index 1.

K1(ω) =
1

2

∫ ∞
0

exp
[
−ω

2
(v−1 + v)

]
dv

Loglikelihood function for MLE of parameters

LNIG(x|α, β, δ, µ) = −n ln

(
π

µ

)
+ n(δ

√
α2 − β2)− 1

2

n∑
i=1

log(1 + ζ(xi)
2)

+βδ
n∑
i=1

ζ(xi) +
n∑
i=1

log(K1(δα
√

(1 + ζ(xi)2))

3 Modeling underlying process

Most of the notation and model framework in this paper, is a slight modification of the skewed
and leptokurtic generalized GARCH framework proposed by Stentoft [2008] and references
therein. In that study, the dynamics of log returns Xt are specified as

Xt = mt(.; θm) + σtεt

σ2
t = g(σ2

s , εs;−∞ < s ≤ t− 1; θh)

ε|Ft−1 ∼ D(0, 1; θD)

where Ft−1 is the information set containing all information up to and including time t − 1,
mt(.; θm) denote the conditional mean, governed by a set of parameters θm, D(0, 1; θD) denote a
zero mean and a unit variance distribution function, allowed to depend on a set of parameters
θD.

Let (Ω,F, (Ft)t∈[0,T ],P) be a stochastic basis describing the uncertainty of the economy. We
refer to P as the physical probability measure and Ft represent the information flow driven by
Wiener process W = (Wt)t∈[0,T ] and Lévy proces L = (Lt)t∈[0,T ]. Let St be the price of a stock at
time t adapted to the natural filtration Ft. Define daily log return asXt = logSt+dt−logSt−1, t =
1, 2, ... where dt denote dividends at time t and Xt the continuously

Theorem 3.1. We propose the following model for asset returns under P. Let

Xt = log

(
St + dt
St−1

|Ft−1
)
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where dt is one period dividends paid, then

Xt = mt(.; θm) + σt(Wt + Lt),

= mt(.; θm) + σt(ϑt +$ξt), ξ ∈ GH
σ2
t = g(σ2

s , ϑs;−∞ < s ≤ t− 1; θσ),

ϑt ∼ i.i.d.(0, 1), ξt ∼ i.i.d.D(0, 1; θD)

where mt(.; θm) denote the mean function, σt(.; θσ) denote the variance process and θ = (θm, θσ, θD).

3.1 Examples from Benchmark models

Without loss of generality, for all the subsequent examples we assume dt = 0∀t > 0

Example 3.1. Geometric Brownian motion
Let dSt = µStdt+ σStdWt be the stochastic differential equation modeling the uncertainty of the
underlying process, then

St = S0 exp

([
µ− σ2

2

]
t+ σ

√
tZ

)
, Z ∼ N(0, 1)

⇒ Xt = log(St/St−1) =

[
µ− σ2

2

]
+ σZ

thus Xt =

[
µ− σ2

2

]
+ σ(Z + 0ξ), θm = (µ, σ2),

Xt = mt(.; θm) + σt(Z +$ξ), mt =

[
µ− σ2

2

]
, σt = σ, Z ∼ i.i.d.N(0, 1)

Example 3.2. Jump-diffusion model
Mertons(1976) introduced and analyzed one of the first models with both jump and diffusion
term for pricing of derivative securities. Merton jump-diffusion model can be specified through
the SDE..

dSt
St

= µdt+ σdWt + (Jt − 1)dNt

where the jump sizes are Jt are identically distributed and mutually independent. He also assumed
that the three processes (Wt)t≥0, (Nt)t≥0 and (Jt)t≥0 are independent. Let

∑N(t)
j=1 (Yj − 1) where

Y1, Y2, ...,are random variables and N(t) is a counting process. The following expression solves
the SDE.

S(t) = S(0) exp

[
(µ− σ2

2
)t+ σWt

]N(t)∏
j=1

Yj

which implies

loge

(
S(t)

S(0)

)
= (µ− σ2

2
)t+ σWt +

Nt∑
j=1

loge Yj

= (µ− σ2

2
)t+ σ

(
Wt +

$

σ

Nt∑
j=1

loge Yj

)
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Given any date t ≥ 0 and a holding period of length h > 0, the returns Xt(h) over the period
[t, t+ h] is a model given by

Xt(h) =

{
x, if K = 0;
x+ y1 + ...+ yk, if K ≥ 1.

