
SCHEDULING POLICIES IN A CELLULAR NETWORK WITH DATA

QUEUEING FOR USERS

Nomesh Bolia∗

nomesh@mech.iitd.ac.in

Department of Mechanical Engineering, IIT Delhi

Vidyadhar Kulkarni

vkulkarn@email.unc.edu

Department of Statistics and Operations Research, UNC Chapel Hill

Running Head: Scheduling in Cellular Networks

AbstractWe consider scheduling policies for data transfer between the base station and users where

data for every user is allowed to queue up for transmission within a cell of a wireless telecommu-

nication network. We consider a slotted system where at most one user can be served in a slot and

available data rate available for transfer depends on the varies with user and time. We derive an

index policy that is stable and attempts to minimize congestion. We compare the performance of

our index policy with existing policies through simulation.

∗
Contact Author

1 Introduction

Data transfer over the internet has become an important application of wireless cellular systems.

To ensure effective utilization of the available resources, we require effective algorithms to enable

data flow between users and the base station in an efficient and fair manner.

In this paper we consider the problem of scheduling users to be served for data transfer in one

cell of a cellular network. All users in the cell are served by a single base station. To begin with

we consider a fixed number N of users. Later, in section 4.4 we look at the case where users can

arrive in and depart from the cell. Time is slotted and exactly one user is served in a given time

slot n as long as there is data to serve for at least one user. We assume data is quantized in packets

of equal size and use “data” and “number of packets” interchangeably. The data rate (packets per

time slot) available to any user during the time slot n depends on its dynamic “channel conditions”

such as the distance of the user from the base station, the topography and the weather conditions

faced by the user, etc. We concentrate on the downlink channel, i.e. data transfer from the base

station to users. Let Rn
u (u = 1, 2, . . . , N ; n = 0, 1, . . .) be the data rate available to user u during

time slot n, i.e., the number of packets that can potentially be transmitted to user u during time

slot n from the base station. The base station chooses the user to serve during each slot n using

the data rate vector Rn = [Rn
1 , R

n
2 , . . . , R

n
N] that is obtained using engineering systems already in

place and their details are irrelevant to the algorithms presented in this paper. An example of such

a system in place is CDMA2000 1xEV-DO system [6]. We simply assume that {Rn, n ≥ 0} is a

stochastic process that accounts for the dynamic channel conditions.

A stable scheduling algorithm restricts the queue lengths from increasing without any bounds

and induces a stationary distribution of data queue length for all users. The throughput of any

stable algorithm equals its input data rate provided the input rates are in the system’s stability

region. To see this, consider the data queue of any user: in steady state, whatever data enters

2

the queue has to leave it, thus implying a fixed throughput that depends on the average rate of

data arrival. In the absence of throughput maximization, a useful measure of overall customer

satisfaction is the total length of the data queues of all users. The service provider attempts to

empty all data queues as quickly as possible, so that it can serve all the demand of data with the

smallest delay possible. Thus a reasonable objective is to minimize the total weighted data queue

length.

It is well known that Markov Decision Processes (MDP) can be used to determine optimal policies

(that is, which user to serve in this case) in this setting. Further, previous experience [16] suggests

that one can develop index policies [21, 10] that are nearly optimal and easy to implement. An

index policy in the context of MDPs is a policy that gives a prescription of the action to take based

on an index for every action. The index of an action is a closed form expression associated with that

action and depends on the current state of the MDP. We thus have as many indices as the number

of actions in the action space, and the index policy is simply to choose the action whose index is

maximum or minimum depending on the objective of the MDP. The index we develop in this paper

is related to our past work [7] that deals with infinitely backlogged data queues in a similar setting.

It should be noted that our index policy is different from the one analyzed by Whittle [22] for the

multiarmed bandits problem - the Gittins index policy in [22] considers discounted rewards and no

state changes when user is not served, whereas we have average rewards, and users changing states

regardless of service status.

In the setting of external data arrival considered in this paper however, stability of queues is

a serious concern. We prove the stability of our recommended policy and our results are similar

to the stability results of the Max-Weight type scheduling algorithms. The first results of this

type were obtained by Tassiulas and Ephremides [20]. A significant amount of work has since

appeared on proving the stability of algorithms similar to the Max-Weight algorithm (MWA)

3

such as Neely et al [14] and Andrews et al [3]. Andrews, Jung and Stoylar [2] prove the stability

of the MWA for dynamic networks. It has also been studied in other situations such as scheduling

input-queued crossbar switches [13] and maximizing the total utility of traffic injected into the

network [9]. More recently Celik, Le and Modiano [8], for the first time, address the scheduling

problem taking switchover delay into account.

The rest of this paper is organized as follows: In section 2 we describe some existing algorithms

including the MWA for the scheduling problem. We formulate the problem as an MDP in section

3. We derive the index policy and briefly look at the case of users entering and leaving the cell

in section 4. We prove the the stability of the index policy in section 5. In section 6 we briefly

describe the performance analysis methodology to compare our recommended index policy with the

MWA. Finally, section 7 contains results of a simulation experiment comparing the performance of

our index policy with exisiting policies.

