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Abstract

This paper is about the estimation of the Smoothed Conditional Scale Function for time
series, under Conditional Heteroscedastic Innovations, by imitating the kernel smoothing in
non-parametric Autoregressive-Generalized Autoregressive scheme. We based our estimation
on the methodology of M -estimators for conditional quantile regression. The proof of the
asymptotic properties of the Conditional Scale Function estimator for this type of process is
given and its consistency shown.
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1 Introduction

Consider a Quantile Autoregressive model,

Xt = ατ (Zt) + ut, t = 1, 2, . . . (1.1)

where ατ (Zt) is the τ th Conditional Quantile Function of Xt given Zt and the innovation ut
are assumed to be independent and identically distributed with zero τ th quantile and constant
scale function, see [19]. A kernel estimator of ατ (Zt) has been determined and its consistency
shown, [8]. A bootstrap kernel estimator of ατ (Zt) was determined and shown to be consistent,
[22]. This research will extend [22] by assuming that the innovations follow Quantile Autore-
gressive Conditional Heteroscedastic process similar to Autoregressive-Quantile Autoregressive
Conditional Heteroscedastic process proposed in [19]:

Xt = ατ (Zt) +ϖτ (Zt)εt, t = 1, 2, . . . (1.2)

where ατ (Zt) is the conditional θ-quantile function of Xt given Zt; ϖτ (Zt) is a conditional
scale function at τ -level and εt is i.i.d. error with zero τ -quantile and unit scale. The function
ϖτ (Zt) can be expressed as

ϖτ (Zt) = λϖ(Zt) (1.3)
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where ϖ(Zt) is the so called volatility found in [1] and [26] which are papers of reference
on Engle’s ARCH models among many others and λ is a positive constant depending on τ
[see [21]]. An example of this kind of function is Autoregressive - Generalized Autoregressive
Conditional Heteroscedastic AR(1)-GARCH(1,1)),

Xt = αt +ϖtet, t = 1, 2, . . . , (1.4)

where αt = µ + δXt−1, ϖt =
√

w + αX2
t−1 + βϖ2

t−1, µ ∈ (−∞,∞), δ ∈ (0, 1), β ≥ 0, α >

0, w > 0 and et ∼ i.i.d. with 0 mean and variance 1. Note that αt may also be an ARMA (see
[30]).

Considering other financial time series models, the model (1.1) can be seen as a robust gener-
alization of AR-ARCH- models, introduced in [30], and their non-parametric generalizations
reviewed by [13]. For instance, consider a financial time series model of AR(p)-ARCH(p)-type,

Xt = α(Zt) +ϖ(Zt)et, t = 1, 2, . . . (1.5)

Where Zt = (Xt−1, Xt−2, · · · , Xt−p), α(·) and ϖ(·) arbitrary functions.

The focus of this paper is to determine a smoothed estimator of the conditional scale function
(CSF) and its asymptotic properties. This study is essential since volatility is inherent in many
areas, for example, Hydrology, Finance, Weather, etc. The volatility needs to be estimated
robustly even when the moments of distribution do not exist.

A partitioned stationary α-mixed time series (Xt, Zt), where the Xt ∈ R and the variate Zt ∈
Rd are respectively At-measurable and At−1-measurable is considered. For some τ ∈ (0, 1), the
conditional τ -quantile of Xt given the past Ft−1 assumed to be determined by Zt is estimated.
For simplicity, we assume that Zt = Xt−1 ∈ R throughout the rest of the discussion.

We derive a smoothed non-parametric estimator of ϖτ (x) and show its consistency, asymptotic
normality and uniform convergence using standard estimate of Nadaraya (1964)-Watson (1964)
type. This estimate is obtained from the estimate of the conditional scale function in [20] which
is a type of estimator that has some disadvantages of not being adaptive and having some
boundary effects but can be fixed by well-known techniques ([11]). It’s though a constrained
estimator in (0,1) and a monotonically increasing function. This is very important to our
estimation of the conditional distribution function and its inverse.

2 Methods and estimations

Let f(z) and f(x, z), denote the probability density function (pdf) of Xt and the joint pdf of
(Xt, Zt). The dependence between the exogenous Xt and the endogenous variables is described
by the following conditional probability density function (CPDF)

f(x|z) = f(x, z)

f(x)
(2.1)

and the conditional cumulative distribution function (CCDF)

F (x|z) =
∫ x

−∞
f(s|z)ds = P (X ≤ x|Zt = z) = E

[
I{Xt≤x} | Zt = z

]
(2.2)

The estimation of the conditional scale function is derived through the CCDF. However, the
following assumptions and definitions are necessary.

2



Assumption 2.1. (i) f(x, z) and f(z) exist.

(ii) for fixed (x, z), 0 < F (x|z) < 1 and f(z) > 0 are continuous in the neighborhood of z
where the estimator is to be estimated.

(iii) The derivatives F (j)(x) =
djF (x|z)

dzj
and f (j)(z) =

djf(z)

dzj
, for j = 1, 2, exist

(iv) F (x|z) is a convex function in x for fixed z.

(v) The conditional density f(x|z) = dF (x|z)
dx

exists and is continuous in the neighborhood

of x

(vi) f
(
ϖτ (z) | z

)
> 0

Assumption 2.2. The kernel function K : Rd−→R is:

• Symmetrical: K(s) = K(−s) with s ∈ Rd,

• Nonnegative and bounded: For Γ < ∞, 0 < K(s) ≤ Γ, s ∈ Rd.

• Lipschitz: ∃λ > 0,mk < ∞ such that
∣∣K(s)−K(t)

∣∣ ≤ mk|s− t|λ for all s, t ∈ Rd.

