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Abstract

In this paper, non-parametric estimations of conditional quantile functions for time series
with AR(1)-ARCH(1) scheme, represented by Xt = α(Zt) + $(Zt)εt are carried out. An al-
gorithm to estimating two quantile functions robustly is proposed and a use of a prediction
method for non-parametric conditional quantile regression was adopted to deal with the prob-
lem of boundary effects due to outliers. Our estimations are proven to be more accurate than
the existing and very simple to compute. An overview of the data generating process is given
to ascerntain stationaruty of the process. All the estimations were based on the quantile re-
gression method by Koenker and Zaho using the minimization of the conditional expectation
of a loss function.
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1 Introduction

In many regression methods, its usually about finding a linear or curvilinear relationship based
on the scatter plot. Most regression methods estimate the average (mean) value of the response
variable. Some z-x scatter plots do not obey this dictatorship due to influential points also
known as outliers. Financial and insurance data among others have significant variability and
are in some cases known as heavy-tailed data [? ]. Those data possess isolated points (from
the cloud) that distort any attempt to make a simple linear or other average-based regression.
This is one of the reasons why many robust methods are being developed in both parametric
and non-parametric ways. Robust because they aim to get rid of being influenced by extreme
values. This is the case in methods as LAD (Least Absolute Deviations) which estimate
the median or 1/2-quantile value of the response variable (see [? ]). Conditional quantile
regression as developped in [? ] is more general and gives a more general description of the
response variable at each level in (0, 1). The local polynomial regression method, mostly used
for non-parametric estimations, is robust but is still influenced by abnormally far-off points
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at boundaries. Outliers pull the curve toward them in places where there are few amounts
of points. [? ] devised a method to perform the analysis without deleting them by filling
the gap between the dense cloud and the very distant points by adding pseudo-points before
making the non-parametric estimation of the probability density function. Our approach, in
this paper, gives absolute robustness to these non-parametric methods estimates by solving
the problem of outliers, smoothing the estimators and giving the possibility in forecasting. We
base our estimations on the Nadaraya [? ] - Watson [? ] (NW) method which is a particular
case of local polynomial regression. The method consists of detecting points likely to change
the behavior of the curves towards the borders by using the method of Tukey then making
an estimation of the quantile as discussed in [? ] then reintegrating the ouliers by predicting
their response variable by k-NN algorithm. The latter is a data mining tool with predictive
power from observations using distance or similarity. Prediction is possible when estimates are
smooth. We performed a two step-estimation which consist of estimating the quantile location
shift or the QAR (Quantile AutoRegressive). After smoothing it and predicting the response
for the ouliers (omitted in the first place), the CSF (Conditional scale function) is estimated
from the residuals. Specific assumptions, also found in literature, are made to ascertain the
consistency of ours estimations. The data generating process is discussed in section 2. The
combination of smoothing method and the ouliers handling reduce the bias of the estimate
compared to the results in [? ]. To illustrate that, we simulated identical processes in terms
of parameters, then obtained estimates from the processes and computed the quadratic errors.
These errors are very small and confirm that our estimates are accurate. In section 4, we discuss
the empirical estimation of the conditional distribution function and its inverse. Our results
can be used in finance in calculating CVaR (Conditional Value-at-Risk), expected shortfall,
etc. Considering a Quantile Autoregressive model,

Xt = ατ (Zt) + ut, t = 1, 2, . . . (1.1)

where ατ (Zt) is the τ th Conditional Quantile Function of Xt given Zt and the innovation ut
are assumed to be independent and identically distributed with zero τ th quantile and constant
scale function, see [? ]. Rough kernel estimators of ατ (z) and $τ (z) were derived and their
consistencies proven in [? ]. To improve the accuracy of the estimations, a bootstrap kernel
estimator of ατ (Zt) was determined and shown to be consistent, see [? ]. This paper extends [?
] by assuming that the innovations follow Quantile Autoregressive Conditional Heteroscedastic
process similar to Autoregressive-Quantile Autoregressive Conditional Heteroscedastic process
proposed in [? ]:

Xt = ατ (Zt) +$τ (Zt)εt, t = 1, 2, . . . (1.2)

where ατ (Zt) is the conditional θ-quantile function of Xt given Zt; $τ (Zt) is a conditional
scale function at τ -level and εt is independent and identically distributed (i.i.d.) error with
zero τ -quantile and unit scale. The function $τ (Zt) can be expressed as