2 Existing Algorithms

In this section we describe an existing algorithm to solve the scheduling problem described in section

1. For this and the following sections, let v(n) be the user chosen for service, Qn
u be the number of

packets waiting to be served in the queue for user u and An
u be the number of packets that arrive

externally for user u during time slot n.

1. Max-Weight Algorithm (MWA): This algorithm was first introduced by Tassiulas and

Ephremides in [20] and Awerbuch and Leighton in [5]. In time slot n, it serves the user u (u ∈ A) for

whom the product of the available data rate and the total data available to transmit is maximized.

Mathematically,

v(n) ∈ argmax
u

Rn
u(Q

n
u +An

u). (2.1)

4

The MWA minimizes delay (sum of queue lengths) in symmetric systems and a stability condition,

i.e., condition(s) under which queue lengths are bounded, for this algorithm is derived in [20].

2. The Exponential Rule: See Shakkottai and Stolyar [18]. Let γu, au, u = 1, 2, . . . , N and β,

η ∈ (0, 1) be positive constants. Then the exponential rule serves the user v(n) in time slot n such

that

v(n) ∈ argmax
u

γuR
n
uexp

(

auQ
n
u

β + (Q̄n)η

)

, (2.2)

where Q̄n = (1/N)
∑

u auQ
n
u. This algorithm has the property that for each time n, it minimizes

maxu auQ
n
u [19]. The constants β, η and the arbitrary parameters au, γu give more flexibility to the

scheduling algorithm. However, no method is specified to select these parameters.

Note that the above algorithms are instances of index policies with indices given by (2.1) and

(2.2). The scheduling algorithm based on each of the above indices is also proven to be stable.

We derive our index policy based on an MDP formulation that attempts to minimize the long run

total data queue lengths. The policy based on this index turns out to be similar to the MWA. We

evaluate its performance using simulation. Further, we do not actually solve the MDP to optimality;

the MDP formulation merely gives us a starting point and a sound theoretical framework for the

derivation of the final index policy. Furthermore, we prove that the index computed using our

approach generates a stable scheduling policy.

3 MDP Formulation

We formulate the problem as an MDP in this section. We start with a model for the data rate

process {Rn, n ≥ 0}, the data arrival process {An, n ≥ 0} and the queue length process {Qn, n ≥ 0}

of the users. In systems currently used in practice such as CDMA2000 1xEV-DO system [6], the

base station serves users at one of the M data rates r1, r2, . . . , rM . Each of these M data rates

5

corresponds to the “channel state” of a given user. This “channel state” of the user takes into

account factors such as distance from the base station and topography. Let Xn
u be the channel

state of user u during the time slot n. We use the following model for Xn
u : {Xn

u , n ≥ 0} is an

irreducible Discrete Time Markov Chain (DTMC) on state space Ω = {1, 2, . . . ,M} with Transition

Probability Matrix (TPM) P u = [puiu,ju]. For example, a set of M = 11 fixed data rates is available

to users in an actual system [6]. During any time slot n, for every user u the underlying DTMC

{Xn
u , n ≥ 0} determines the data rate Rn

u as follows: for k ∈ Ω Xn
u = k =⇒ Rn

u = rk. Further,

let Xn = [Xn
1 , . . . , X

n
N] be the channel state vector of all the users. We assume that all users are

independent of each other and thus each component of {Xn, n ≥ 0} is an independent DTMC on

Ω. Hence it is clear that {Xn, n ≥ 0} itself is a DTMC on ΩN .

Next we consider the data model for each user. The base station maintains a separate queue for

every user u. Let An
u be the number of packets that arrive at the base station for user u during

time slot n. We assume that the arrival process {An
k , n ≥ 0} is independent of {An

l , n ≥ 0} for

k 6= l. Further we assume that for every u, {An
u, n ≥ 0} is an irreducible DTMC on state space

Z = {0, 1, 2, . . .} with TPM Hu = [huiu,ju]. Since each component of {An, n ≥ 0} is an independent

DTMC on Z, {An, n ≥ 0} itself is a DTMC on ZN . An example of a Markovian packet arrival

process is when {An
u, n ≥ 0} is a sequence of independent and identically distributed (i.i.d.) random

variables with the probability distribution hu = [hu0 , h
u
1 , . . .]. In this case every row of the TPM Hu

is equal to hu. In this and the following sections we also refer to An
u as the “packet arrival state”

of user u in time slot n.

We can now describe the evolution of the queue length process {Qn, n ≥ 0}. Recall that, for

every user u, Qn
u is the number of data packets in the queue for user u at the beginning of time

6

slot n. Therefore {Qn
u, n ≥ 0} changes according to

Qn+1
u =

Qn
u +An

u if u 6= v(n)

Qn
u +An

u −min(Rn
u, Q

n
u +An

u) if u = v(n).

(3.1)

The “state” of user u ∈ A, given by the vector [Xn
u , Q

n
u, A

n
u] ∈ Ω×Z×Z, thus has three components:

the “channel state” Xn
u , the “queue length state” Qn

u and the “data arrival state” An
u. The “state

of the system” at time n is then given by [Xn, Qn, An] ∈ ΩN ×ZN ×ZN . It is thus a vector of 3N

components and we assume that it is known to the base station in each time slot.