• a pdf:

∫
K(s)ds = 1 with

∫
Rd

sK(s) = 0.

Assumption 2.3. The process
{
(Xt, Zt)

}
is strong mixing with α(s) = o

(
s−2−δ

)
, δ > 0.

Assumption 2.4. The sequence {bn}n∈N of the smoothing parameters is such that bn−→ 0,
nbpn−→∞ as n → ∞ and bn > 0.

Definition 2.1 (strong mixing). Let Xt = {. . . , Xt−1, Xt, Xt+1, . . .} be a stationary time
series endowed with σ-algebras At = {Xj ,−∞ < j ≤ t} and At = {Xj , t ≤ j < ∞}. Define
α(s) as

α(s) = sup
A∈At, B∈At+s

{∣∣P(A ∩B)− P(A) P(B)
∣∣}

If α(s)−→ 0 as s−→∞, then the process is strong mixing.

The results in this section are about the case when the Autoregressive part of the model
(1.4), i.e, αt,τ = ατ (z) = 0 for any τ ∈ (0, 1). We therefore consider the model

Xt = ϖτ (Zt)εt, t = 1, 2, . . . (2.3)

Define the check-function as

γτ (X,µ) = γτ (X − µ) =
(
τ − I{X−µ≤0}

)
(X − µ) (2.4)

Here, I{} is the indicator function. Therefore, γτ is a piece-wise monotone increasing function.
γτ (·, ·) is a function of any real random variable X with distribution function FX(x) = P (X ≤
x) = E I{X≤x}, and a real value µ ∈ R , is the asymmetric absolute value function whose
amount of asymmetry depends on τ , see [18]. In case where Xt is symmetric and τ = 1/2,
then we have 2γτ (Xt, µ) is an absolute value function and ϖ0.5(Zt) is the conditional median
absolute deviation (CMAD) of Xt . When α became 0 in model (1.5), we have a purely
heteroscedastic ARCH model introduced in [7] and ατ (Zt) for τ > 0.5, in this particular case,
can be seen as a conditional scale function at τ -level.

The check-function in (2.4) is Lipschitz continuous by the following theorem.
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Theorem 2.1. Let γτ be defined as in (2.4) and (x, σ) ∈ R2. Then, γτ satisfies the Lipschitz
continuity condition: ∣∣γτ (x, σ)− γτ (x, σ

′)
∣∣ ≤ M

∣∣σ − σ′∣∣
with the Lipschitz constant M = 1 and for all σ, σ′.

Proof of Theorem 2.2. See the proof of Lemma 3.1 in [19, p .74-75]

By the next theorem we show clearly why the errors {εt} in model (1.2) are assumed to be
zero τ -quantile and unit scale

Theorem 2.2. Consider the model (1.5) and the so-called check function in (2.4), then for
ϖτ (Zt) ∈ R∗

+,

εt =
Xt − ατ (Zt)

ϖτ (Zt)
(2.5)

is zero τ -quantile and unit scale. And the following equations are verifiable

P
(
Xt ≤ ατ (Zt)) | Zt

)
= τ and (2.6)

P
(
γτ
(
Xt, ατ (Zt)

)
≤ ϖτ (Zt) | Zt

)
= τ (2.7)

Proof of Theorem 2.2. The τ th-quantile operator is

Qτ (Yt) = inf
{
µ ∈ R : P(Yt ≤ µ | Zt) ≥ τ

}
(2.8)

with well-defined properties in [19, p .9-10]. From the model (1.5), the conditional τ -quantile
of Xt is

qτ (Zt) = Qτ (Xt) = α(Zt) +ϖ(Zt)q
e
τ (2.9)

Where qeτ is the τ -quantiles of et. Then, using model (1.5) and the equation (2.9), we get

Xt − qτ (Zt) = ϖ(Zt) (et − qeτ ) (2.10)

and
γτ
(
Xt, qτ (Zt)

)
= ϖ(Zt)γτ (et, q

e
τ ) . (2.11)

and the τ th-quantile of (2.11) is

Qτ

(
γτ
(
Xt, qτ (Zt)

))
= ϖ(Zt)Qτ

(
γτ (et, q

e
τ )
)
= ϖ(Zt)Q

e
τ (2.12)

where Qe
τ is the τ -quantile of γτ (et, q

e
τ ). Note that from (2.10), Qτ

(
Xt − qτ (Zt)

)
= 0. The

quotient
Xt − ατ (Zt)

Qτ

(
γτ
(
Xt, ατ (Zt)

)) =
et − qeτ
Qe

τ

(2.13)

is zero τ -quantile and unit scale and can be seen as model (1.2) if εt = (et − qeτ )/Q
e
τ , ατ (Zt) =

qτ (Zt) and ϖτ (Zt) = Qτ

(
γτ
(
Xt, ατ (Zt)

))
.