(3.1)

where x ∼ N(αh, σ2h), α = (µ−(σ2/2)), y1, ..., yk is an i.i.d. sequence with common distribution
say G and K is Poisson with parameter λh, λ > 0 for k = 0, 1, 2, ..., we have Prob(K = k) =
exp(−λh)(λh)k/k If Yj have the log normal distribution LN(a, b) then loge Yj ∼ N(a, b2) and∑

log Yj ∼ N(an, b2n) which is the same as
∑

log Yj ∼ an+ b
√
nN(0, 1). Thus

Xt = loge

(
St
St−1

)
= (µ− σ2

2
) + σ

(
Zt +

η

σ

K∑
j=1

loge Yj

)

= m(, θm) + σt(Zt +$ξ) where ξ =
K∑
j=1

loge Yj

Example 3.3. Duan(1995) GARCH model
Discrete time economy, one period rate of return assumed to be conditionally lognormally dis-
tributed under P. Let r be constant one period risk free rate of return, λ be constant unit risk
premium then

Xt = log(St/St−1)

= r + λσt −
σ2
t

2
+ σ2

tZ, where

σ2
t = ω +

q∑
j=1

αjσ
2
t−jZt−j +

p∑
j=1

βjσ
2
t−j, Zt−j ∼ i.i.d.N(0, 1)∀j

= mt(.; θm) + σt(ϑt +$ξ) where σt ∼ GARCH(p, q)

Example 3.4. It is well known from empirical studies that Xt can he represented as Xt =
µt + εt + ξt where µt is a mean function and εt, ξt are the two components of the error term
(see for instance Merton [1976],Heston and Nandi [2000],Maheu and Mccurdy [2004], Mwaniki
[2015]). Moreover, define a pth order autoregressive process {Xt, t ≥ 0} with GARCH(p,q) error
as

Xt = µt + εt + ξt,where

µt =

p∑
r=1

φrXt−r + µ, t ∈ Z+

εt + ξt = σt(Zt + σLt), Zt, and Lt ∼ i.i.d(0, 1), Z0 = 0,L0 = 0

σ2
t = GARCH(p, q), p, q ∈ Z+ (3.2)

where Zt and Lt are identically and independently distributed random variables. A general time
series model for log returns would be

Xt = µt + σt(Zt + σLt), Zt ∼ N(0, 1), Lt ∈ GH
= m(.; θm) + σt(Zt +$Lt)
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4 Empirical Analysis

We investigate the statistical properties under the objective measure P model’s ability to explain
observed market share prices.

4.1 Data description and parameter estimates

We apply our framework to the stock indices sample from top GDP countries, S& P500 from
New York Stock exchange , CAC40 Paris stock exchange. The financial time series data consist
of S&P500 and CAC40 daily closing adjusted price from January 2, 2001 through December
31,2014. Daily adjusted closing prices from were used to determine daily log returns Xt, t =
0, 1, 2, .... Let Sj be the price on day j, j = 0, 1, 2, ..., n − 1. Sample increments of log returns
is defined by Xj = logSj − logSj−1, j = 1, 2, ..., n − 1. GARCH models are well known to
be the best performing models to describe evolution of volatility, a satisfactory statistical fit
is provided when the distribution of the filtered historical residuals is non-Gaussian. We fit
AR(1) + GARCH(1, 1) model conditioned on normal distribution. All models parameters are
estimated by numerical maximum likelihood routine and the significant parameters are reported
in Table 1 and Table 2.

Table 1: AR(1)−GARCH(1, 1) model parameter estimates
S&P500 Estimate Std. Error t value Pr(>|t|) AIC BIC LL

µ̄ 0.00054 0.00014 3.78729 0.00015 6.3902 6.3811 11251.68
φ -0.05695 0.01796 -3.17118 0.00152
ω 0.00000 0.00000 5.30935 0.00000
a 0.09202 0.00925 9.94648 0.00000
b 0.89493 0.00992 90.23790 0.00000

Table 2: AR(1)−GARCH(1, 1) model parameter estimates
CAC40 Estimate Std. Error t value Pr(>|t|) AIC BIC LL