Unless the data queues of all users are empty, the base station serves exactly one user in every

time slot after observing the system state in that time slot. We need a cost structure to make

this decision optimally and we propose it below. We pay a cost Ku to hold one packet for one

time slot for any user v ∈ A. The parameters Ku are a mechanism to distinguish users, so their

relative values are more important than absolute esimates. Therefore, if a particular class of users

are high-end customers (more expensive data plan, for instance) Ku for them will be higher and

so on. The higher Ku is, the more important user u is, so the service provider can assign Ku for

different users depending on their relative importance to its revenues. If user u is served, the queue

length of every user l 6= u is Qn
l + An

l . For user u, however, the queue length (after transmission)

equals (Qn
u + An

u − Rn
u)

+ where (x)+ = max(x, 0) for any real number x. The total holding cost

Wn
u after serving user u in time slot n is then given by

Wn
u =

∑

l 6=u

Kl · (Q
n
l +An

l) +Ku · (Qn
u +An

u −Rn
u)

+

=
∑

l

Kl · (Q
n
l +An

l)−Kumin (Qn
u +An

u, R
n
u) .

(3.2)

Having described the system state, its evolution and the cost structure, we can now model the

problem of scheduling a user to serve in a given time slot as an MDP. The decision epochs are the

time slots {1, 2, . . .}. The state at time n is [Xn, Qn, An] with Markovian evolution described above.

7

The action space in every state is A = {1, 2, . . . , N} where action u corresponds to serving user u.

The cost in state [Xn, Qn, An] for action u is Wn
u . The transition probability p((j, z, b)|(i, y, a), u)

under action u from (i, y, a) to (j, z, b) (i, j ∈ ΩN , y, z ∈ ZN , a, b ∈ ZN) is given by

p((j, z, b)|(i, y, a), u) =

p1i1,j1 . . . p
N
iN ,jN

h1a1,b1 . . . h
N
aN ,bN

= pijhab if zu = (yu + au − riu)
+ and

zl = yl + al for l 6= u

0 otherwise.

(3.3)

Next we describe the value functions that form the basis of the Policy Improvement Algorithm

(PIA). Let VD(i, y, a) be the optimal cost starting from state [X0, Q0, A0] = [i, y, a] at time 0 over

time periods 0, 1, 2, . . . , D−1. If user u is served at time 0 the queue length vector in the next time

slot is

(y + a, i)u = (y1 + a1, . . . , yu−1 + au−1, (yu + au − riu)
+, yu+1 + au+1, . . . , yN + aN). (3.4)

For the sake of notational convenience, we define

Wu(i, y + a) =
∑

l

Kl · (yl + al)−Kumin (yu + au, riu) . (3.5)

A standard Dynamic Programming (DP) argument then yields the following Bellman equation

VD(i, y, a) = min
u=1,2,...,N

Wu(i, y + a) +
∑

(j,b)

pijhabVD−1(j, (y + a, i)u, b)

 . (3.6)

The goal of the scheduling policy is to determine the action u = u(i, y, a) that minimizes the long

run average cost limD→∞ VD(i, y, a)/D given the state (i, y, a) ∈ ΩN × ZN × ZN of the system. It

is well known from standard MDP theory [17] that such a policy {u(i, y, a)} exists in the infinite

horizon (D → ∞) if there is a constant g and a bias function w(i, y, a) satisfying

g + w(i, y, a) = min
u

{Wu(i, y + a) +
∑

(j,b)

pijhabw(j, (y + a, i)u, b)}. (3.7)

Any u that minimizes Wu(i, y + a) +
∑

(j,b) pijhabw(j, (y + a, i)u) over all u ∈ {1, . . . , N} is an

8

optimal action u(i, y, a) in state (i, y, a).

4 The Index Policy

Since solving the MDP to optimality is not feasible, we use the PIA to develop an easily imple-

mentable heuristic scheduling policy. The standard PIA [17] in this setting is given by:

1. Let π0 be an arbitrary policy that chooses action π0(i, y, a) ∈ A in state (i, y, a). Set n = 0.

2. Policy Evaluation Step: For (i, y, a) ∈ ΩN × ZN × ZN , solve the equations

gn + wn(i, y, a) = Wu(i, y + a) +
∑

(j,b)

pijhabwn(j, (y + a, i)u, b),

for gn and {wn(i, y, a) : i ∈ ΩN , y ∈ ZN a ∈ ZN} where u = πn(i, y, a) and n denotes the

number of iterations so far.

3. Policy Improvement Step: Let

πn+1(i, y, a) ∈ argmin
u∈A

{Wu(i, y + a) +
∑

(j,b)

pijhabwn(j, (y + a, i)u, b)}. (4.1)

If πn(i, y, a) minimizes the Right Hand Side (RHS), choose πn+1(i, y, a) = πn(i, y, a).

4. If πn+1 6= πn, set n = n+ 1 and go to step 2. Else, STOP. πn+1 is the optimal policy.

Under certain conditions [17] one can show that this algorithm terminates in a finite number of

steps.

