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Abstract

In this paper, addresses a time-delayed epidemiologic model by experi-
encing the disease; whenever the quarantine will return to the susceptible.
First, the equilibrium and global stabilities of the endemic equilibrium.
Second, Stochastic Stability. Finally, the equilibrium and stability of the
epidemic model with age.
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1 Introduction

This paper considers the following epidemic model with temporary immunity:8>><>>:
_S (t) = �� (�1 + d)S(t)� �S(t)Q(t);
_I (t) = �S(t)Q(t)� (�2 + d) I(t)� e��2�S(t� �)Q(t� �) + �;
_Q (t) = e��2�S(t� �)Q(t� �)� (�3 + d+ �)Q(t);
_R (t) = �Q(t)� (�4 + d)R (t)

(1)

Consider a population of size N(t) at time t, this population is divided into
for subclasses, with N(t) = S(t)+ I(t)+Q(t)+R (t) ; where S(t); I(t); Q(t) and
R (t) denote the sizes of the population susceptible to disease, infectious mem-
bers, quarantine members with the possibility of infection through temporary
immunity, and who were removed from the possibility of infection respectively.
It is assumed that all new borns are susceptible.
The positive constants �1, �2; �3 and �4 represent the death rates of suscep-

tible, infectious, quarantine and removed. Biologically, it is natural to assume
that �1 � min f�2; �3; �4g : The positive constant d is natural mortality rate.
The positive constant  represent the removed rate of infection. The positive
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constant � is the average numbers of contacts infective for S and I. � the posi-
tive constant is the parameter of represent the birth rate (from insidence) of the
population. � the positive constant is the parameter of emigration. The term
e��2�S(t � �)Q(t � �) re�ects the fact that an individual has recovered from
infection and still are alive after infectious period � , where � is the length of
immunity period.
The initial condition of (1) is given as.

S (�) = �1 (�) ; I (�) = �2 (�) ; Q (�) = �3 (�) ; R (�) = �4 (�) ; �� � � � 0;
(2)

Where � = (�1;�2;�3;�4)T 2 C such that S (�) = �1 (�) = �1 (0) � 0; I (�) =
�2 (�) = �2 (0) � 0; Q (�) = �3 (�) = �3 (0) � 0; R (�) = �4 (�) = �4 (0) � 0
Let C denote the Banach space C([�� ; 0];R4) of continuous functions map-

ping the interval [�� ; 0] into R4. With a biological meaning, we further assume
that �i (�) = �i (0) � 0 for i = 1; 2; 3; 4:
Consider the system without the parameter of emigrations. Hence system

(1) can be rewritten as8>><>>:
_S (t) = �� (�1 + d)S(t)� �S(t)Q(t);
_I (t) = �S(t)Q(t)� (�2 + d) I(t)� e��2�S(t� �)Q(t� �);
_Q (t) = e��2�S(t� �)Q(t� �)� (�3 + d+ �)Q(t);
_R (t) = �Q(t)� (�4 + d)R (t)

(3)

With the same initial conditions in (2) ; where �i (�) = �i (0) � 0 for i = 1; 2;
3; 4:
Since _N(t) � �� (�1 + d)N(t); and S(t) + I(t) +Q(t) +R(t) � N(t):
The region 
 is positively invariant set of (3).


 = f(S; I;Q;R) 2 R4+; S + I +Q+R � N <
�

�1 + d
g (4)

This paper deals with the equilibrium and stability of system (3), pre-
cisely the global stability of endemic equilibrium by using Lyapunov functional
technique, under certain conditions on the parameter this means that the disease
persist in population.
Next, we introduce a Brownian motion to system (3) and we transform it

into an Itô stochastic di¤erential equation by using the contact rate a white
noise. Finally study equilibrium of epidemic model with age.

