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Abstract

On a real hypersurface M in a non-flat complex space form there exist the Levi-Civita
and the k-th generalized Tanaka-Webster connections. The aim of the present paper is
to study three dimensional real hypersurfaces in non-flat complex space forms, whose Lie
derivative of the structure Jacobi operator with respect to the Levi-Civita connections
coincides with the Lie derivative of it with respect to the k-th generalized Tanaka-Webster
connection. The Lie derivatives are considered in direction of the structure vector field
and in directions of any vecro field orthogonal to the structure vector field.
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1 Introduction

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sectional
curvature c. A complete and simply connected complex space form is analytically isometric
to a complex projective space CPn if c > 0, a complex Euclidean space Cn if c = 0, or a
complex hyperbolic space CHn if c < 0. Furthermore, the complex projective and complex
hyperbolic spaces are called non-flat complex space forms and the symbol Mn(c), n ≥ 2, is
used to denote them when it is not necessary to distinguish them.

Let M be a connected real hypersurface of Mn(c) without boundary. Let ∇ be the Levi-
Civita connection on M and J the complex structure of Mn(c) . Take a locally defined unit
normal vector field N on M and denote by ξ = −JN . This is a tangent vector field to
M called the structure vector field on M . If it is an eigenvector of the shape operator A of
M the real hypersurface is called a Hopf hypersurface and the corresponding eigenvalue is
α = g(Aξ, ξ). Moreover, the complex structure J induces on M an almost contact metric
structure (φ, ξ, η, g), where φ is the tangential component of J and η is an one-form given
by η(X) = g(X, ξ) for any X tangent to M .

The classification of homogeneous real hypersurfaces in CPn, n ≥ 2 was obtained by
Takagi and they were divided into six type of real hypersurfaces (see [14], [15], [16]). Among
them the three dimensional real hypersurfaces in CP 2 are geodesic hyperspheres of radius
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r , 0 < r <
π

2
, which are called real hypersurfaces of type (A) and tubes of radius r ,

0 < r <
π

4
, over the complex quadric, which are called real hypersurfaces of type (B ). All of

them are Hopf ones with constant principal curvatures (see [6]). In case of CHn , the study
of Hopf hypersurfaces with constant principal curvatures, was initiated by Montiel in [8] and
completed by Berndt in [1]. Such hypersurfaces in CH2 are open subsets of horospheres,
geodesic hyperspheres, or tubes over totally geodesic complex hyperbolic hyperplane CH1

(type (A)), or tubes over totally geodesic real hyperbolic space RH2 (type (B )).

The Jacobi operator RX of a Riemannian manifold M̃ with respect to a unit vector field
X is given by RX = R(·, X)X , where R is the curvature tensor field on M̃ . It is a self-
adjoint endomorphism of the tangent space TM̃ and it is related to Jacobi vector fields,
which are solutions of the second-order differential equation ∇γ̇(∇γ̇Y ) +R(Y, γ̇)γ̇ = 0 along
a geodesic γ in M̃ (known as the Jacobi equation). In case of real hypersurfaces in Mn(c)
the Jacobi operator with respect to the structure vector field ξ , Rξ , is called the structure
Jacobi operator on M and it plays an important role in the study of them.

Apart from the Levi-Civita connection on a non-degenerate, pseudo-Hermitian CR-manifold
a canonical affine connection is defined and is called Tanaka-Webster connection (see [17],
[19]). As a generalization of this connection, in [18] Tanno defined the generalized Tanaka-
Webster connection for contact metric manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY.

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster con-
nection, Cho defined the k-th generalized Tanaka-Webster connection ∇̂(k) on a real hyper-
surface M in Mn(c) given by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.1)

for any vector fields X , Y tangent to M where k is a nonnull real number (see [2], [3]).
Then the following relations hold

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA + Aφ = 2kφ , the
generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

The Lie derivative of a tensor field T of type (1,1) with respect to the generalized Tanaka-

Webster connection is denoted by L̂
(k)
X T , called k-th generalized Tanaka-Webster Lie deriva-

tive with respect to X and is given by

(L̂
(k)
X T )Y = ∇̂(k)

X TY − ∇̂(k)
TYX − T ∇̂

(k)
X Y + T ∇̂(k)

Y X,

where X , Y are tangent to M .