$τ (Zt) = λ$(Zt) (1.3)

where $(Zt) is the so called volatility found in [? ] and [? ] which are some key references on
Engle’s ARCH models and λ is a positive constant depending on τ (see [? ]). An example of this
kind of function is Autoregressive - Generalized Autoregressive Conditional Heteroscedastic
AR(1)-GARCH(1,1),

Xt = αt +$tet, t = 1, 2, . . . , (1.4)
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where

αt = µ+ δXt−1 (1.5)

ut = $et (1.6)

$t =
√
w + αu2t−1 + β$2

t−1 (1.7)

et ∼ N (0, 1), independent of Xt−1 (1.8)

and µ ∈ (−∞,∞), |δ| < 1, β > 0, α > 0, w > 0, α + β < 1. Note that αt may also be an
ARMA (see [? ]). The specifications for model (1.4) are given in section 2.4.

Considering other financial time series models, the model (1.1) can be seen as a robust gener-
alization of AR-ARCH- models, introduced in [? ], and their non-parametric generalizations
reviewed by [? ]. For instance, consider a financial time series model of AR(p)-ARCH(p)-type,

Xt = α(Zt) +$(Zt)et, t = 1, 2, . . . (1.9)

Where Zt = (Xt−1, Xt−2, · · · , Xt−p), α(·) and $(·) arbitrary functions representing, respec-
tively, the conditional mean and conditional variance of the process.

A partitioned stationary α-mixed time series (Xt, Zt), where the Xt ∈ R and the vari-
ate Zt ∈ Rd are respectively At-measurable and At−1-measurable is considered. For some
τ ∈ (0, 1), the conditional τ -quantile of Xt given the past Ft−1 assumed to be determined by
Zt is estimated. For simplicity, we assume that Zt = Xt−1 ∈ R throughout the rest of the
discussion.

2 Model definition

Definition 1. A process is said to be weakly stationary, if its first and second moments are
time invariant. Meaning that

E[Xt] = E[Xt−1] = λ <∞, ∀t (2.1)

V(Xt) = ρ0 <∞, ∀t and (2.2)

Cov(Xt, Xt−k) = ρk, ∀t,∀k. (2.3)

The third property only depends on the difference t− (t− k).

In the next section, we discuss the properties of the model AR(1)-ARCH(1) that will be
simulated for the application of our findings.

2.1 AR(1) process

Recall that the process of application or to be simulated is a combination of two processes.
The first is the AR(1) represented by

Xt = µ+ δXt−1 + et (2.4)

where µ ∈ R is a constant and et is white noise with mean 0, constant variance σ2e and is
independent of the lagged value Xt−1. This model represents some outputs, in financial time
series for instance, that depend on their own previous values and an innovation term (stochastic
term)
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Theorem 1. The AR(1) process is stationary and ergodic for |δ| < 1.

Proof. Using the definition 1, we specify the parameter that yield the stationarity of the AR(1)
process.

E[Xt] = µ+ δ E[Xt−1] + 0 (2.5)

λ = µ+ δλ (2.6)

=
µ

1− δ
(2.7)

and

V(Xt) = 0 + V(δXt−1 + et) (2.8)

ρ0 = δ2 V(Xt−1) + V(et) + 2 Cov(Xt−1, et)︸ ︷︷ ︸
=0

(2.9)

ρ0 = δ2ρ0 + σ2e (2.10)

ρ0 =
σ2e

1− δ2
(2.11)

We calculate the covariance, for k = 1, as

Cov(Xt, Xt−1) = E[XtXt−1]− E[Xt] E[Xt−1] (2.12)

ρ1 = E[µXt−1 + δX2
t−1 + etXt−1]−

µ2

(1− δ)2
(2.13)

=
µ2

1− δ
+ δ E[X2

t ]− µ2

(1− δ)2
(2.14)

=
−µ2δ

(1− δ)2
+ δ

(
V(Xt) +

(
E[Xt]

)2)
(2.15)

=
−µ2δ

(1− δ)2
+ δ

(
σ2e

1− δ2
+

µ2

(1− δ)2

)
(2.16)

= δ
σ2e

1− δ2
(2.17)

Now, for k = 2 and using the properties of the Covariance, we have

Cov(Xt, Xt−2) = Cov(µ+ δXt−1 + et, Xt−2) (2.18)