The organization of this paper is as follows, in Section 1, Equilibrium
and stability

of the model. In Section 2, Global asymptotic stability of endemic
equilibrium. In

Section 3, stochastic stability. In Section 4, the model with age
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2 Equilibrium and stability

An equilibrium point of system (3) satis�es8<: �� (�1 + d)S � �SQ = 0;
�SQ� (�2 + d) I � e��2�S(t� �)Q(t� �) = 0;
e��2�S(t� �)Q(t� �)� (�3 + d+ �)Q = 0;

(5)

We calculate the points of equilibrium in the absence and presence of infection.
In the absence of infection I = 0, the system (5) has a disease-free equilib-

rium E0:

E0 =
�
Ŝ; Î; Q̂

�T
=

�
�

�1 + d
; 0; 0

�T
:

The eigenvalues can be determined by solving the characteristic equation of the
linearization of (3) near E0 is

det

0BB@
� (�1 + d)�A 0 � ��

�1+d

0 � (�2 + d)�A
�(��e��2�)

�1+d

0 0 �e��2�

�1+d
� (�3 + d+ �)�A

1CCA = 0

(6)
So the eigenvalues are

A1 = � (�1 + d) ; A2 = � (�2 + d) :

In order for �1; �2; to be negative, it is required that.

�e��2�

�1 + d
< (�3 + d+ �) (7)

Then we de�ne the basic reproduction number of the infection R0 as follows.

R0 =
�e��2�

(�1 + d) (�3 + d+ �)
(8)

In the presence of infection I 6= 0, substituting in the system, 
 also contains
a unique positive, endemic equilibrium E�� = (S

�
� ; I

�
� ; Q

�
� )
T where8><>:

S�� =
�

�1+d
� 1

R0
;

I�� =
R0�1
�2+d

h
�
R0
� (�1+d)(�3+d+�)

�

i
;

Q�� =
�1+d
� (R0 � 1)

(9)

So E�� = (S�� ; I
�
� ; Q

�
� )
T is the unique positive endemic equilibrium point

which exists if R0 > 1:

Theorem 1 The disease-free equilibrium E0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1:

Theorem 2 With R0 > 1; system (3) has a unique non-trivial equilibrium E�� is
locally asymptotically stable.
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3 Global asymptotic stability of endemic equi-
librium

Consider system (3), with introducing the variables,

x(t) = S(t)� S�� ; y(t) = I(t)� I�� ; z(t) = Q(t)�Q�� ; (10)

System (3) is centered at the endemic equilibrium E�� = (S
�
� ; I

�
� ; Q

�
� )
T
; then8<: _x(t) = [� (�1 + d)� �Q�� ]x+ [��S�� ] z;

_y(t) = [(� � e��2� )Q�� ]x+ [� (�2 + d)] y + [(� � e��2� )S�� ] z;
_z(t) = [�e��2�Q�� ]x+ [e

��2�S�� � (�3 + d+ �)] z
(11)

Lemma 3 Let

S (s) = S (0) > 0; I (s) = I (0) � 0 for all s 2 [�� ; 0] and Q (0) > 0:

S(t); I(t) and Q(t) solutions of system (3) are positive for all t > 0:

Proof. For contraduction there exists the �rst time t0; such that S (t0)Q (t0) =
0:

� Assume that S (t0) = 0; then Q (t) � 0 for all t 2 [0; t0]:With Eq 1 in the
system (1) we have

_S (t0) = � > 0:

For S (t0) = 0; S0 > 0; we must have _S (t0) < 0 which is contradiction.

� Assume that I (t0) = 0; then with Eq 2 in the system (1) we have

_I (t0) = �e��2�S(t� �)Q(t� �)

_I (t0) is positive because S(t) and Q(t) solutions of system (1)

are positive for all t > 0:

� For I (t0) = 0; I > 0; we must have _I (t0) < 0 which is contradiction.