Many geometric conditions with respect to the k-th generalized Tanaka-Webster con-
nection on real hypersurfaces have been studied. One of them is the classification of real
hypersurfaces in Mn(c), n ≥ 2, whose k-th generalized Tanaka-Webster Lie derivative
agrees with the ordinary Lie derivative when applied to the tensor field T of type (1,1),
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i.e. (L̂
(k)
X T )Y = (LXT )Y , for all X , Y tangent to M . The last relation because of (1.1)

implies

g((φA+Aφ)X,TY )ξ − (φA− kφ)(X ∧ TY )ξ = g((φA+Aφ)X,Y )Tξ

−T (φA− kφ)(X ∧ Y )ξ (1.2)

and the wedge product is given by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y,

for all X , Y Z tangent to M .

In [13] real hypersurfaces in CPn, n ≥ 3, whose structure Jacobi operator satisfies rela-

tion L̂
(k)
ξ Rξ = LξRξ are classified. Furthermore, the non-existence of real hypersurfaces in

CPn, n ≥ 3, whose structure Jacobi operator satisfies relation L̂
(k)
X Rξ = LXRξ , for any X

orthogonal to ξ is proved.

The purpose of this paper is to extend the previous results to the case of three dimensional
real hypersurfaces in M2(c). First, we study real hypersurfaces in M2(c) satisfying relation

L̂
(k)
ξ Rξ = LξRξ (1.3)

and the following Theorem is obtained

Theorem 1.1 Every real hypersurface in M2(c), whose structure Jacobi operator satisfies
relation (1.3) is a Hopf hypersurface. Moreover, M is locally congruent either to a real
hypersurface of type (A), or to a Hopf hypersurface with Aξ = 0.

Next we study three dimensional real hypersurfaces in M2(c), whose structure Jacobi
operator satisfies relation

L̂
(k)
X Rξ = LXRξ, (1.4)

for all X orthogonal to ξ and the following Theorem is proved

Theorem 1.2 There do not exist real hypersurfaces in M2(c), whose structure Jacobi op-
erator satisfies relation (1.4).

As an immediate consequence of the above Theorems we conclude that

Corollary 1.1 There do not exist real hypersurfaces in M2(c) such that L̂
(k)
X Rξ = LXRξ ,

for all X ∈ TM .

This paper is organized as follows: In Section 2 basic results about real hypersurfaces in
non-flat complex space forms are included. In Section 3 the proof of Theorem 1.1 is provided.
Finally, in Section 4 the proof of Theorem 1.2 is given.
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2 Preliminaries

Throughout this paper all manifolds, vector fields etc. are assumed to be of class C∞ and
all manifolds are assumed to be connected and the real hypersurfaces M are supposed to be
without boundary. Furthermore, all the material mentioned in this Section is valid for all
real hypersurfaces in CP 2 and CH2 without regard to the Lie derivative conditions.

Thus, let M be a real hypersurface immersed in a non-flat complex space form (Mn(c), G)
with complex structure J of constant holomorphic sectional curvature c and N be a locally
defined unit normal vector field on M and ξ = −JN be the structure vector field of M . For
a vector field X tangent to M relation

JX = φX + η(X)N

holds, where φX and η(X)N are respectively the tangential and the normal component of
JX . The Riemannian connections ∇ in Mn(c) and ∇ in M are related for any vector fields
X , Y on M by

∇XY = ∇XY + g(AX,Y )N,

where g is the Riemannian metric induced from the metric G .
The shape operator A of the real hypersurface M in Mn(c) with respect to N is given by

∇XN = −AX.

The real hypersurface M has an almost contact metric structure (φ, ξ, η, g) induced from J
of Mn(c), where φ is the structure tensor, which is a tensor field of type (1,1) and η is an
1-form such that

g(φX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Moreover, the following relations hold

φ2X = −X + η(X)ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X,φY ) = −g(φX, Y ).

The fact that J is parallel implies ∇J = 0 and this leads to

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ.

(2.1)

The ambient space Mn(c) is of constant holomorphic sectional curvature c and this results
in the Gauss and Codazzi equations are respectively given by

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX (2.2)

−g(φX,Z)φY − 2g(φX, Y )φZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)φY − η(Y )φX − 2g(φX, Y )ξ],
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where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields
on M .

The tangent space TPM at every point P ∈ M can be decomposed as

TPM = span{ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomorphic
distribution (if n ≥ 3). Due to the above decomposition the vector field Aξ can be written

Aξ = αξ + βU,

where β = |φ∇ξξ| and U = − 1

β
φ∇ξξ ∈ ker(η) is a unit vector field, provided that β 6= 0.

Next, the following results concern any non-Hopf real hypersurface M in M2(c) with local
orthonormal basis {U, φU, ξ} at a point P of M .