Now, assuming that εt (independent of Zt) in model (1.2) is zero τ -quantile, this is equivalent
to write

Pr (εt ≤ 0) = Pr
(
εt ≤ 0|Zt

)
= τ

⇒ Pr

(
Xt − ατ (Zt)

ϖτ (Zt)
≤ 0 | Zt

)
= τ
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This prove (2.6) for ϖτ (z) > 0. Also, εt is unit-scale, means

Pr
(
γτ (εt) ≤ 1

)
= τ ⇒ Pr

(
γτ

(
Xt − ατ (Zt)

ϖτ (Zt)

)
≤ 1 | Zt

)
= τ

⇒ Pr
(
γτ
(
Xt − ατ (Zt)

)
≤ ϖτ (Zt) | Zt

)
= τ

Assuming ατ (Zt) = 0, the estimator, ϖ̂τ (Zt) of the conditional scale function ϖτ (Zt), is
obtained through the minimization of the objective function

φ(z,ϖ) = E
[
γτ (γτ (Xt), ϖ) | Zt = z

]
(2.14)

Thus, the conditional scale function may be obtained by minimizing φ(z,ϖ) with respect to
ϖ, i.e,

ϖτ (z) = argmin
ϖ∈R+

φ(z,ϖ) (2.15)

and
ϖ̂τ (z) = inf

{
µ ∈ R∗

+ : F (µ|z) ≥ τ
}
≡ F−1(τ | z) (2.16)

The kernel estimator of (2.15) at Zt = z is given by

ϖ̂τ (z) = argmin
ϖ∈R+

φ̂n(z,ϖ) (2.17)

We can express the estimate of φ(z,ϖ) in the random design as it was developed in [14]. Let
Y ∗
t = γτ (γτ (Xt), ϖ) be a non-negative function of Xt and Y ∗ = (Y ∗

1 , Y
∗
2 , . . . , Y

∗
n ) a random

vector in R∗
+ = (0,∞), t = 1, 2, . . . , n. In the random design, the conditional expectation

(2.14) can be rewritten as follow

φ(z,ϖ) = E
[
Y ∗ | Zt = z

]
=

∫
y∗f(y∗ | z)dy∗ =

∫
y∗

f(y∗, z)

f(z)
dy∗ (2.18)

Where f(y∗ | z) represents for the conditional pdf of Y ∗
t = y∗ given Zt = z, f(y∗, z) is the

joint pdf of the two random variables Y ∗ and Z and f(z) the pdf of Zt = z. Using the [23]

and [29] with Kb(u) = b−1K
(
ub−1

)
, a 1-dimensional rescaled kernel with bandwidth b > 0,

we have the following estimates of f(y∗, z) and f(z).

f̂(y∗, z) =
1

n

n∑
t=1

Kbz(Zt − z)Kby∗ (y
∗ − Y ∗

t )

f̂(z) =
1

n

n∑
t=1

Kbz(Zt − z)

(2.19)

From the estimations above, φ̂(z,ϖ) the estimate of φ(z,ϖ), is

φ̂n(z,ϖ) =

∫
y∗
∑n

t=1Kbz(Zt − z)Kby∗ (y
∗ − Y ∗

t )∑n
t=1Kbz(Zt − z)

dy∗

=

∑n
t=1Kbz(Zt − z)

∫
y∗Kby∗ (y

∗ − Y ∗
t )dy

∗∑n
t=1Kbz(Zt − z)

=

∑n
t=1Kbz(Zt − z)

∫ [
(y∗ − Y ∗

t ) + Y ∗
t

]
Kby∗ (y

∗ − Y ∗
t )dy

∗∑n
t=1Kbz(Zt − z)

(2.20)
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and considering the regularity conditions of Kb in Assumption 2.2 and also the fact that
d(y∗ − Y ∗

t ) = dy∗, Y ∗
t ∈ R+, we have

φ̂n(z,ϖ) =

∑n
t=1Kbz(Zt − z)Y ∗

t∑n
t=1Kbz(Zt − z)

= n−1
n∑

t=1

Kbz(Zt − z)Y ∗
t /f̂(z) (2.21)

where ĝ(z) is the estimate of the marginal pdf of Zt at point z and Y ∗ can be rewritten as

Y ∗
t =

[
Xt

(
τ − I{Xt≤0}

)
−ϖ

](
τ − I{Xt(τ−I{Xt≤0})≤ϖ}

)
(2.22)

and the derivative of φ̂n(z,ϖ) w.r.t ϖ is

dφ̂n(z,ϖ)

dϖ
=
(
nf̂(z)

)−1
n∑

t=1

Kbz(Zt − z)

(
I{Xt(τ−I{Xt≤0})≤ϖ} − τ

)
(2.23)

The minimizer of (2.21) is obtained from dφ̂n(z,ϖ)
dϖ = 0. This leads to the following equation(

nf̂(z)
)−1

n∑
t=1

Kbz(Zt − z)
(
I{X∗

t ≤ϖ}

)
= τ (2.24)

where
X∗

t = Xt(τ − I{Xt≤0}) ∈ R∗
+, (2.25)

for all Xt ∈ R, t = 1, 2, . . . Note that Y ∗
t = I{X∗

t ≤ϖ} in (2.18). The left part of the equation
(2.24) is a (unsmoothed) conditional cumulative distribution function (CCDF),

F̂ (x∗ | z) =
(
nf̂(z)

)−1
n∑

t=1

Kbz(Zt − z)
(
I{X∗

t ≤x∗}

)
, (2.26)

that needs to be estimated and our estimator is therefore

ϖ̂τ (z) = inf
{
x∗ ∈ R+ : F̂ (x∗ | z) ≥ τ

}
≡ F̂−1(τ | z) (2.27)

which is equivalent to F̂
(
ϖ̂(z) | z

)
= τ .