� Assume that Q (t0) = 0; then S (t) � 0 for all t 2 [0; t0]: with Eq 3 in the
system (3) we have

_Q (t0) = e��2�S(t� �)Q(t� �);

Q (t0) = 
t0R

t0��
e��2(t0�s)S(s)Q(s)ds:

S (s) > 0; S (s) > 0 for all t 2 [0; t0) : We have 
t0R

t0��
e��2(t0�s)S(s)Q(s)ds >

0; and Q (t0) = 0; which is contradiction.
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Lemma 4 Let

S (s) = S0 > 0; Q (s) = Q0 > 0 for all s 2 [�� ; 0] and Q0 > 0:

Then

S (t) � max
�

�

�1 + d
; S0 + I0 +Q0

�
=M

Proof. We have
N(t) = S(t) + I(t) +Q(t);

For R0 < 1 the solutions S(t); I(t) and Q(t) approach the disease free equi-
librium as t!1:
With Eq 2 in the system (3) we have _I � � (�2 + d) I; hence if �2 + d < 0,

lim
t!1

I(t) = 0;

With Eq 3 in the system (3) we have.

lim
t!1

Q(t) = 0;

With Eq 1 in the system (3) we obtain _S = �� (�1 + d)S:

lim
t!1

S(t) =
�

�1 + d
;

Hence.
lim
t!1

N(t) =
�

�1 + d
:

From lemma1, S(t); I(t) and Q(t) solutions of system (1) are positive.

S(t) � �

�1 + d
; for allt � 0:

Suppose that

N(0) � �

�1 + d
; then N(t) � �

�1 + d

On the contrary
If N(0) > �

�1+d
then N(t) < N(0), and S(t) < N(0) for all t > 0:

Theorem 5 Let S (s) = S0 > 0; Q (s) = Q0 > 0 for all s 2 [�� ; 0] and
Q0 > 0:E

�
� is globally asymptotically stable for all �

� > max

8>><>>:
1
 ln

!M+3!Q�
�

2!(�1+d)

; 1 ln
!M+3!Q�

�

2!(�2+d)+(�2+d)��M
;

1
 ln

Q�
��3!M

2(�3+d+�)��M

9>>=>>;
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Where

M = max

�
�

�1 + d
; S0 + I0 +Q0

�
;

! =
�Q��

�1 + �2 + 2d

Proof. We consider system (3) :
Let us introduce the functional

V (x; y; z) =
1

2
! (x+ y)

2
+
1

2

�
y2 + z2

�
;

The derivative _V (x; y; z) is

_V (x; y; z) = ! (x+ y) ( _x+ _y) + y _y + z _z

= ! (x+ y)
�
(� (�1 + d)� �Q�� )x� �S�� z +

�
� � e��2�

�
Q��x� (�2 + d) y +

�
� � e��2�

�
S�� z

�
+y
��
� � e��2�

�
Q��x� (�2 + d) y +

�
� � e��2�

�
S�� z

�
+

+z
�
�e��2�Q��x+

�
e��2�S�� � (�3 + d+ �)

�
z
�

= �! (�1 + d)x2 � [(! + 1) (�2 + d)] y2 �
�
e��2�S�� � (�3 + d+ �)

�
z2

+ [�Q�� � ! (�1 + d)� ! (�2 + d)]xy + �S�� yz �
�
!Q��e

��2�
�
xx(t� �)

� (! + 1)Q��e��2�yx(t� �) +Q��e��2�zx(t� �)� !S��e��2�xz(t� �)
� (! + 1)S��e��2�yz(t� �) + S��e��2�zz(t� �):

By lemma 2 we have S(t) � M for all t � 0 and ! is an arbitrary real
constant choosing as follows

! =
�Q��

�1 + �2 + 2d

_V (x; y; z) � �! (�1 + d)x2 � [(! + 1) (�2 + d)] y2 � (�3 + d+ �) z2

+�Myz �
�
!Q��e

��2�
�
xx(t� �)� (! + 1)Q��e��2�yx(t� �)