We use the policy π1 (derived from one iteration of the PIA) as an approximation for the optimal

policy. We shall show that π1, after some approximations, is simple to implement and validate by

simulation that it improves upon the existing max-weight algorithm. The PIA approach does not

require π1 to be computed in every time slot, computing it once yields a closed form expression

for an index for each user u ∈ A that is valid in every time slot. This index is solely based on its

state (iu, yu, au) and the means of the packet arrival process {An
u, n ≥ 0} and the packet departure

9

process {Rn
u, n ≥ 0} of user u. The heuristic policy π1 that we recommend is to serve the user

whose index is minimized. Although we use the current Markovian structure for the evolution of

the channel state of users, the final index is independent of this Markovian structure. Derivation

of these indices involves choosing an initial policy and then using one step of the PIA. We discuss

such an initial policy in the next subsection.

4.1 Initial Policy

We consider the following state independent stationary policy as the initial policy π0: Serve user

u with probability qu in any time slot, where q1, q2, . . . , qN are fixed numbers such that for each

u ∈ A

qu > 0,
∑

u

qu = 1. (4.2)

Let q = [q1, q2, . . . , qN], gq be the long run cost and wq = {w(i, y, a) : (i, y, a) ∈ ΩN ×ZN ×ZN} be

the bias vector for this policy satisfying the equation

gq + wq(i, y, a) =
N
∑

u=1

qu

Wu(i, y + a) +
∑

(j,b)

pijhabwq(j, (y + a, i)u, b)

. (4.3)

We refer to this policy as the randomized policy or the q-policy. The equation (4.3) assumes stability

of the queues, i.e., {(Xn, Qn, An), n ≥ 0} is positive recurrent. We describe necessary and sufficient

conditions for stability of the q-policy below.

Let πu = [πu
1 , . . . , π

u
M] be the steady state distribution of the Markov Chain {Xn

u : n ≥ 0},

u = 1, 2, . . . , N . Then, since M is finite and the DTMC is irreducible, it is well known [11] that πu

exists and is the unique solution to

πu = πuP u,
M
∑

m=1

πu
m = 1.

10

Then we know from standard DTMC theory [11] that the long run average of {Rn
u, n ≥ 0} is

R̄u =
M
∑

k=1

rkπ
u
k . (4.4)

We further assume that for all u ∈ A the steady state distribution of the Markov Chain {An
u : n ≥ 0}

exists and is given by θu = [θu0 , θ
u
1 , . . .]. Let λu be the long run average of the number of data packets

that arrive for user u in one time slot. Then, from standard DTMC theory [11]

λu =
∞
∑

k=0

kθuk . (4.5)

A straightforward extension of the results on Matrix-Geometric methods for stochastic models [15]

can be used to show that the randomized q-policy is stable (i.e., each user’s queue is stable) if

λu < quR̄u, u = 1, 2, . . . , N. (4.6)

To get an idea of the physical significance of gq and wq(i, y, a) let us look at the long term cost

under this policy. Let V q
D(i, y, a) be the total cost in periods 0 through D − 1 starting in state

(i, y, a) under this initial q-policy. We use o(D) to denote terms that go to zero as D approaches

∞. Then using standard MDP theory [17] we have

V q
D(i, y, a) = gqD + wq(i, y, a) + o(D). (4.7)

Thus for a fixed q-policy and state (i, y, a) we can think of V q
D(i, y, a) as an asymptotically linear

function of D with slope gq and intercept wq(i, y, a).

Now consider the N queues {Qn
u, n ≥ 0} for u ∈ A under the following policy: In every time

slot serve user u with probability qu independent of all other users. For u ∈ A, the user u queue is

fed by its independent arrival process {An
u, n ≥ 0} as above. We call this the qu policy for user u.

Under the policy qu, let V
qu
D (iu, yu, au) be the total cost accumulated by user u starting from state

[X0
u, Q

0
u, A

0
u] = [iu, yu, au] at time 0 over time periods 0, 1, 2, . . . , D− 1. The mean cost incurred by

user u in time slot 0 is quKu(yu + au − riu)
+ + (1 − qu)Ku(yu + au). Thus the standard DTMC

11

theory [11] yields

V qu
D (iu, yu, au) = quKu(yu + au − riu)

+ + (1− qu)Ku(yu + au)

+
∑

ju,bu

qup
u
iu,ju

huau,buV
qu
D−1(ju, (yu + au − riu)

+, bu) +
∑

ju,bu

(1− qu)p
u
iu,ju

huau,buV
qu
D−1(ju, yu + au, bu).

Let gqu be the long run cost and wqu = {wu(iu, yu, au) : (iu, yu, au) ∈ Ω×Z×Z} be the bias vector

for the policy qu. It is known to satisfy the equation

gqu + wqu(iu, yu, au) = quKu(yu + au − riu)
+ + qu

∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, (yu + au − riu)
+, bu)

+ (1− qu)[Ku(yu + au) +
∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, yu + au, bu)].