Lemma 2.1 Let M be a non-Hopf real hypersurface in M2(c). The following relations hold
on M

AU = γU + δφU + βξ, AφU = δU + µφU, Aξ = αξ + βU (2.3)

∇Uξ = −δU + γφU, ∇φUξ = −µU + δφU, ∇ξξ = βφU,

∇UU = κ1φU + δξ, ∇φUU = κ2φU + µξ, ∇ξU = κ3φU,

∇UφU = −κ1U − γξ, ∇φUφU = −κ2U − δξ, ∇ξφU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Remark 2.1 The proof of Lemma 2.1 is included in [12].

The Codazzi equation for X ∈ {U, φU} and Y = ξ because of Lemma 2.1 implies the
following relations

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2 (2.4)

ξµ = αδ + βκ2 − 2δκ3 (2.5)

(φU)α = αβ + βκ3 − 3βµ (2.6)

(φU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ (2.7)

and for X = U and Y = φU

Uδ − (φU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ (2.8)

Furthermore, combination of the Gauss equation (2.2) with the formula of Riemannian
curvature R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z , taking into account relations of
Lemma 2.1, implies

Uκ2 − (φU)κ1 = 2δ2 − 2γµ− κ21 − γκ3 − κ22 − µκ3 − c, (2.9)
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Relation (2.2) implies that the structure Jacobi operator Rξ is given by

Rξ(X) =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ,

(2.10)

for any vector field X tangent to M , where α = η(Aξ) = g(Aξ, ξ).

Moreover, the structure Jacobi operator for X = U , X = φU and X = ξ due to (2.3) is
given by

Rξ(U) = (
c

4
+ αγ − β2)U + αδφU, Rξ(φU) = αδU + (

c

4
+ αµ)φU and Rξ(ξ) = 0. (2.11)

The following Theorem in case of CPn is owed to Maeda [7] and in case of CHn is owed
to Ki and Suh [5] (also Corollary 2.3 in [10]).

Theorem 2.1 Let M be a Hopf hypersurface in Mn(c), n ≥ 2, with Aξ = αξ . Then
i) α is constant.
ii) If W is a vector field which belongs to D such that AW = λW , then

(λ− α

2
)AφW = (

λα

2
+
c

4
)φW.

iii) If the vector field W satisfies AW = λW and AφW = νφW then

λν =
α

2
(λ+ ν) +

c

4
. (2.12)

Remark 2.2 In case of three dimensional Hopf hypersurfaces we can always consider a local
orthonormal basis {W,φW, ξ} at some point P ∈ M such that AW = λW and AφW =
νφW . Thus, relation (2.12) is satisfied. Furthermore, the structure Jacobi operator of Hopf
hypersurfaces, whose shape operator is given by the previous relations for X = W and X =
φW is given by

Rξ(W ) = (
c

4
+ αλ)W and Rξ(φW ) = (

c

4
+ αν)φW. (2.13)

We also mention the following Theorem, which plays an important role in the study of real
hypersurfaces in Mn(c), which is due to Okumura in case of CPn (see [11]) and to Montiel
and Romero in case of CHn (see [9]). It provides the classification of real hypersurfaces in
Mn(c), n ≥ 2, whose shape operator A commutes with the structure tensor field φ .

Theorem 2.2 Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aφ = φA, if and only
if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely:
In case of CPn

(A1) a geodesic hypersphere of radius r , where 0 < r <
π

2
,

(A2) a tube of radius r over a totally geodesic CP k ,(1 ≤ k ≤ n− 2), where 0 < r <
π

2
.

In case of CHn

(A0) a horosphere in CHn , i.e a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane
CHn−1 ,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).
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Remark 2.3 In case of three dimensional real hypersurfaces in CP 2 and CH2 type (A2 )
hypersurfaces do not occur.

Finally, we mention the following Proposition (see [4]), which is used in the proof of the
present Theorems.

Proposition 2.1 There do not exist real hypersurfaces in M2(c), whose structure Jacobi
operator vanishes.

3 Proof of Theorem 1.1

Let M be a non-Hopf real hypersurface in M2(c) whose structure Jacobi operator satisfies
relation (1.3). More analytically, the previous relation due to (1.2) for T = Rξ and X = ξ
and since Rξ(ξ) = 0 implies

g(φAξ,Rξ(Y ))ξ − (φA− kφ)(ξ ∧Rξ(Y ))ξ = −Rξ(φA− kφ)(ξ ∧ Y )ξ, (3.1)

for all Y tangent to M .

We consider N the open subset of M such that

N = {P ∈ M : β 6= 0, in a neighborhood of P .}

On N Lemma 2.1 holds and the inner product of relation (3.1) for Y = U with ξ due to the
first of (2.11) yields

αδ = 0.