+Q��e
��2�zx(t� �)� !Me��2�xz(t� �)

� (! + 1)Me��2�yz(t� �) +Me��2�zz(t� �):
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Applying Cauchy-Chwartz inequality; we obtain:

_V (x; y; z) � �! (�1 + d)x2 � [(! + 1) (�2 + d)] y2 � (�3 + d+ �) z2

�1
2
!Q��e

��2�
�
x2 + x2(t� �)

�
� 1
2
(! + 1)Q��e

��2�
�
y2 + x2(t� �)

�
+
1

2
Q��e

��2�
�
z2 + x2(t� �)

�
� 1
2
!Me��2�

�
x2 + z2(t� �)

�
�1
2
(! + 1)Me��2�

�
y2 + z2(t� �)

�
+
1

2
Me��2�

�
z2 + z2(t� �)

�
+
1

2
�M

�
y2 + z2

�
;

�
�
�! (�1 + d)�

1

2
!e��2� (M +Q�� )

�
x2

+

�
1

2
�M � (! + 1) (�2 + d)�

1

2
(! + 1) e��2� (M +Q�� )

�
y2

+

�
1

2
�M � (�3 + d+ �) +

1

2
e��2� (M +Q�� )

�
z2

�
�
!Q��e

��2�
�
x2(t� �)�

�
1

2
(3! + 1) Me��2�

�
z2(t� �)

Choose the Lyapunov functional

V (xt; yt; zt) = V (x; y; z)�!Q��e��2�
tR

t��
x2(�)d��1

2
(3! + 1) Me��2�

tR
t��
z2(�)d�
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Then

_V (xt; yt; zt) = _V (x; y; z)� !Q��e��2�x2(t) + !Q��e��2�x2(t� �)

�1
2
(3! + 1) Me��2�z2(t) +

1

2
(3! + 1) Me��2�z2(t� �)

�
�
�! (�1 + d)�

1

2
!e��2� (M +Q�� )

�
x2

+

�
1

2
�M � (! + 1) (�2 + d)�

1

2
(! + 1) e��2� (M +Q�� )

�
y2

+

�
1

2
�M � (�3 + d+ �) +

1

2
e��2� (M +Q�� )

�
z2

�
�
!Q��e

��2�
�
x2 + !Q��e

��2�x2(t� �)

�
�
1

2
(3! + 1) Me��2�

�
z2 +

1

2
(3! + 1) Me��2�z2(t� �)

�
�
�! (�1 + d)�

1

2
!e��2� (M +Q�� )

�
x2

+

�
1

2
�M � (! + 1) (�2 + d)�

1

2
(! + 1) e��2� (M +Q�� )

�
y2

+

�
1

2
�M � (�3 + d+ �) +

1

2
e��2� (M +Q�� )

�
z2

�
�
!Q��e

��2�
�
x2 �

�
1

2
(3! + 1) Me��2�

�
z2

Therefore

_V (xt; yt; zt) � �
�
! (�1 + d) +

1

2
!e��2� (M + 3Q�� )

�
x2

�
�
(! + 1) (�2 + d)�

1

2
�M +

1

2
(! + 1) e��2� (M +Q�� )

�
y2

�
�
(�3 + d)�

1

2
�M � 1

2
 (Q�� +M) + !Me

��2�
�
z2:

While the above inequality is always negative provided that

� > max

8><>:
1
 ln

M+3Q�
�

2(�1+d)
;

1
 ln

(!+1)(M+Q�
� )

�M�2(!+1)(�2+d)
;

1
 ln

23!M
(M+Q�

� )+�M�2(�3+d)

9>=>;
With application of the Lyapunove-LaSalle type theorem in [10]

lim
t!1

x(t) = 0; lim
t!1

y(t) = 0; lim
t!1

z(t) = 0:
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4 Stochastic Stability