An algorithm to estimating F̂ (x∗ | z) is proposed in the following section. This estimator
suffers from the problem of boundary effects as we can see it on figure 4.2 due to outliers. We
obtain unsmoothed curves of the CCDF because of the smoothness is only in the Z direction.
A method proposed by [12] to smooth in the y direction is adopted here. The form of Smoothed
Conditional Distribution Estimator is

F̃ (x∗ | z) =
(
nf̂(z)

)−1
n∑

t=1

Kh(z − Zt)G

(
x∗ −X∗

t

h0

)
(2.28)

where G(·) is an integrated kernel with the smoothing parameter h0 in the X∗ direction. This
estimate is smooth rather than the NW which is a jump function in y. To deal with bound-
ary effects, one may think of the Weighted Nadaraya-Watson (WNW) estimate of the CDF
discussed in [5], [11], Steikert [28, p. 3–18] among others. The WNW estimator’s expression is

F̃WNW (x∗ | z) =
∑n

t=1 pt(z, λ)Kbz(Zt − z)I{X∗
t ≤x∗}∑n

t=1 pt(z, λ)Kbz(Zt − z)
(2.29)

with conditions
∑n

t=1 pt(z, λ) = 1 and . Lambda is determined using the Newton-Raphson
iteration. Smoothing the CDF does not smooth the estimator in (2.27).
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2.1 Algorithm to estimate the CCDF

The denominator is easy to compute as the estimator of the probability density function of Z
at point z. Below, we give an algorithm to determine F̂n(x

∗ | z),
1. Obtain X∗

t , t = 1, 2, . . ., by passing Xt through the check-function defined in (2.4)

2. Check if each x∗t+1 is less than or equal to each observation of the whole sequence x∗ =
(x∗1, x

∗
2, . . .) ∈ Rn+1. The result determines I{x∗

t≤x} which can be expressed in (0, 1)-
matrix of order n×N . N is the number of bins.

3. Construct z∗1 = min(Z) < z∗2 < · · · < z∗N = max(Z) from the sequence of i.i.d random
variables Z1, Z2, . . . , Zn with observations z1, z2, . . . , zn. N is the number of z∗i from
which the probability density function (pdf) of Zt is to be estimated.

4. Determine the matrix of kernels K which is

K =


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)


The row sums of K over n, give the estimator of the pdf of Zt at z

∗
i , ĝ(z

∗
i ), i = 1, 2, . . . , N .

We obtain the matrix of weights W by multiplying K by the inverse of KIn, where In is
a vector of n ones. Note that the row sums of W are 1.

Let M be the (0, 1)-matrix from 2. The estimator of the Conditional Cumulative Distri-
bution Function (CCDF) is

F̂ (x∗ | z∗) = WM = KM (KIn)−1

5. For each row of F̂ (· | ·), find the smallest x∗ such that F̂ (x∗ | z∗) ≥ τ, τ ∈ (0, 1).

6. The quantiles ϖ̂τ (z) are the x
∗’s which satisfy (2.27). This gives an unsmoothed estimator

curve with bad shape at boundaries (see figure 4.2)

2.2 Nadaraya-Watson smoothing method

We can make ϖ̂τ (z) smooth by using NW regression1. This will provide a smoothed curve at
each level τ ∈ (0, 1). We can write the regression equation as

Yt = ϖτ,s(Zt) + ηt (2.30)

with Yt = ϖτ (Zt), ϖτ,s(x) = E[ϖτ (z)|Zt = z] and the errors {ηi} satisfy E[ηi] = 0, V(ηi) = σ2
η

and Cov(ηi) = 0 for i ̸= j. Note that ϖτ,s(x) can be derived using joint pdf f(y, z) as

ϖτ,s(z) = E[Y |Z = z] =

∫
y
f(y, z)

f(z)
dy (2.31)

where f(y, z) and f(z) can be estimated as in (2.19).

1One can also use LOWESS (LOcally WEighted Scatter-plot Smoother) regression introduced by [4] to smooth
the estimator in (2.27) and which solves the problem of boundary effects.
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We can perform some transformations on (2.31) in order to show that it’s actually better that
the unsmoothed one. By assumption 2.1 (iv) and the fact that F

(
ϖτ (z) | z

)
= τ , we have

F
(
ϖτ,s(Zt) | z

)
= F

(
E[ϖτ (z)|Zt = z] | z

)
≤ E

[
F
(
ϖτ (z) | z

)
|Zt = z

]
= F

(
ϖτ (Zt) | z

)
= τ

We’ve have used the Jensen’s theorem for conditional expectation found in [3]. ϖτ,s(Zt)
is also element of the set in which the unsmoothed estimator belongs. This means that
F
(
ϖτ,s(Zt) | z

)
≥ τ . The estimator is therefore, given by

ϖ̂τ,s(z) =

∑n
t=1Kb(Zt − z)yt∑n
t=1Kb(Zt − z)

=

∑n
t=1Kb(Zt − z)ϖτ (Zt)∑n

t=1Kb(Zt − z)
(2.32)

2.2.1 Asymptotic properties

To show the asymptotic properties of our estimator, we compute its expectation and variance.
Assuming the data (Yt, Zt) is i.i.d, the expectation of the numerator is given by

E
[
Kb(Zt − z)Yt

]
=

∫ ∫
v

b
K

(
u− z

b

)
f(u, v)dudv

=

∫ ∫
vK(s)f(v|z + sb)f(z + sb)dsdv

=

∫
K(s)f(z + sb)

(∫
vf(v|z = sb)dv

)
ds

=

∫
K(s)f(z + sb)ϖτ,s(z + sh)ds

We assume that the first and the second derivatives of ϖτ,s(z) at point Zt = z exist. That is,
by the Taylor’s expansion of f(z + sb) and ϖτ,s(z + sh), we get

E
[
Kb(Zt − z)Yt

]
= ϖτ,s(z)f(z) +

1

2
b2µ2(K)

(
f(z)ϖ(2)

τ,s(z) + f (1)(z)ϖ(1)
τ,s(z) + f (2)(z)ϖτ,s(z)

)
+ o(h3)

(2.33)

Similarly, the expectation of the numerator is

E
[
Kb(Zt − z)