ρ2 = Cov(µ,Xt−2) + δCov(Xt−1, Xt−2) + Cov(et, Xt−2) (2.19)

= 0 + δρ1 + 0 (2.20)

= δ2
σ2e

1− δ2
(2.21)

We conclude that

Cov(Xt, Xt−k) = ρk = δk
σ2e

1− δ2
(2.22)
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2.2 ARCH(1) process

As the AR(1) models the outputs from the previous ones, the ARCH(1) is the modelization
of the actual innovation as function of the previous ones too. ARCH-based process are being
utilized in most of the current time series analysis in finance, economics, etc because they
model the volatility. An ARCH(1) is depicted by

εt = $et, (2.23)

$ =
(
ω + αε2t−1

) 1
2
, t = 1, 2, . . . (2.24)

with the conditions ω > 0, α < 1 and et i.i.d with zero mean and variance 1 and independent
to εt−1. There conditions allow the data generation process to be stationary. To show it, we
calculate the following statistics:

E[εt] = E

[(
ω + αε2t−1

) 1
2
et

]
(2.25)

= E

[(
ω + αε2t−1

) 1
2

]
× E [et]︸ ︷︷ ︸

=0

(2.26)

= 0. (2.27)

Let’s also introduce the conditional statistics that will enable the calculation the variance of
the process.

2.2.1 Conditional expectation

The conditional expectation of the ARCH(1) process is

E
[
εt | εt−1

]
= E

[(
ω + αε2t−1

) 1
2
et | εt−1

]
(2.28)

=
(
ω + αε2t−1

) 1
2

E[et | εt−1] (2.29)

=
(
ω + αε2t−1

) 1
2

E[et] (2.30)

= 0. (2.31)

2.2.2 Conditional variance

V
[
εt | εt−1

]
= V

[(
ω + αε2t−1

) 1
2
et | εt−1

]
(2.32)

= E

[(
ω + αε2t−1

)
e2t | εt−1

]
(2.33)

=
(
ω + αε2t−1

)
E[e2t ] (2.34)

= ω + αε2t−1. (2.35)

5



The variance of the process is therefore given by the law of total variance

V(εt) = E
[
V(εt | εt−1)

]
+ V

(
E[εt | εt−1]

)
(2.36)

= E
[
ω + αε2t−1

]
(2.37)

= ω + αE[ε2t−1] (2.38)

= ω + α
(

V(εt) +
(
E[εt]

)2)
(2.39)

= ω + αV(εt) (2.40)

V(εt) =
ω

1− α
. (2.41)

For this process, the covariance

Cov(εt, εt−k) = 0 ∀k > 0. (2.42)

2.3 GARCH(1,1) process

This process depends on both the previous innovation and the previous conditional variance.
It’s defined as

εt = $et, (2.43)

$ =
(
ω + αε2t−1 + β$2

t−1

) 1
2
, (2.44)

et ∼ N (0, 1), independent of εt−1 and $t−1, t = 1, 2, . . . (2.45)

Using the definition 1, we can show the specifications of the GARCH(1,1). We calculate, as in
the previous section, the statistics

E[εt] = E

[(
ω + αε2t−1 + β$2

t−1

) 1
2
et

]
(2.46)

= E

[(
ω + αε2t−1 + β$2

t−1

) 1
2

]
E [et] (2.47)

= 0. (2.48)

The conditional expectation of the GARCH(1,1) process is given by

E[εt | εt−1] = E

[(
ω + αε2t−1 + β$2

t−1

) 1
2
et | εt−1

]
(2.49)

= E

[(
ω + αε2t−1 + β$2

t−1

) 1
2

]
E
[
et | εt−1

]
(2.50)

= 0, (2.51)

and the conditional variance

V(εt | εt−1) = E
[
ε2t | εt−1

]
(2.52)

= E

[(
ω + αε2t−1 + β$2

t−1

)
e2t | εt−1

]
(2.53)

= E

[(
ω + αε2t−1 + β$2

t−1

)
| εt−1

]
E
[
e2t | εt−1

]
(2.54)

= ω + αε2t−1 + β$2
t−1. (2.55)
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The law of total variance yields

V(εt) = E[$2] + V(0) (2.56)

= E
[
ω + αε2t−1 + β$2

t−1

]
(2.57)

= ω + αE
[
ε2t−1

]
+ β E

[
$2
t−1

]
(2.58)

= ω + αV(εt) + βV(εt) (2.59)

V(εt) =
ω

1− α− β
. (2.60)

This variance is positive and finite for ω > 0 and α+ β < 1.