Suppose that α 6= 0 then the above relation implies δ = 0 and relations (2.3) and (2.11)
become respectively

AU = γU + βξ, AφU = µφU and Aξ = αξ + βU, (3.2)

Rξ(U) = (
c

4
+ αγ − β2)U, Rξ(φU) = (

c

4
+ αµ)φU and Rξ(ξ) = 0. (3.3)

The inner product of (3.1) for Y = φU with ξ because of (3.2) and the second of (3.3)
implies

µ = − c

4α
⇒ Rξ(φU) = 0.

Moreover, relation (3.1) for Y = φU taking into account that Rξ(φU) = 0 and the first
of (3.3) results in

(µ− k)Rξ(U) = 0.

If µ 6= k then Rξ(U) = 0. So the structure Jacobi operator vanishes identically, which is
impossible because of Proposition 2.1 in Section 2.

Thus, µ = k . Furthermore, the inner product of (3.1) for Y = U with φU due to the first
of (3.3) and Rξ(φU) = 0 implies

(γ − k)g(Rξ(U), U) = 0.
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If γ 6= k then g(Rξ(U), U) = 0 and this results in Rξ(U) = 0, which implies that the
structure Jacobi operator vanishes identically, which is impossible due to Proposition 2.1.

So γ = k . Differentiation of the last relation with respect to φU yields (φU)γ = 0. Thus,
relation (2.8) since δ = 0 and µ = γ = k implies k = 0, which is a contradiction.

Therefore, on M we have α = 0 and relation (2.11) becomes

Rξ(U) = (
c

4
− β2)U, Rξ(φU) =

c

4
φU and Rξ(ξ) = 0. (3.4)

The inner product of relation (3.1) for Y = φU with ξ because of the second relation of
(3.4) gives c = 0, which is a contradiction.

Thus, N is empty and the following Proposition is proved

Proposition 3.1 Every real hypersurface in M2(c) whose structure Jacobi operator satisfies
relation (1.3) is a Hopf hypersurface.

Due to the above Proposition, relations in Theorem 2.1 and remark 2.2 hold. Relation
(3.1) for Y = W and Y = φW taking into account (2.13) implies respectively

kα(λ− ν) = λα(λ− ν) and kα(λ− ν) = να(λ− ν). (3.5)

If there is a point where λ 6= ν relation (3.5) yields kα = αλ and kα = να , which implies
α(λ− ν) = 0. So, α = 0.

If λ = ν at all points this implies

(Aφ− φA)X = 0

for any X tangent to M . So due to Theorem 2.2 M is locally congruent to a real hypersurface
of type (A) and this completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Relation (1.4) because of (1.2), since T = Rξ and X ∈ D because of Rξ(ξ) = 0 implies

g((φA+Aφ)X,Rξ(Y ))ξ = −Rξ(φA− kφ)(X ∧ Y )ξ, (4.1)

for all X orthogonal to ξ and for all vectors Y tangent to M .

First we prove the following Proposition

Proposition 4.1 There do not exist Hopf hypersurfaces in M2(c) whose structure Jacobi
operator satisfies relation (1.4).

Proof: Let M be a Hopf hypersurface. Then we have Aξ = αξ , where α is constant, and
remark 2.2 holds. Relation (4.1) for (X,Y ) being (W, ξ ), (φW, ξ ), (W,φW ) and (φW,W )
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taking into account relation (2.13) implies respectively

(λ− k)(αν +
c

4
) = 0 (4.2)

(ν − k)(αλ+
c

4
) = 0 (4.3)

(λ+ ν)(αν +
c

4
) = 0 (4.4)

(λ+ ν)(αλ+
c

4
) = 0 (4.5)

There are three possibilities to consider:

1. Suppose α = 0. Then relations (4.2) and (4.3) give λ = ν = k . So, relation (4.4)
implies k = 0, which is a contradiction.

2. Suppose α 6= 0 and there is a point where λ 6= ν . If λ 6= k then relation (4.2) implies

αν +
c

4
= 0. So αλ +

c

4
6= 0 and relation (4.3) yields ν = k . Furthermore, relation

(4.5) gives λ + ν = 0. So, λ = −k and the Hopf hypersurface has three constant
principal curvatures and must be an open subset of a type (B ) hypersurface. But type

(B ) hypersurfaces satisfy λν +
c

4
= 0 and substitution of the last in (2.12) leads to a

contradiction.

3. α 6= 0 and λ = ν . This implies because of (4.4) that either λ = 0 or αλ =
c

4
.