(4.8)

Standard MDP theory [17] yields

V qu
D (iu, yu, au) = gquD + wqu(iu, yu, au) + o(D), (4.9)

which is the counterpart of (4.7) for user u. Then the following theorem gives an intuitive and

useful relation between gq, wq(i, y, a) and gqu , wqu(iu, yu, au). The proof of the theorem is given in

the appendix.

Theorem 4.1. Let gq be a constant and {wq(i, y, a) : i ∈ ΩN , y ∈ ZN a ∈ ZN} a function satisfying

(4.3). Then for all u ∈ A, there exist constants gqu and functions {wqu(iu, yu, au) : (iu, yu, au) ∈

Ω× Z × Z} that satisfy (4.8) and

gq =
∑

u

gqu (4.10)

wq(i, y, a) =
∑

u

wqu(iu, yu, au). (4.11)

4.2 Policy Evaluation

From (4.1) of the PIA the policy improvement step seeks to minimize

min(Wu(i, y + a) +
∑

(j,b)

pijhabwq(j, (y + a, i)u, b) (4.12)

12

over all u ∈ A. As seen in the next subsection, we do not need to compute wq(i, y, a), computing

the difference wq(j, (y + a, i)u, b)− wq(j, y + a, b) is sufficient. Computing this is a key step in the

derivation of the index since the computation of wq(i, y, a) itself is intractable. We will need the

following notations to compute wq(j, (y + a, i)u, b)− wq(j, y + a, b). Let

Zu = min{m ≥ 0 : Qm
u = 0}, u ∈ A, (4.13)

Tu(iu, yu, au) = E[Zu|X
0
u = iu, Q

0
u = yu, A

0
u = au]. (4.14)

For a stable randomized policy, Tu(iu, yu, au) < ∞ for all (iu, yu, au) ∈ Ω× Z × Z and all u ∈ A.

Consider two sample paths {(Xn,m, Qn,m, An,m), n ≥ 0}, m = 1, 2, of the {(Xn, Qn, An), n ≥ 0}

process that are coupled as follows:

X0,1 = X0,2 = j, A0,1 = A0,2 = a, Q0,1 = (y + a, i)u, Q0,2 = y + a (4.15)

An,1 = An,2, Xn,1 = Xn,2 for n ≥ 0. (4.16)

Let vm(n) be the user served in slot n along sample path m, and

v1(n) = v2(n) for n ≥ 0. (4.17)

Now we introduce the notation w∆
q (j, y, (y + a, i)u, b) = wq(j, (y + a, i)u, b) − wq(j, y + a, b). It

can be thought of as the expected difference of the cost accumulated along the two sample paths

{(Xn,m, Qn,m, An,m), n ≥ 0}, m = 1, 2 described above. The queue length trajectory along both

paths is complicated and hence it is not possible to compute exact closed form expression for

w∆
q (j, y, (y+a, i)u, b). The next theorem, however, presents closed form expressions for a lower and

an upper bound of w∆
q (j, y, (y + a, i)u, b).

13

Theorem 4.2. For a stable randomized policy,

−Kumin(riu , yu + au)Tu(iu, (yu + au − riu)
+, au) ≥ w∆

q (j, y, (y + a, i)u, b)

−Kumin(riu , yu + au)Tu(iu, yu + au, au) ≤ w∆
q (j, y, (y + a, i)u, b). (4.18)

The proof is given in the appendix. Having computed the bias difference w∆
q (j, y, (y+ a, i)u, b), we

now derive the one-step improved policy in the next subsection.

4.3 Policy Improvement Step

We apply one step of the PIA and use some further approximations to derive an index for every

user. Now minimizing the expression in (4.12) over all u ∈ A is equivalent to minimizing

I
′′′

u (i, y, a) = Wu(i, y + a)−
∑

l

Kl(yl + al) +
∑

(j,b)

pijhab [wq(j, (y + a, i)u, b)− wq(j, y + a, b)] (4.19)

over all u ∈ A since for a given (i, y, a), the additional term −
∑

l Kl(yl+al)+
∑

(j,b) pijhabwq(j, y+

a, b) does not depend on u. The improved policy (our recommended policy) then serves the user

with the highest index I
′′′

u (i, y, a). The next theorem gives an upper and lower bound for I
′′′

u (i, y, a).

Theorem 4.3. I
′′′

u (i, y, a) given by (4.19) is a function only of the state of user u, i.e.,

I
′′′

u (i, y, a) = I
′′

u (iu, yu, au), (4.20)

−Kumin(riu , yu + au)Tu(iu, yu, au) ≥ I
′′

u (iu, yu, au) ≥ −Kumin(riu , yu + au)Tu(iu, yu + riu , au).(4.21)

The proof can be found in the appendix. Thus we know the upper and lower bound for the index

14

I
′′

u (iu, yu, au). One can use these bounds to define the Average Index (AI) given by

I
′

u(iu, yu, au) = Kumin(riu , yu + au) [Tu(iu, yu + riu , au) + Tu(iu, yu, au)] (4.22)

Note that I
′

u(iu, yu, au) has been obtained by taking the average of the upper and lower bound

of I
′′

u (iu, yu, au) and multiplying the result by -1. Hence whereas the index policy based on

I
′′′

u (iu, yu, au) is to serve the user u for whom I
′′

u (iu, yu, au) is minimized, the index policy based

on I
′

u(iu, yu, au) is to serve the user u for whom I
′

u(iu, yu, au) is maximized. We will see in the

simulation results that this index policy performs better than the MWA for the entire traffic range.