2.4 AR(1)-GARCH(1,1)

A financial time series can be of this form which is function of the previous return and the
previous volatility or innovation. Our data generation process will be of the form:

Xt = αt + ut (2.61)

αt = µ+ δXt−1 (2.62)

ut = $et (2.63)

$t =
(
ω + αX2

t−1 + β$2
t−1

) 1
2

(2.64)

et ∼ N (0, 1), independent of Xt−1. (2.65)

Here, we also calculate the statistics using the definition 1 in order to show the conditions over
the coefficients that ascertain the stationarity of the process. The first moment is given by

E[Xt] = E

[
µ+ δXt−1 +

(
ω + αu2t−1 + β$2

t−1

) 1
2
et

]
(2.66)

= µ+ δ E[Xt−1] + E

[(
ω + αu2t−1 + β$2

t−1

) 1
2

]
E[et] (2.67)

= µ+ δ E[Xt] (2.68)

E[Xt] =
µ

1− δ
. (2.69)

2.4.1 Conditional expectation

E[Xt | Xt−1] = µ+ δXt−1 + E

[(
ω + αu2t−1 + β$2

t−1

) 1
2
et | Xt−1

]
(2.70)

= µ+ δXt−1. (2.71)

2.4.2 Conditional variance

V(Xt | Xt−1) = E[X2
t | Xt−1]− (µ+ δXt−1)

2 (2.72)

= E

[(
ω + (αe2t−1 + β)$2

t−1

)
| Xt−1

]
× E[e2t | Xt−1] (2.73)

= ω + (α+ β) E
[
$2
t−1 | Xt−1

]
(2.74)
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2.4.3 Law of total variance

V(Xt) = E
[
V(Xt | Xt−1)

]
+ V

(
E[Xt | Xt−1]

)
(2.75)

= E

[
ω + (α+ β) E

[
$2
t−1 | Xt−1

]]
+ V (µ+ δXt−1) (2.76)

= ω + (α+ β) E
[
$2
t−1

]
+ δ2 V(Xt) (2.77)(

1− δ2
)
V [Xt] = ω + (α+ β) E

[
$2
t−1

]
(2.78)

We have

E
[
$2
t

]
= ω + (α+ β) E

[
$2
t−1

]
(2.79)

and for stationary, we’ll assume the moments to be time-independent. That is,

E
[
$2
t

]
=

ω

1− α− β
(2.80)

Finally,

V[X] =
ω(

1− δ2
)

(1− α− β)
(2.81)

which is positive and finite for ω > 0, |δ| < 1 and α+ β < 1.

3 Simulation of AR(1)-ARCH(1) processes

All our estimations will take into account a data generated from an AR(1)-ARCH(1), a process
as in the section 2.4 wherem the GARCH term β = 0. In order to graphically show how the
curves behave in view of the variation of the coefficients satisfying the conditions and which
do not (See Figure 3.1, 3.2, 3.3 and 3.4). The Figure 3.3 and Figure 3.4 show non-stationary
process because the parameters do not satisfy the conditions discussed in the previous section.
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Figure 3.1: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.25, ω = 1, α = 0.35
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Figure 3.2: AR(1)-ARCH(1) process for µ = 0.5, δ = −0.75, ω = 1, α = 0.5
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Figure 3.3: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.95, ω = 1, α = 1.2
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Figure 3.4: AR(1)-ARCH(1) process for µ = 0.5, δ = 1, ω = 1, α = 1
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Now, having a clear information of the parameters that will come into play, we can simulate
a stationary AR(1)-ARCH(1) (see Figure 3.1) process in order to apply our estimations that
are discussed in the following section.

4 Estimation of quantile functions

To obtain the QAR-QARCH model from (1.1), we simply take its τ th conditional quantile and
we obtain:

Qτ (Xt | Xt−1) = ατ (Xt−1) = α(Xt−1) +$(Xt−1)q
e
τ (4.1)

where qeτ = F−1e (τ) is the τ th quantile of {et}. To make the reading less difficult, Xt−1 is
changed to Zt. Note that (4.1) is the estimation of the CVaR (Conditional Value-at-Risk)
discussed in . Now, centering the response variable in (1.1) at its τ th-quantile in (4.1), we get:

Xt − ατ (Zt) = $(Zt) (et − qeτ ) (4.2)

which is equivalent to the quantile autoregressive model:

Xt = ατ (Zt) + ετ , (4.3)

where ετ = $(Zt) (et − qeτ ) is 0 τ -quantile, i.e, Qτ (ετ ) = 0.