]
= f(z) +

1

2
b2µ2(K)f (2)(z) +O(h2). (2.34)

For b2 small enough,

(
1 +

1

2
b2µ2(K)

f (2)(z)

f(z)

)−1

≈ 1− 1

2
b2µ2(K)

f (2)(z)

f(z)
. Thus,

E
[
ϖ̂τ,s(z)

]
≈ ϖτ,s(z) +

1

2
b2µ2(K)

(
ϖ(2)

τ,s(z) + 2
f (1)(z)

f(z)
ϖ(1)

τ,s(z)

)
(2.35)
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The variance of the numerator, say V (N), is

V

 1

n

n∑
t=1

Kb(Zt − z)Yt

 =
1

nb2
V

(
K

(
Zt − z

b

)
Yt

)

=
1

nb2

E

[
K2

(
Zt − z

b

)
y2t

]
−

E

[
K

(
Zt − z

b

)
Yt

]2


≈ 1

nb

∫∫
v2K2(s)f(v|z + sb)f(z + sb)dsdv − o

(
1

n

)
=

1

nb

∫
K2(s)f(z + sb)

(∫
v2f(v|z + sb)dv

)
ds− o

(
1

n

)
≈ 1

nb
R(K)f(z)

[
σ2
η +ϖ2

τ,s(z)
]

Note that

∫
v2f(v|z + sb)ds ≈ E[Y 2

t |Zt = z]. Similarly, the variance of the denominator,

V(D), is V

 1

n

n∑
t=1

Kb(Zt − z)

 ≈ 1

nb
f(z)R(K).

The covariance of the numerator and the denominator of the estimator in (2.32) is given by

Cov(N,D) = Cov

 1

nb

n∑
t=1

K

(
Zt − z

b

)
Yt,

1

nb

n∑
t=1

K

(
Zt − z

b

)
=

1

nb2
Cov

(
K

(
Zt − z

b

)
Yt,K

(
Zt − z

b

))

=
1

nb2

E

[
K2

(
Zt − z

b

)
Yt

]
− E

[
K

(
Zt − z

b

)
Yt

]
E

[
K

(
Zt − z

b

)]
≈ 1

nb
R(K)f(z)ϖτ,s(z)− o

(
1

n

)
The variance of the estimator in (2.32) is the variance of a ratio of correlated variables that
can be calculated using the approximation found in [25]

V

(
N

D

)
≈
(
E[N ]

E[D]

)2
 V(N)(

E[N ]
)2 +

V(D)(
E[D]

)2 − 2Cov(N,D)

E[N ] E[D]

 (2.36)

=
R(K)σ2

η

nbf(z)
(2.37)

The Central Limit Theorem (CLT) yields

√
nb
(
ϖ̂τ,s(z)−ϖτ,s(z)− Bias

(
ϖ̂τ,s(z)

)) D−→N

(
0,

R(K)σ2
η

f(z)

)
(2.38)
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2.3 Asymptotic normality of QARCH

The CCDF in (2.26) can be written in the form of an arithmetic mean of a random variable
L:

F̂ (x∗|z) = 1

n

n∑
t=1

Lt with Lt =
Kbz(Zt − z)I{X∗

t ≤x∗}
1
n

∑n
t=1Kbz(Zt − z)

(2.39)

with and the approximation of the expectation of L is

E [Lt] ≈
E
[
Kbz(Zt − z)I{X∗

t ≤x∗}

]
E
[
1
n

∑n
t=1Kbz(Zt − z)

] =
E[N ]

E[D]
(2.40)

[see [25]]. Using the i.i.d assumption over the data, the numerator is

E[N ] =
1

bz
E

[
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]

=
1

bz

∫ ∫ x∗

−∞
K

(
u− z

bz

)
f(u, v)dudv

=

∫
F (x∗ | z + sh)K(s)f(z + sh)ds

(2.41)

We have used the change of variables s = (u− z)/bz, the definition of the conditional density
function turned into f(z+ sbz, v) = f(v | z+ sh)f(z+ sbz) and Fubuni’s theorem for multiple
integrals. Taylor series expansions of F (v | z + sh) and f(z + sh)2, yield

E[N ] =f(z)F (x∗ | z) + b2zµ2(K)

[
f (1)(z)F (1)(x∗ | z) + 1

2
f (2)(z)F (x∗ | z)+

1

2
f(z)F (2)(x∗ | z) + o(b2z)

] (2.42)

and for the denominator, we have

E [D] = f(z) +
1

2
b2zµ2(K)f (2)(z) + o(b2z) (2.43)

Thus,

E [Lt]

≈

f(z)

F (x∗ | z) + b2zµ2(K)

(
f (1)(z)

f(z)
F (1)(x∗ | z) + 1

2

f (2)(z)

f(z)
F (x∗ | z) + 1

2
F (2)(x∗ | z)

)
f(z)

(
1 + 1

2b
2
zµ2(K)f

(2)(z)
f(z)

)
= F (x∗ | z) + 1

2
b2zµ2(K)

(
2
f (1)(z)

f(z)
F (1)(x∗ | z) + F (2)(x∗ | z)

)
+ o(b4z)

2For instance, f(z + sh) = f(z) +
f (1)(z)

1!
sbz +

f (2)(z)

2!
(sbz)

2 + o(b2z).
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From the assumption that bz −→ 0, the denominator is approximated to 1 − b2zµ2(K)
f (2)(z)

2f(z)
.