Exact values of the first passage times Tu(iu, yu+ riu , au) and Tu(iu, yu, au) can be obtained only

by numerically solving a set of countably infinite first passage time [11]. Hence, we use the following

to approximate the first passage times. Consider the queue of user u. On an average, the number

of net departures per time slot is quR̄u − λu. Hence, starting with yu packets in the queue, the

expected time when the queue length Qn
u first hits zero can be approximated by

Tu(iu, yu, au) ≈
yu

quR̄u − λu

. (4.23)

Using the approximation (4.23) yields the following expressions for AI:

Iu(iu, yu, au) =
Ku

quR̄u − λu

(2yu + riu)min(riu , yu + au). (4.24)

When all users are identical, Ku, qu, R̄u and λu don’t depend on u we recommended using qu = 1/N

yielding the index

Iu(iu, yu, au) = (2yu + riu)min(riu , yu + au). (4.25)

The general expression for the index in (4.24) immediately begs the question of the choice of

15

qu, u ∈ A. We choose qu so that the resulting index policy is stable as discussed in section 5 in

general and (5.3) in particular. We will also see in section 5 that qu = 1/N yields stable index

policies for stochastically identical users. Substituting this in (4.24) we get the Uniform Index (UI)

Iu(iu, yu, au) =
Ku

R̄u/N − λu

(2yu + riu)min(riu , yu + au). (4.26)

We can now describe our Index Policy (IP) as follows: In time slot n, given state (i, y, a) of the

system, the user vIP (n) served according to the IP is

IP : vIP (n) ∈ argmax
u

Ku

quR̄u − λu

min(Rn
u, Q

n
u +An

u) [2Q
n
u +Rn

u] . (4.27)

In particular we use the UI given by (4.26) to yield the Uniform Index Policy (UIP). Thus, the user

vUIP (n) served in the nth time slot according to the UIP is

UIP : vUIP (n) ∈ argmax
u

Ku

R̄u/N − λu

min(Rn
u, Q

n
u +An

u) [2Q
n
u +Rn

u] . (4.28)

4.4 Variable Number of Users

In the analysis so far, no user is allowed to arrive in or depart from the cell. We call such a cell

‘static’. Next we describe a version of IP for the ‘dynamic’ cell that allows for both user arrivals

and departures. We do not intend to analyze the dynamic cell rigorously in this paper, i.e., we do

not derive a scheduling policy taking the ”dynamic” nature of the cell into the account. Rather,

we present the results of our policy for the dynamic cell merely as an extension of what happens in

this setting, if in every slot n, we use the IP (derived for the static cell) by replacing the constant

N of the static cell with the number of users N(n) in slot n in the dynamic cell. Wr refer the reader

to [12] for a more rigorous treatment of scheduling in the presence of such flow level dynamics. In

16

this section, to derive N(n), we assume users arrive according to a Poisson process with rate λ.

Once in the cell, sojourn time of a user is generally distributed with mean a. Thus, in steady state

the number of users is a Poisson random variable with mean Navg = λa. Then {N(n), n ≥ 0} is

the number of customers in an M/G/∞ queue and the index given by equation (4.26) is modified

for this case as follows:

Iu(iu, yu, au) =
Ku

R̄u/N(n)− λu

min(riu , yu + au) [2yu + riu] . (4.29)

However, since we only look at the case of stochastically identical users in section 7, the UIP in

this case reduces to maximizing Iu(iu, yu, au) given by (4.25) over all users that are present in the

cell. The stability of this system follows from the fact that every user leaves the cell eventually

bringing the corresponding queue length to zero. In the next section we discuss the stability of the

index policy for a static cell.

5 Stability of the Index Policy

A desirable condition that should be satisfied by any policy implementable in practice is its stability,

namely the queue lengths do not grow out of bounds with time. We discuss the stability of the

IP in this section.We refer to the entire set of N inequalities given by quR̄u > λu, u = 1, 2, . . . , N

as the Individual Stability Conditions (ISCS). Consider instead the Aggregate Stability Condition

(ASC) given by

∑

u

λu

R̄u

< 1. (5.1)

The ASC is clearly less restrictive than the ISCS, because any q-policy that satisfies the ISCS will

satisfy (5.1). The ASC is also more useful in real life applications than the ISCS because it doesn’t

depend on the choice of the initial q-policy (which can be arbitrary). However, since the index in

17

(4.27) depends on q-policy, we explore the connection between the ASC and the ISCS in the lemma

below.

Lemma 5.1. If the ASC (5.1) holds, ∃ an initial q-policy that satisfies the ISCS (4.6) for all u ∈ A.