Substitution of the previous in (2.12) leads to a contradiction and this completes the
proof of the Proposition.

2

Next we examine non-Hopf hypersurfaces in M2(c) whose structure Jacobi operator satis-
fies relation (4.1). Since M is a non-Hopf hypersurface we have that β 6= 0 and relation (2.3)
holds. Relation (4.1) for X = Y = U , X = U and Y = φU and for X = φU and Y = U
implies respectively

(γ + µ)g(Rξ(U), φU) = 0 (4.6)

(γ + µ)g(Rξ(φU), φU) = 0 (4.7)

(γ + µ)g(Rξ(U), U) = 0. (4.8)

If γ + µ 6= 0 then relations (4.6), (4.7) and (4.8) result in

g(Rξ(U), φU) = g(Rξ(φU), φU) = g(Rξ(U), U).

The above relation leads to the conclusion that the structure Jacobi operator Rξ vanishes
identically and because of Proposition 2.1 this is impossible.

Thus on M , relation γ + µ = 0 holds. Moreover, relation (1.4) for X = U and Y = ξ
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and for X = φU and Y = ξ due to (2.11) and γ + µ = 0 implies

δ(
c

4
− β2 + αk) = 0, (4.9)

(µ+ k)(
c

4
+ αµ) = −αδ2, (4.10)

(µ− k)(
c

4
− αµ− β2) = αδ2, (4.11)

δ(
c

4
+ αk) = 0. (4.12)

Suppose that δ 6= 0 then combination of relations (4.9) and (4.12) yields β = 0, which is
a contradiction.

So, on M we have δ = 0 and γ = −µ and relations (4.10) and (4.11) become

(µ+ k)(
c

4
+ αµ) = 0 and (µ− k)(

c

4
− αµ− β2) = 0. (4.13)

If k+µ 6= 0 then
c

4
+αµ = 0 and the second of the above relation gives µ = k , because if

c

4
−αµ− β2 = 0 then relation (2.11) implies that the structure Jacobi operator Rξ vanishes

identically, which is impossible. Since k = µ we obtain ξµ = 0 and relation (2.5) implies
κ2 = 0. Furthermore, differentiation of γ = −µ with respect to φU gives

(φU)µ = (φU)γ = 0.

Furthermore, differentiation of
c

4
+αµ = 0 with respect to φU because of the above relation

and relation (2.6) gives κ3 = 3µ − α . Since (φU)γ = 0 relation (2.8) implies κ1 =
β

2
. So

relation (2.4) bearing in mind all the previous relations gives
β2

2
= c+7µ2 . Differentiating the

last relation with respect to φU yields (φU)β = 0 and relation (2.7) implies
β2

2
+
c

2
+2µ2 = 0.

Moreover, since κ1 =
β

2
and (φU)β = 0 we conclude that (φU)κ1 = 0 and relation (2.9) due

to γ = −µ , κ1 =
β

2
, κ3 = 3µ− α and κ2 = 0 results in

β2

2
= 4µ2 − 2c . Combination of the

last one with
β2

2
= c+ 7µ2 implies c = −µ2 . Substitution of the latter in

β2

2
+ 2µ2 +

c

2
= 0

due to
β2

2
= 4µ2 − 2c leads to c = 0, which is a contradiction.

Thus, on M we have µ+ k = 0. Summarizing on M the following relations hold

δ = 0 and γ = −µ = k.

The second of (4.13) implies that kα = β2 − c

4
.

Moreover, relation (2.5) due to µ = −k implies κ2 = 0 and relation (2.8) bearing in mind
all the previous relations results in β = 2κ1 . Furthermore, relation (2.7) because of γ = −µ ,

β = 2κ1 and µ = −k implies (φU)β =
β2

2
+
c

2
+ 2k2 and relation (2.9) taking into account
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γ+µ = 0, κ2 = 0 and β = 2κ1 yields (φU)β = −4k2 +
β2

2
+2c . Combination of the last two

relations of (φU)β results in c = 4k2 . The last relation leads to a contradiction when the
ambient space is CH2 . So it remains to examine the case when the ambient space is CP 2 .

Since c = 4k2 and k 6= 0 relation kα = β2 − c

4
implies α =

β2

k
− k . Differentiation of

the latter with respect to φU taking into account relations (2.6) and (2.7) yields κ3 = 6k .
Furthermore, relation (2.4) because of the last one and β = 2κ1 results in β2 = 22k2 . So
relation (2.7) because of the above relations implies β2 + 2c = 0. The last relation due to
c = 4k2 and β2 = 22k2 results in k = 0, which is impossible and this completes the proof of
Theorem 1.2.
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