We limit ourselves here to perturbing only the contact rate so we replace � by
� + �W (t),
whereW (t) is white noise (Brownian motion). The system (3) is transformed

to the following Itô stochastic di¤erential equations, with 0 = e
��2�8<: dS = [�� (�1 + d)S � �SQ]� �SQdW;

dI = [�SQ� (�2 + d) I � 0SQ] + �SQdW;
dQ = [0SQ� (�3 + d)Q] ;

(12)

In this section, we will proof, under some conditions, that E0 is globally
exponentially mean square and almost surely stable, and for this purpose, we
need the following Theorem

Theorem 6 The set 
 is almost surely invariant by the stochastic system (12).
Thus if (S0; I0; Q0) 2 
 , then P [(S; I;Q) 2 
] = 1:

Proof. The system (12) implies that dN � [�� (�1 + d)N ] dt; then we have

N (t) � �

�1 + d
+

�
N0 �

�

�1 + d

�
; for all t � 0:

Since (S0; I0; Q0) 2 
; then

N (t) � �

�1 + d
; for all t � 0: (13)

There exist "0 > 0; such that S0 > "0 > 0; I0 > "0 > 0 and Q0 > "0 > 0:
Considering

�" = inf ft � 0; S (t) � " or I (t) � " or Q (t) � "; g ; for " � "0; (14)
� = lim

t!0
�" = inf ft � 0; S (t) � 0 or I (t) � 0 or Q (t) � 0; g

Let

V (t) = log
�

(�1 + d)S (t)
+ log

�

(�1 + d) I (t)
+ log

�

(�1 + d)Q (t)
:

Then, using Itô formula we have, for all t � 0 and T 2 [0; t ^ �"],

dV (T ) =

�
� �
S
+ (�1 + d) + �Q+

1

2
I2
�
dT + �QdW

+

�
(0 � �)

SQ

I
+ (�2 + d) +

1

2
S2
�
dT + �

SQ

I
dW

+ [�0S + (�3 + d)] dT;

dV (T ) �
�
�1 + �2 + �3 + 3d+ �Q+

1

2
I2 +

1

2
S2
�
dT + �

Q

I
(I � S) dW (15)
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With (13) ; we have S; I and Q 2
h
0; �

(�1+d)

i
Let

L = �1 + �2 + �3 + 3d+ �
�

�1 + d
+

�
�

�1 + d

�2
; (16)

f (I) =
Q

I
;

We remplace (16) into (15) ; we obtain

dV (T ) � LdT + � (I (T )� S (T )) f (I (T )) dW; (17)

Then

V (T ) � LT + �
TR
0

f (I (u)) (I (u)� S (u)) dW (u) ; (18)

With proposition 7.6 in [6] ; �
TR
0

f (I (u)) (I (u)� S (u)) dW (u) is mean zero

process then,
E (V (T )) � LT (19)

for all t � 0 and T 2 [0; t ^ �"] ;

S (t ^ �") ; I (t ^ �") ; and Q (t ^ �") 2
�
0;

�

(�1 + d)

�
;

Then
E (V (t ^ �")) � L (t ^ �") � Lt;

V (t ^ �") � 0;

E (V (t ^ �")) � E (V (t))� {[�"�t] � P (�" � t) log
�

(�1 + d) "
(20)

Where {[�"�t] is the indicator function of a subset [�" � t] ;
Combining (19) ; and (20) ; we obtain

P (�" � t) �
Lt

log �
(�1+d)"

; for all t � 0; (21)

for all t � 0; and "! 0; we obtain P (� � t) = 0;
From where

P (� � 1) = 0
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5 The Model with Age

The age distributions of the numbers in the classes are denoted by S(a; t),
I(a; t), and Q(a; t), denote the sizes of the population susceptible to disease,
and infectious members, quarantine members with the possibility of infection
through temporary immunity, respectively of age a; at time t, d(a) is the age-
speci�c death rate,
The system of partial equations for the age distributions is8<:
@S
@t +