Proof. Let κu = λu/R̄u. Then (5.1) implies

∑

u

κu < 1. (5.2)

Consider the q-policy given by

qu =
κu

∑

u κu
. (5.3)

Clearly this is a valid q-policy satisfying (4.2). Further, for all u ∈ A, using (5.3)

quR̄u =
λu

∑

u κu
, (5.4)

which reduces to the ISCS (4.6) using equation 5.2.

It should be noted here that under the assumption of stochastically identical users, κu is the same

for every user and the initial q-policy (5.3) reduces to qu = 1/N .

We now state the stability conditions and prove the stability of the IP in the next theorem. We

use a well developed theory of stability using Lyapunov drift [4, 20].

Theorem 5.2. If (5.1) holds, then there exists a q = [q1, q2, . . . , qN] such that the IP using index

in (4.27) is stable.

Proof. Lemma 5.1 implies there exists a q given by (5.3) such that the ISCS (4.6) hold. Now we

follow a technique similar to the one used in [1]. Define a Lyapunov function G(Q) on the set of

queue length vectors Q ∈ ZN as follows: G(Q) =
∑N

u=1 δuQ
2
u. Then it is enough to prove that

18

G(Q) has negative drift except in a finite set Λ ∈ ZN for some δu > 0, u ∈ A. Choose

δu =
Ku

quR̄u − λu

. (5.5)

Then from (4.6) δu > 0 for u = 1, 2, . . . , N . Recall that

v(n) ∈ argmax
u

δumin(Rn
u, Q

n
u +An

u) [2Q
n
u +Rn

u] . (5.6)

For u = 1, 2, . . . , N define

Jn
u = min(Rn

u, Q
n
u +An

u)1(u = v(n)), (5.7)

where 1(u = v(n)) = 1 if u = v(n) and 0 otherwise. Therefore, (3.1) implies

Qn+1
u = Qn

u +An
u − Jn

u . (5.8)

Squaring (5.8), then adding and subtracting Rn
u(A

n
u − Jn

u) on the Right Hand Side (RHS) of the

resulting equation and finally multiplying both sides by δu yields

δu(Q
n+1
u)2 − δu(Q

n
u)

2 = δuJ
n
u (R

n
u + Jn

u)− δuA
n
u(R

n
u + Jn

u) + δu(A
n
u)

2 − δuA
n
uJ

n
u

+ δu(2Q
n
u +Rn

u)(A
n
u − Jn

u)

(5.9)

Let R∗ = maxu ru. Clearly Jn
u ≤ R∗, and since An

u, R
n
u, J

n
u ≥ 0, summing (5.9) over all u ∈ A,

∑

u

[

δu(Q
n+1
u)2 − δu(Q

n
u)

2
]

≤
∑

u

δu
[

2(R∗)2 + (An
u)

2
]

+
∑

u

[δu(2Q
n
u +Rn

u)(A
n
u − Jn

u)] . (5.10)

Now let ζnu be the number of packets served to user u and vq(n) be the user served in time slot n

19

under the randomized policy. Then

∑

u

δu(2Q
n
u +Rn

u)J
n
u = δv(n)(2Q

n
v(n) +Rn

v(n))min(Rn
v(n), Q

n
v(n) +An

v(n)) (5.11)

∑

u

δu(2Q
n
u +Rn

u)ζ
n
u = δvq(n)(2Q

n
vq(n)

+Rn
vq(n)

)min(Rn
vq(n)

, Qn
vq(n)

+An
vq(n)

) (5.12)

∑

u

δu(2Q
n
u +Rn

u)J
n
u ≥

∑

u

δu(2Q
n
u +Rn

u)ζ
n
u , (5.13)

where (5.13) follows from (5.11), (5.12), (5.6) and (5.7). Equation (5.13) implies

∑

u

[

δu(Q
n+1
u)2 − δu(Q

n
u)

2
]

≤
∑

u

δu
[

2(R∗)2 + (An
u)

2
]

+
∑

u

[δu(2Q
n
u +Rn

u)(A
n
u − ζnu)]

≤
∑

u

δu
[

2(R∗)2 + (An
u)

2 +Rn
uA

n
u

]

−
∑

u

[δu(2Q
n
u)(ζ

n
u −An

u)]

(5.14)

Since {An
u, n ≥ 0} and {Rn

u, n ≥ 0} are independent of each other, E[ζnu] = quR̄u and E[An
u] = λu,

it follows from (5.14) that

E

[

∑

u

δu(Q
n+1
u)2 −

∑

u

δu(Q
n
u)

2|Qn

]

≤ ω − 2
∑

u

[

Qn
uδu(quR̄u − λu)

]

, (5.15)

where the constant ω = 2(R∗)2
∑

u δu +
∑

u δE(A
n
u)

2 +
∑

u δuR̄uλu. Furthermore, letting K# =

minuKu and using (5.5) in (5.15) we have

E

[

∑

u

δu(Q
n+1
u)2 −

∑

u

δu(Q
n
u)

2|Qn

]

≤ ω − 2K#
∑

u

Qn
u. (5.16)

Thus we have proved that for any α > 0, the expected drift E
[
∑

u δu(Q
n+1
u)2 −

∑

u δu(Q
n
u)

2|Qn
]

<

−α except in the finite set Λ given by

Λ =

{

Qn ∈ ZN :
∑

u

Qn
u ≤

ω + α

2K#

}

, (5.17)

20

as required.