We made the following assumptions:

Assumption 1. The kernel function K : Rd−→R is symmetrical, non-negative and bounded
satisfying

∫
K(s)ds = 1 with

∫
Rd sK(s) = 0.

Assumption 2. The process is strong mixing.

The following definition, tells more about a strong mixing process.

Definition 2 (strong mixing). A stationary process Xt with σ-algebras At = {Xj ,−∞ <
j ≤ t} and At = {Xj , t ≤ j <∞}, t = 1, . . . , n, is said to be strong mixing if

α(s) = sup
A∈At, B∈At+s

{∣∣P(A ∩B)− P(A) P(B)
∣∣}−→ 0 as n−→∞

Assumption 3. The (positive) smoothing parameter is such that b→ 0, nb→∞ as n→∞.

Assumption 4. 1. f(x, z) and f(z) exist.

2. for fixed (x, z), 0 < F (x|z) < 1 and f(z) > 0 are continuous in the neighborhood of z
where the estimator is to be estimated.

3. The derivatives F (j)(x | z) = djF (x|z)
dzj

and f (j)(z) = djf(z)
dzj

, for j = 1, 2, exist

4. F (x | z) is a convex function in x for fixed z.

5. The conditional density f(x|z) = dF (x|z)
dx exists and is continuous in the neighborhood of

x

6. f
(
ατ (z) | z

)
> 0 and f

(
$τ (z) | z

)
> 0
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4.1 Non-parametric QAR

Theorem 2. Let γτ (x, µ) = γτ (x − µ) =
(
τ − I(x− µ ≤ 0)

)
(x − µ) and (x, σ) ∈ R2. Then,

γτ satisfies the Lipschitz continuity condition:∣∣γτ (x, σ)− γτ (x, σ′)
∣∣ ≤M ∣∣σ − σ′∣∣

with the Lipschitz constant M = 1 and for all σ, σ′.

Proof of Theorem 2. Similar to the proof of Lemma 3.1 in [? , p .74-75]

Consider the model (4.1) and the assumption made on the innovation ετ . By definition, ετ
is zero τ -quantile meaning

Pr(ετ ≤ 0) = Pr(ετ ≤ 0 | Zt) = τ (4.4)

and using (4.4), we have

Pr(Xt ≤ ατ (Z) | Zt) = E
[
I
(
Xt ≤ ατ (Zt)

)
| Zt
]

= τ (4.5)

which is equivalent to F
(
ατ (Zt) | Zt

)
= τ . The conditional quantile function ατ minimizes

the objective function E
[
γτ (Xt, ατ ) | Zt

]
, i.e.

ατ (z) = arg min
ατ

E
[
γτ (X,ατ ) | Zt = z

]
(4.6)

and is empirically given by

α̂τ (z) = arg min
ατ

1

n

n∑
t=1

Kb(Zt − z)γτ (Xt, ατ ) (4.7)

Let’s denote ϕ̂n,τ = 1
n

∑n
t=1Kb(Zt − z)γτ (Xt, ατ ). The zero of the equation d

dατ
ϕn,τ = 0 is

α̂τ (z) = inf
{
µ : F (µ | z) ≥ τ

}
≡ F̂−1(τ | z) (4.8)

where

F̂ (x | z) =
[
nf̂(z)

]−1 n∑
t=1

Kb(Zt − z)I (Xt ≤ x) (4.9)

Where I(·) is the indicator function which is 1 if the condition X∗t ≤ x∗ holds and 0 otherwise.