Hence,

Bias
(
F̂ (x∗|z)

)
≈ 1

2
b2zµ2(K)

(
2
f (1)(z)

f(z)
F (1)(x∗ | z) + F (2)(x∗ | z)

)
(2.44)

Some authors assumed that, in this case, the first derivative of the true pdf of Z at point z
can be zero [[12]] as the one for the fixed design and therefore, the base can be

Bias
(
F̂ (x∗|z)

)
≈ 1

2
b2zµ2(K)

(
F (2)(x∗ | z)

)
(2.45)

We have

V(N) = V

(
1

bz
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

)
=

1

b2z
V

(
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

)

=
1

b2z

E

[
K2

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]
−

E

[
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]2


≈ F (x∗|z)f(z)R(K)

bz
− o(1),

V(D) = V

 1

n

n∑
t=1

Kbz(Zt − z)

 =
1

nb2z
V

(
K

(
Zt − z

bz

))

=
1

nb2z

E

[
K2

(
Zt − z

bz

)]
−

E

[
K

(
Zt − z

bz

)]2


≈ f(z)R(K)

nbz
− o

(
1

n

)
,

Cov(N,D) =
1

nb2z
Cov

(
K

(
Zt − z

bz

)
I{X∗

t ≤x∗},K

(
Zt − z

bz

))

≈ 1

nb2z
E

[
K2

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]
− o

(
1

n

)
≈ 1

nbz
F (x∗|z)f(z)R(K)

Using the same approximation in (2.36), the variance of F̂ (x∗|z) is

V (Lt) ≈ F (x∗|z)

[
R(K)

(
1− F (x∗|z)

)
bzf(z)

]
(2.46)

and by the Central Limit Theorem

√
n
(
F̂ (x∗|z)− F (x∗|z)− Bias

(
F (x∗|z)

)) D−→N
(
0,V (Lt)

)
(2.47)

Notice that the expectation of F̂ (x∗|z) is the same as the one of L and the variance is V(Lt)/n.
To show the asymptotic normality of ϖ̂τ (z), we use the following theorem.
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Theorem 2.3 (Delta Method). Suppose F̂ (x∗|z) has the asymptotic normal distribution as

in (2.47). Suppose g(·) is a continuous function that has a derivative g(1)(·) at µ = E
[
F̂ (x∗|z)

]
.

Then √
nbz

(
g
(
F̂ (x∗|z)

)
− g(µ)

)
D−→N

(
0,
[
g(1)(µ)

]2 R(K)
(
1− F (x∗|z)

)
f(z)

)
(2.48)

Proof of Theorem 2.3. The first-order Taylor expansion of g(·) about the point µ, and eval-
uated at the random variable F̂ (x∗|z) is

g
(
F̂ (x∗|z)

)
≈ g(µ) + g(1)(µ)

(
F̂ (x∗|z)− µ

)
and subtracting g(µ) from both sides and multiplying by

√
nb, we get

√
nb

(
g
(
F̂ (x∗|z)

)
− g(µ)

)
≈

√
nbg(1)(µ)

(
F̂ (x∗|z)− µ

)
which tends to N

(
0,
[
g(1)(µ)

]2 R(K)(1−F (x∗|z))
f(z)

)
in distribution.

For g(µ) = F−1(µ|z), thus, g(1)(µ) = 1
f(F−1(µ|z)|z)

. In the next section, it’s shown that

the AMSE (Asymptotic Mean Squared Error) of F̂ (x∗|z) is equal to o
(
b4
)
+ o

(
1/(nb)

)
which

tends to 0 as n−→∞ and b−→ 0. This shows the consistency of the CCDF estimate, i.e,
F̂ (x∗|z)−→p F (x∗|z) and we have

1

f
(
F−1(µ|z) | z

) p−→ 1

f
(
F−1(τ | z) | z

) =
1

f
(
ϖτ (z) | z

)
at points x∗’s that satisfy (2.27). We also have

g(µ) = g

(
F (x∗|z) + Bias

(
F̂ (x∗|z)

))
≈ g

(
F (x∗|z)

)
+Bias

(
F̂ (x∗|z)

)
× g(1)

(
F (x∗|z)

)
= x∗ +

Bias
(
F̂ (x∗|z)

)
f(x∗|z)

(2.49)

for x∗’s satisfying (2.27) and replacing F̂ (ϖτ (z)|z) by F (ϖ̂τ (z)|z) using the uniqueness as-
sumption of ϖτ (z), (2.48) becomes

√
nb
(
ϖ̂τ (z)−ϖτ (z)− Bias

(
ϖ̂τ (z)

)) D−→N

0,
R(K)τ(1− τ)

f(x)
[
f
(
ϖτ (z) | z

)]2
 (2.50)

with Bias
(
ϖ̂τ (z)

)
=

Bias
(
F̂ (ϖτ (z)|z)

)
f(ϖτ (z)|z)

≈ 1

2f(ϖτ (z)|z)
b2zµ2(K)

(
F (2)(ϖτ (z) | z)

)
This result can be used to calculate the optimal bandwidth to compute the good estimation
of the CSF.
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3 Bandwidth selections

3.1 Optimal bandwidth for density estimations

In non-parametric, specially in kernel density estimations, computing a curve of an arbitrary
function from the data without guessing the shape in advance, requires an adequate choice
of the smoothing parameter. The most used method is the ”plug-in” method which consist
of assigning a pilot bandwidth in order to estimate the derivatives of f̂(z). We choose the
bandwidth that minimizes the AMISE (Asymptotic Mean Integrated Squared Error) below.