µ̄ 0.00050 0.00018 2.81357 0.00490 5.92174 5.9131 10607.87
φ -0.05432 0.01765 -3.07695 0.00209
ω 0.00000 0.00000 4.44794 0.00001
a 0.09129 0.00956 9.55340 0.00000
b 0.89951 0.01012 88.84475 0.00000

The standardized filtered residuals are known to be uncorrelated and weakly stationary in
their first and second moments. To this end we make a simplifying assumption that the resulting
sequence is independent and identically distributed from an unknown distribution. We fit Normal
Inverse Gaussian and hyperbolic distribution to the residuals, estimated parameters of the two
distribution are summarized in Table 3 and their corresponding kernel densities are compared
in in Figure 1.
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Table 3: NIG and Hyperbolic parameter estimates
S&P500 — CAC40

NIG HYP NIG HYP
α 1.60743 1.87176 1.99970 2.31156
β -0.35232 -0.31274 -0.36798 -0.36449
δ 1.50306 0.89654 1.89130 1.50307
µ 0.29586 0.26133 0.30532 0.30219

4.2 Goodness of fit

Two sample test called Kolmogorov-Smirnov test (K-S test) was applied. Empirical CDF, an
estimate of the underlying data is used to test the following hypothesis.

Ho : Fn(x) = F (x) for all x versus H1 : Fn(x) 6= F (x) for some x

where Fn(x) is the empirical cumulative probability estimated as Fn(xi) = i/n for the ith smallest
data value. F (x) is the theoretical cumulative distribution function evaluated at x. The test
statistic is given by

Dn = sup
x
|Fn(x)− F (x)|

If the null hypothesis is true , then the theoretical distribution fits very well. If Dn is sufficiently
large ; the null hypothesis can be rejected. For the two filtered residual we computed Dn statistics
and got D = 0.0163, pvalue = 1, for both indices (S&P500 and CAC40). This implies that the
two sample sets seems to come from the same parent distribution. Attempts to test whether the
unknown distributions came from either of the three proposed densities, was reported in Table
4. The graphical representation of Kernel densities in Figure 1, supports the claim that the two
densities share the same parent distribution.

Table 4: Kolmogorov Smirnov distances
KDist NIG HYP NORM

S&500 0.4872 0.4872 0.7136
CAC40 0.5077 0.5077 0.7091

Judged on the distance between the empirical and theoretical distributions of the residu-
als, the picture changes slightly. The Kolmogorov-Smirnov test allows us to reject all Gaussian
models. As the Kolmogorov-Smirnov statistic measures the uniform distance between two dis-
tribution functions, it might be of interest to test the models ability to appropriately model
leptokutic nature of log returns. If one suspects the data to be from a family of normal distribu-
tion, corresponding values for the Anderson - Darling distance which has its focus on the tails of
the distribution will be valid. The following discrete version of the Anderson - Derling statistic
AD, measuring the distance between the theoretical distribution function F and the empirical
distribution F̂ :

AD(F, F̂ ) = sup
x∈R

|F (x)− F̂ (x)|√
F (x)(1− F (x))
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Density Identification

CAC40 filtered residuals
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Density Identification

S&P500 filtered residuals
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Figure 1: CAC40 filtered returns and S&P500 filtered returns density estimations

From our study, it was clear that the data in question was non normal. Models based on the
NIG and hyperbolic distribution which was used to provide a flexible description for empirically
observed conditioned leptokurtic residuals seemed to fit the data.

5 Conclusions

Since log-Levy models fall short of explaining the auto correlation of the absolute return, we have
observed that that the log return dynamics can be modelled by assuming three components (the
mean function, the volatility function and the GARCH filtered residuals). Identification of the
probability distributions can be estimated by class of distributions which can capture skewness
and kurtosis for example normal inverse Gaussian or hyperbolic distributions. It is widely
recognized that the key to developing successful strategies for managing risk and pricing assets
is to parsimoniously describe the stochastic process governing the asset dynamics. This paper
proposes general framework assumed to improve modeling returns of financial time series data.
To this end, the proposed framework combine two major stylized facts of returns: changing
variance and presence of excess kurtosis in filtered returns. The framework can be studied
further by allowing different distributions under the objective measure P. Empirical investigation
indicate that the all the required model parameters can be estimated form from historical data
and the filtered residual are non-normal. Further refinement of the model is left for future
studies.
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