4.2 Empirical Conditional Distribution Function and its in-
verse

From the sequence {(Xt, Zt)}1≤t≤n of i.i.d. random variables, divide a span of our data into
non-overlapping bins of the same size z∗1 = min(zt) < z∗2 < · · · < z∗n−1 < z∗N = max(zt), t =
1, 2, . . . , n and compute the kernel matrix K with elements given by

(
kij
)

1≤i≤N
1≤j≤n

= Kb(z
∗
i − Zj) =

1

b
K

(
z∗i − Zj

b

)
(4.10)
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Where K is the kernel density function (KDE) and b is the smoothing parameter. The matrix
of kernels is given by

MK =


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)

 (4.11)

The estimation of the empirical probability density function of Zt is given by

ĝ(z∗i ) =
1

n

n∑
j=1

kij (4.12)

and the matrix expression of ĝ

Mĝ =
1

n
MK1n, 1n = (1, 1, . . . , 1)T ∈ Rn (4.13)

=
1

n


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)




1
1
...
1

 (4.14)

=
1

n


Kb(z

∗
1 − Z1) +Kb(z

∗
1 − Z2) + · · ·+Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) +Kb(z

∗
2 − Z2) + · · ·+Kb(z

∗
2 − Zn)

...
Kb(z

∗
N − Z1) +Kb(z

∗
N − Z2) + · · ·+Kb(z

∗
N − Zn)

 (4.15)

which is a vector of N elements. We also introduce the indicator matrix MI with columns
representing each I(Xt ≤ x) for fixed x (for each column) and t = 1, 2, . . . , n. The product
of the kernel matrix MK and the matrix MI contains all the summations (also seen as joint
probability density function at Xt = x and Zt = z∗).

f̂(x, z∗) =
n∑
t=1

Kb(z
∗ − Zt)I(Xt ≤ x) (4.16)

with matrix form MI for all fixed couple (z∗, x) ∈ R2.

MI =


I(x1 ≤ x1) I(x1 ≤ x2) . . . I(x1 ≤ xn)
I(x2 ≤ x1) I(x2 ≤ x2) . . . I(x2 ≤ xn)

...
I(xn ≤ x1) I(xn ≤ x2) . . . I(xn ≤ xn)

 (4.17)

=


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . 1

 (4.18)
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The elements of MI are 1 where the inequalities are true and 0 otherwise. The matrix of the
joint probability density function in (4.16) is

Mf̂ = MkMI

=


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)

×


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)
I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)

...
I(xn ≤ x1) I(xn ≤ x2) . . . 1



(4.19)

and the one for conditional cumulative distribution functions (CCDF) is given by

(
Fji
)

1≤j≤n
1≤i≤N

=

∑n
t=1 kit · I(Xt ≤ xj)

nĝ(z∗i )
(4.20)

with matrix form

MF̂ = MKMI/ (MK1n×n) (4.21)

=



n∑
t=1

Kb(z
∗
1 − Zt)I(Xt ≤ x1)

n∑
t=1

Kb(z
∗
1 − Zt)

· · ·

n∑
t=1

Kb(z
∗
1 − Zt)I(Xt ≤ xn)

n∑
t=1

Kb(z
∗
1 − Zt)

...
...

...
n∑
t=1

Kb(z
∗
N − Zt)I(Xt ≤ x1)

n∑
t=1

Kb(z
∗
N − Zt)

· · ·

n∑
t=1

Kb(z
∗
N − Zt)I(Xt ≤ xn)

n∑
t=1

Kb(z
∗
N − Zt)



(4.22)

Each element of the (n ×N)-matrix MF̂ is the computation of F̂ (xj | z∗i ). For each row i of

F , 1 ≤ i ≤ N , we choose the minimum of xj ’s that satisfy F̂ (xj | zi) ≥ τ, τ ∈ (0, 1). This
estimates the QAR or F̂−1(τ | z∗). We notice that the number of selected xj ’s will exactly be
the number of bins.

4.3 k Nearest Neighbor (k-NN) prediction

The prediction α̃τ (z) of a future value or any value Zn+1 = z is easy in parametric regression
once we have the estimated coefficients of a model. But in non-parametric regression, this
prediction is somehow impossible. Recent research on this problem suggests methods more or
less feasible for our type of estimation. There is the kNN (k Nearest Neighbor)[? ] method
which consists of finding the k values, z∗1, . . . , z

∗
k close to z. The requirement of this method

is that the estimator ατ is to be smooth [? ][? ]. Unfortunately, the estimation of the QAR
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in (4.7) is not smooth and suffers from boundary issues. Having estimated α̂τ (z∗i ) and the bin
points z∗i , i = 1, . . . , N , thus, α̃τ (z) will be the average of α̂τ (z∗1), . . . , α̂τ (z∗k). In other words,