AMISE
(
f̂(z)

)
=

∫
E

[(
f̂(z)− f(z)

)2]
dz

=

∫
E

[(
f̂(z)− E

[
f̂(z)

]
+Bias

(
f̂(z)

))2
]
dz

=

∫ E

[(
f̂(z)− E

[
f̂(z)

])2
]
+Bias2

(
f̂(z)

) dz

=

∫ {
V
(
f̂(z)

)
+Bias2

(
f̂(z)

)}
dz

=

∫ {
R(K)f(z)

nb
+

1

4
b4µ2

2(K)
[
f (2)(z)

]2}
dz

=
R(K)

nb
+

1

4
b4µ2

2(K)R
(
f (2)(z)

)

(3.1)

The general form of the rth derivatives of the AMISE w.r.t b where studied in [24], considering
that the unknown functions in (3.1) are also functions of the smoothing parameter [citations].

d

dzr
AMISE

(
f̂(z)

)
=

R(K(r))

nb2r+1
+

1

4
b4µ2

2(K)R
(
f (2+r)(z)

)
(3.2)

The optimal smoothing parameter minimizing (3.2) is

b∗ =

[
(2r + 1)R(K(r))

µ2
2(K)R

(
f (2+r)(z)

)]1/(2r+5)

× n−1/(2r+5) (3.3)

Using this result, we came up with the optimal version of optimal bandwidth for CCDF. The
aim of derivation the AMISE in (3.1) is to get the optimal bandwidth for each f (r) directly. As
an example, we consider the Epanechnikov Kernel function in order to compute R(K), µ2(K)
and the efficiency of the kernel function given by

√
µ2(K)R(K). The Epanechnikov’s kernel

function is

K(u) =
3

4
(1− u2)I{|u|≤1} ⇒ R(K) =

3

4

∫ 1

−1

(
1− 2u2 + u4

)
du =

3

5
,

µ2(K) =

∫ 1

−1
u2K(u)du =

∫ 1

−1

(
u2 − u4

)
du =

1

5

and it’s efficiency is measured by

Eff(K) = R(K)
√

µ2(K) =
3

4

√
1

5
= 0.268

which is the smallest of all the other kernel functions.
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Table 3.1: Description of the most used kernel functions

Kernel functions Expressions K(u) r R(K) µ2(K) Eff(K)

Gaussian
1√
2
exp

(
−u2

2

)
IR ∞ 1/2

√
2 1 0.2821

Epanechnikov
3

4
(1− u2)I{|u|≤1} 2 3/5 1/5 0.2683

Uniform
1

2
I{|u|≤1} 0 1/2 1/3 0.2887

Triangular (1−|u|)I{|u|≤1} 1

Triweight
35

32
(1− u2)3I{|u|≤1} 6 2/3 1/6 0.2722

Tricube
70

81
(1−|u|3)3I{|u|≤1} 9 175/247 35/243 0.2689

Biweight
15

16
(1− u2)2I{|u|≤1} 4 5/7 1/7 0.2700

Cosine
π

4
cos

(
π

2
u

)
∞ π2

16
−8+π2

π2 0.2685

3.2 Optimal bandwidth for CCDF

The optimal bandwidth for the CCDF estimate is the one that minimizes the AMSE. It is
shown below that the AMSE is actually the summation of the variance and the bias of the
CCDF estimate. This is useful because when the two are linked. When the variance is big,
the bias also is big and when the variance is small, the bias is small.

AMSE
(
F̂ (x∗|z)

)
= E

[(
F̂ (x∗|z)− F (x∗|z)

)2]
= E

[(
F̂ (x∗|z)− E

[
F̂ (x∗|z)

]
+Bias

(
F̂ (x∗|z)

))2
]

= E

[(
F̂ (x∗|z)− E

[
F̂ (x∗|z)

])2
]
+Bias

(
F̂ (x∗|z)

)
× E

[
F̂ (x∗|z)− E

[
F̂ (x∗|z)

]]
+Bias2

(
F̂ (x∗|z)

)
= V

(
F̂ (x∗|z)

)
+Bias2

(
F̂ (x∗|z)

)
=

R(K)

nbzf(z)
F (x∗|z)

(
1− F (x∗|z)

)
+

b4

4
µ2
2(K)

(
F (2)(x∗ | z)

)2

(3.4)

which is given by (2.46) and (2.45). Therefore,

b∗ = argmin
b>0

AMSE
(
F̂ (x∗|z)

)
(3.5)

and
d

db
AMSE

(
F̂ (x∗|z)

)
= 0 leads to

b∗ =

R(K)F (x∗|z)
(
1− F (x∗|z)

)
µ2
2(K)f(z)

(
F (2)(x∗|z)

)2


1
5

× n− 1
5 (3.6)
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This result is practically possible by estimating the unknown functions which are dependent
of the smoothing parameter. F̂ (2) is the second derivative of the CCDF from (2.26) at point
Zt = z. The estimator of the rth derivatives of (2.26) is:

F̂ (r)(x∗|z) = dr

dzr

n∑
t=1

Wt(z)X{X∗
t ≤x∗} =

n∑
t=1

W
(r)
t (z)X{X∗

t ≤x∗} (3.7)

with

Wt(z) =
K
(
Zt−z

b

)
∑n

t=1K
(
Zt−z

b

) =
K
(
Zt−z

b

)
nbf̂(z)

(3.8)

The function of weights. Thus, the first derivative is given by

W
(1)
t (z) =

1

nb2

K(1)
(
Zt−z

b

)
f̂(z)− bK

(
Zt−z

b

)
f̂ (1)(z)[

f (1)(z)
]2 =

1

nb2
A

B
(3.9)

and the second derivative is also

W
(2)
t (z) =

1

nb2
A(1)B −B(1)A

B2
(3.10)

with A(1) = 1
bK

(2)
(
Zt−z

b

)
f̂(z) − bK

(
Zt−z

b

)
f̂ (2)(z) and B(1) = 2f̂ (1)(z)f̂(z). Note that the

estimation of the CCDF is function of the estimation of the empirical pdf of z. An optimal
bandwidth that minimizes the AMISE of f̂(z) can also be the one that is optimal for the
estimation of the CCDF.