@S
@a = � (�1 + d(a))S(a; t) + �1(t)S(a; t);

@I
@t +

@I
@a = ��1(t)S(a; t)� (�2 + d(a)) I(a; t) + 1(t� �)S(a; t� �);

@Q
@t +

@Q
@a = �1(t� �)S(a; t� �)� (�3 + d(a))Q(a; t);

(22)

With

�1(t) = ��
R
Q(a; t)da (23)

1(t� �) = �
R
e��2�Q(a; t� �)da

5.1 Equilibrium and stability

Assume that sub population does not depend on the time when the system (22)
is written as follows8<:

dS
da = (�1 � �1 � d(a))S(a);
dI
da = (1 � �1)S(a)� (�2 + d(a)) I(a);
dQ
da = �1S(a)� (�3 + d(a))Q(a);

(24)

The initial condition of (24) is given as

S(0) = S1; I(0) = I1; Q(0) = Q1 (25)

Di¤erential equations of the system (24) are solved with di¤erent methods of
resolutions and with (25), so

S(a) = S1e
�(�1��1)a �(a); (26)

I(a) = I1�(a)e
��2a � (1 � �1)S1�(a)

�1 � �1 � �2

�
e�(�1��1)a � e��2a

�
; (27)

Q(a) = Q1�(a)e
��3a � 1S1�(a)

�1 � �1 � �3

�
e�(�1��1)a � e��3a

�
(28)

Where
�(a) = exp

�
�
R
d(a)da

�
(29)

The system (24) has the unique positive equilibrium point P1;

P1 =
�
Ŝ1; Î1; Q̂1

�T
= (0; 0; 0)

T
:

We calculate the Jacobian matrix according to the system (24) with P1
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J (P1) =

24 �1 � �1 � d(a) 0 0
�� 0 � (�2 + d(a)) 0
�0 0 � (�3 + d(a))

35
The epidemic is locally asymptotically stable if and only if all eigenvalues

of the Jacobian matrix J (P1) have negative real part. The eigenvalues can be
determined by solving the characteristic equation of the linearization of (25)
near P1 is

det

0@ �1 � �1 � d(a)�A 0 0
�� 0 � (�2 + d(a))�A 0
�0 0 � (�3 + d(a))�A

1A = 0

(31)
So the eigenvalues are

A1 = �1 � �1 � d(a); A2 = � (�2 + d(a)) ; A3 = � (�3 + d(a))

In order to A1; A2;and A3 will be negative, it is required that

�1 < �1 + d(a)

The basic reproduction number R0 is de�ned as the total number of in-
fected population in the resulting sub-infected population where almost all of
the uninfected. The basic reproduction number of the infection R0 is de�ned as
follows:

R0 =
�1

�1 + d(a)
(32)

The time during which people remain infective is de�ned as

T =
1

�1 + d(a)

The doubling time td of the epidemic can be obtained as

td =
(ln 2)T

R0 � 1
(33)

Theorem 1 The disease-free equilibrium P1 is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1:

Let (26) ; so if R0 < 1 then �1 � �1 > 0; so S(a) converges to zero.
Let (27) ; so

I(a) �
�
I1�(a)�

(1 � �1)S1�(a)
�1 � �1 � �2

�
e�m1a; m1 = min f�1 � �1; �2g (34)
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If R0 < 1, i(a) converges to zero.
Let (28) ; so

Q(a) =

�
Q1�(a)�

1S1�(a)

�1 � �1 � �3

�
e�m2a; m1 = min f�1 � �1; �3g (35)

If R0 < 1; Q(a) converges to zero.
This paper addresses a SIQ model with temporary immunity, whenever

the quarantine individuals will return to the susceptible. The endemic equilib-
rium is globally asymptotically stable, then under some conditions, study the
stochastic stability. Finally, the equilibrium and stability of the epidemic model
with age.
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