α̃τ (z) =
1

k

k∑
i=1

α̂τ (z∗i ) (4.23)

This approach is used to predict the values α̃τ (Zt) which is a sequence of n points. The
figure 8.1 represents the prediction for the entire data (for instance, the daily returns) at
τ = 0.25, 0.50, 0.75, 0.9. In order to see if the prediction is accurate, the following error
is calculated (the mean squared error of the difference between α̂τ (z∗i ) and α̃τ (z∗i ) for bins
z∗1 , . . . , z

∗
N )

ẽp =
1

N

N∑
i=1

(
α̂τ (z∗i )− α̃τ (z∗i )

)2
(4.24)

The same prediction applies when we have the non-parametric estimation of the conditional
scale function $̂τ .

4.4 Non-parametric QARCH

Considering that the QAR is already estimated, we have

Qτ

[
γτ
(
Xt − ατ (Zt)

)]
= $(Zt)Qτ

[
γτ (et − qeτ )

]
(4.25)

The ratio of Xt − ατ (Zt) in (4.2) and the left part in (4.25) gives

Xt − ατ (Zt)

Qτ

[
γτ
(
Xt − ατ (Zt)

)] =
et − qeτ

Qτ
[
γτ (et − qeτ )

] (4.26)

This transformation leads to the QAR-QARCH model

Xt = ατ (Zt) +$τ (Zt)ητ (4.27)

where $τ (Zt) = Qτ

[
γτ
(
Xt − ατ (Zt)

)]
and ητ = et−qeτ

Qτ
[
γτ(et−qeτ)

] is zero τ -quantile with unit

scale. This property leads to the expression

Pr
(
γτ (ητ ) ≤ 1

)
= Pr

(
γτ (ητ ) ≤ 1 | Z

)
= τ (4.28)

This is identifiable to (4.5), if Xt and ατ (Zt) are replaced by γτ
(
Xt − ατ (Zt)

)
and $τ (Zt)

respectively. Thus, $τ (Zt) minimizes E

[
γτ

(
γτ
(
Xt, ατ (Zt)

)
, $τ (Zt)

)
| Zt
]
, i.e.

$τ (Zt) = arg min
$τ

E
[
γτ
(
X∗t , $τ

)
| Zt
]

(4.29)

or is empirically given by

$̂τ (Zt) = arg min
$τ

1

n

n∑
t=1

Kb(Zt − z)γτ (X∗t , $τ ) (4.30)
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where X∗t = γτ
(
Xt, ατ (Zt)

)
. Again, if we denote ϕ̂n,τ = 1

n

∑n
t=1Kb(Zt − z)γτ (X∗t , $τ ), then

dϕ̂n,τ
d$τ

= 0 has as solution

$̂τ (z) = inf
{
x∗ ∈ R+

∗ : F̂
(
x∗ | z

)
≥ τ

}
≡ F̂−1(τ | z) (4.31)

with

F̂
(
x∗ | z

)
=
[
nf̂(z)

]−1 n∑
t=1

Kb(Zt − z)I(X∗t ≤ x∗) (4.32)

We prove the consistency of our estimations with the following theorem

Theorem 3. Suppose that the assumptions 1, 2, 3 and 4 hold. Then, α̂τ and $̂τ are asymp-
totically normal in distribution.

Proof of theorem 3. The proof is found in our previous work [? ].

5 Bias reduction

5.1 Outliers detection

Before estimating the conditional quantile function α̂τ , we first did the detection of the far-off
points which are points outside the interval[

Q1 − 3× (Q3 −Q1), Q3 + 3× (Q3 −Q1)
]

where Q1 and Q3 are the first and the third quantiles of the sequence of random variables
Z1, Z2, . . . , Zn.

5.2 Kernel smoother

The idea here is to regress the rough QAR estimation (without outliers) on the bins z∗1 , z
∗
2 , . . . , z

∗
N

using Nadaraya - Watson kernel regression. The resulting smoothed curve is used to predicted
the today’s QAR for Zt’s, t = 1, 2, . . . , n. Figure 5.2 shows the limits of the interval. It
shows also the rough estimation of the QAR without removing the outliers (red curve) and
the predicted smooth curve
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Figure 5.1: Rough (red) and smooth predicted (blue) QAR

6 Accuracy of estimations

In order to show the accuracy of our smooth estimators, we simulated (random) AR(1)-
ARCH(1) process of size m = 250, 500, 1000 with same coefficients µ = 0.5, δ = 0.3, ω =
1, α = 0.35 and et ∼ N (0, 1). The following tables confirm the accuracy of the smooth
estimations.