Recent findings on the estimation of an optimal bandwidth for KDE (Kernel Density Esti-
mation) are numerous [[2], [10], [24]] but the estimation of an optimal smoothing parameter
remains irksome due to computation issue and time consuming routines. To do so, we adopt
what had been done by [10] to estimate the rth derivatives of the pdf of Zt with respect to z.
We extend the idea to estimate the first and the second derivative of the CCDF with respect
to z.

4 Simulation study

4.1 Model specification

The ARCH(q) models introduced by [7] is widely used in financial applications. An AR(1)-
ARCH(1) is a mixed model from an AR(d) and GARCH(p,q) for d = 1, p = 1 and q = 0. In
time series, an observation at one time can be correlated with the observations in the previous
time. That is:

(∗) Autoregressive process of order p = 1, 2, . . .

AR(p) : Xt = µ+ δ1Xt−1 + δ2Xt−2 + · · ·+ δpXt−p + et, with εt i.i.d.

(∗) Autoregressive (p)- General Autoregressive Conditional Heteroscedastic pro-
cess of order (d = 1, 2, . . . ; p = 1, 2, . . . ; q = 1, 2, . . .)

AR(d)−GARCH(p, q) : Xt =

p∑
i=1

aiXt−i +ϖtet,
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with et i.i.d. and ϖt =

w +

p∑
i=1

αiu
2
i−1 +

q∑
i=1

βiϖ
2
i−1

1/2

.

The data to be simulated is given by Xt = µ+ δXt−1 +
(
w + αX2

t−1

)1/2
et, t = 1, 2, . . .

4.2 Model simulation

We simulated the data from (1.1) with µ = 0.5, δ = .3, for the AR(1) part, w = 0.1, α = .35,
for the ARCH(1) and et ∼ i.i.d.N (0, 1). The data plot is represented by figure 4.2.

Figure 4.1: Plot of the simulated AR(1)-ARCH(1)

Our algorithm gives the estimation of the conditional scale function which suffers from
boundary effects as it’s seen on figure 4.2. This issue is recurrent while performing Kernel
Density Estimations. The reason is that at the boundaries, g(z) is underestimated because
of the minimal number of points (see [17]). The consistency of our estimator is dependent on
this problem of big variations at the boundaries. This increases the Average Squared Error
(see the next section) between two different estimation from a same model.
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Figure 4.2: Conditional scale function estimate at level 0.75

4.3 Boundary correction

To correct the boundary effects, we use the method of box-plot fences to detect the extreme
values that make the estimation too rough at the ends of the curves of the CCDF. Our
estimator, being the inverse of the CCDF, is naturally rough at extremities. Among the
Kernel functions, only the Gaussian can handle the sparseness of points at boundaries. The
other kernel functions can bring zero at extremities and make the estimation of the CCDF
wrong. What we do is to omit the points that are extremely far from the others by the box-plot
fences method. The method consist of determining the first and the third quantiles from the
Zt’s. Outliers are the points that are located outside the interval

[Q1− 3× (Q3−Q1), Q3 + 3× (Q3−Q1)] (4.1)

where Q1 and Q3 are the first and the third quantiles. The following figure 4.3 is the repre-
sentation of Zt and the transformed response variable X∗

t defined in (2.25) at level τ = 0.75.
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Figure 4.3: Scatter plot and outliers detection

The gray points are outliers from (4.1). We loose some information by deleting them but
we get the possibility to perform the estimation a continuous curve of the CSF. The next
figure is the estimations of the CSF at levels 0.25, 0.5 (median), 0.75 and 0.9. As we can see
on the graphic, despite the optimal bandwidth for the empirical pdf of Zt at point z, we get
unsmoothed curves at high level τ > 0.5.

Figure 4.4: CSF estimations

The curves represent the estimations of the CSF at τ = 0.9, 0.75, 0.50, 0.25 from up to
down. As it’s seen on figure 4.3, the curve are not smooth that why the NW method discussed
in section 2.2 which requires that unsmoothed estimator and the bins z∗1 , z

∗
2 , . . . , z

∗
N . We obtain

the following graphic which combines the two estimations.
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Figure 4.5: Smoothed estimate of the CSF

The next section discusses how precised is our estimation with the optimal bandwidth
selection with the calculation of the MASE(Mean Average Squared Errors).

4.4 Consistency

The consistency of the estimator can be shown with the calculation of the Mean Average
Squared Error providing the quantitative assessment of the accuracy of our estimator. This
is a kind bootstrap method to calculate the average gap between m estimated CSFs. The
formula is

MASE
(
ϖ̂τ (z)

)
=

1

n

n∑
j=1

 1

m

m∑
i=1

(
ϖ̂τ,1(zi)− ϖ̂τ,j(zi)

)2 (4.2)

Table (4.1) shows that the estimator of the CSF is more precised at level τ ≤ 0.55 for both
the smoothed and the LOWESS versions.

5 Conclusion

We’ve derived an estimator for the conditional scale function in an AR(1)-GARCH(1) despite
the heavy-tail of the data, we could deal with the boundary effect and were able to show the
consistency of the estimator through a Monte Carlo study. We assumed that the QAR(1) is
known and is zero and along with the regularity assumptions, we derived the estimator which
can be improved in some next papers. The very next paper will focus on the estimation when
the QAR(1) is unknown.
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Table 4.1: Mean Average Squared Errors (MASE)
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