Table 6.1: MASE for τ = 0.25
n rough α̂0.25 smooth α̂0.25 rough $̂0.25 smooth $̂0.25

250 1.13482 0.03078 0.03457 0.00075
500 0.94149 0.04128 0.04916 0.00075
1000 1.22881 0.00671 0.15645 0.00115

Table 6.2: MASE for τ = 0.50 (median)
n rough α̂0.50 smooth α̂0.50 rough $̂0.50 smooth $̂0.50

250 0.6184 0.01963 0.08938 0.00401
500 1.21301 0.00873 0.3448 0.00526
1000 1.54507 0.0091 0.3595 0.00816

Table 6.3: MASE for τ = 0.75
n rough α̂0.75 smooth α̂0.75 rough $̂0.75 smooth $̂0.75

250 1.88628 0.03351 1.36976 0.0126
500 0.39451 0.02664 0.69214 0.02616
1000 1.28018 0.01356 1.21384 0.02367
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Table 6.4: MASE for τ = 0.90
n rough α̂0.90 smooth α̂0.90 rough $̂0.90 smooth $̂0.90

250 0.66136 0.222 0.62655 0.17793
500 0.99836 0.12574 1.09674 0.27295
1000 1.76097 0.07349 1.47431 0.1794

7 Quantile error

From our previous paper [? ], we showed the asymptotic properties of the conditional scale
function estimate through inversion of the conditional CCDF as in (4.32) with the assumption
that the quantile location shift ατ is zero. The properties for the QAR estimate are the
same given that the two CCDFs in (4.9) and (4.32) differ respectively in the conditional part
I(Xt ≤ x) and I(X∗t ≤ x∗) only. Thus, assuming we have estimated the two components using
the prediction method, the quantile error ητ can be estimate as

η̂τ =
Xt − α̃τ (Zt)

$̃τ (Zt)
(7.1)

and should verify the conditions (4.4) and (4.28). Moreover, if the conditions hold, then the
estimators are accurate. From our simulation, the estimations seem to be accurate for quantile
τ = 0.75 (see Table 7.1).

Table 7.1: Summary of quantile errors
τ Min. 1st Qu. Med Mean 3rd Qu. Max. Pr(ητ ≤ 0) Pr (η∗τ ≤ 1)
0.25 -47.18 0.03 3.00 3.53 6.48 61.04 0.25 0.42
0.50 -16.78 -1.46 0.02 0.17 1.61 22.99 0.50 0.62
0.75 -16.61 -2.86 -1.49 -1.32 0.06 21.53 0.74 0.74
0.90 -16.62 -2.79 -1.95 -1.92 -1.09 12.96 0.89 0.96

where η∗τ = γτ (ητ ).

8 Simulation study

The figure 8.1 represents the superposition of the process and the estimated α̃τ (z) using the
kNN prediction method. In fact, the non-parametric estimation of α̂τ (z) was first carried out
using the smoothed estimator along with the outliers detection using box-plot fences in order to
correct the boundary issue (see [? ]). The comparison between α̂τ (z) and the predicted α̃τ (z)
for bins z is represented by Figure 8.2. Note that the prediction error in (4.24) was evaluated to
10−6 and the Figure 8.2 illustrates it as well. The outliers detection technique and prediction
give less weight to extreme points that are not considered in the first estimation, then are
re-involved in the prediction. This made our estimations less sensitive to the boundaries (see
Figure 8.2).
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Figure 8.1: Predicted conditional quantile returns
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Figure 8.2: Graphical superposition of α̃τ (z) [red points] and α̂τ (z) [blue curve]
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9 Conclusion

In this paper, the problem of estimating the conditional scale function when the autoregressive
part is not zero is carried out using Nadaraya-Watson kernel estimation and Quantile Autore-
gression method. The rough estimation of the QAR feels the boundaries and that increased
the bias of the estimates. We were able to correct the boundary issue and showed the accuracy
of our estimations. With the use of the k-NN method, it was possible to calculate the quantile
error for each proportion τ ∈ (0, 1). The next step will the application of our approach on real
data.
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