Thus our approach is to use the initial policy (5.3) to compute our index policy (4.27) and the

theorem above guarantees its stability. We further note that the stability region of this system is

given by the region S = {λu <
∑M

m=1 rkπ
u
mqmu , u = 1, 2, . . . , N} for some channel aware probability

(depends on the channel state m of the user) qmu of serving user u [18]. It is easy to see that IP is

stable in S as well. To see this, note that the proof above works out in this setting by replacing

qu with qnu that can depend on (the state in) time slot n. This will make δ also dependent on n.

However, the only condition on δ needed in the proof is δ > 0 which will be true in the stability

region S.

5.1 Implementation and Estimation Issues

The IP and UIP given by equations (4.27) and (4.28) respectively require estimates of R̄u and λu for

their implementation. We therefore recommend the use of an index with a coefficient different from

the one used in AI (equation 4.24) and show how it is equivalent to using the AI itself, incorporating

the optimality and stability properties of the AI. For δu > 0, define Robust Index (RI) as:

Iu(iu, yu, au) = δu(2yu + riu)min(riu , yu + au). (5.18)

For each user u ∈ {1, 2, . . . , N}, the coefficient δu should be chosen depending on the priority (for

service) to be given to that user - higher priority implying a higher value of δu. There are several

advantages of using this index. Firstly, there is no need for any rate or arrival parameter estimates.

Second, as long as δu > 0, stability of queues is guaranteed according to Theorem 5.2. Finally,

equating the two coefficients δu and Ku/(quR̄u − λu), we see that using δu as the coefficient is

21

equivalent to using a qu given by:

qu =
1

R̄u

(

λu +
Ku

δu

)

(5.19)

Clearly, quR̄u > λu implying that the ISCS hold and the system is stabilizable, as required. This

also means that the ASC holds, i.e.,
∑

u λu/R̄u < 1. Summing equation (5.19) over all u, we get

1 =
∑

u qu =
∑

u λu/R̄u +
∑

uKu/(δuR̄u). Equivalently,
∑

uKu/(δuR̄u) = 1 −
∑

u λu/R̄u. Since

the ASC holds, 1 −
∑

u λu/R̄u is a positive constant, say c. Hence for a given mobility and data

arrival profile (R̄u, λu), choosing a higher value of δu (to ensure
∑

uKu/(δuR̄u) is a constant) is

equivalent to increasing Ku, i.e., giving more priority to user u. Define the Robust Index Policy

(RIP) as the policy serving the user vRIP (n) in slot n such that

RIP : vRIP (n) ∈ argmax
u

δumin(Rn
u, Q

n
u +An

u) [2Q
n
u +Rn

u] . (5.20)

The policy that we finally recommend for implementation is the RIP since it is equivalent to the IP:

just like IP, it is an outcome of one step of policy improvisation of a randomized policy whose choice

of qu guarantees stabilizability. Its throughout optimality follows from Theorem 5.2 and thus we

have a policy that is intuitive (increasing δu increases the service priority of a user), incorporates

the optimality and stability properties of the IP as explained above and is robust, i.e., does not

require any estimation as was implied in the use of IP. When users are identical, we recommend

using δu = 1 yielding the index of equation (4.25). We present results corresponding to this policy

in section 7.2.

Thus to be implemented in real systems, first of all we need to compute Rn
u for each user u =

1, 2, . . . , N from its channel state Xn
u . As mentioned in the introduction, current systems already

do that through the pilot signal, so the technology to do that is already developed and there is

no additional design modification and effort required. Further, since even in current systems, base

22

stations do manage the data for all users, even Qn
u is known without additional effort. Therefore,

the proposed algorithm does not pose any additional technological or data management challenges

to the existing system.

6 Performance Analysis

In this section we compare our algorithm to the MWA. First we show that the space and time

complexity of the index policies and the MWA are the same. The state vector of a user at time

n in the MWA algorithm is given by [Rn
u, Q

n
u, A

n
u]. The computation of the MWA index of (2.1)

takes a constant time. The actual scheduling step involves a maxima over N entities, which is an

O(N) operation. In fact, it can be easily argued that there is a matching lower bound of Ω(N)

because any algorithm must examine all of the inputs to be sure that it actually finds the maximum

value. Thus the time complexity of the MWA is constant + O(N) while space complexity is 3N .

Similarly, the time complexity of each of the index policy RIP too (as well as UIP and the more

general, IP) is constant + O(N) while space complexity is 3N which are the same as that of the

MWA. Further, since the expected throughput B =
∑

u λu for any stable policy, we concentrate

on ξ = Long run expected sum of queue lengths of all users as the performance measure. We

compare the RIP with MWA by comparing their achieved ξ values for a wide range of arriving

packet load (λu). We assume that all the users have the same TPM P with limiting distribution

π = [π1, . . . πM], and that {Xn : n ≥ 0} is aperiodic. Furthermore, we assume that Ku = K for all

u ∈ 1, 2, . . . , N yielding δu = 1 for RIP.

23

7 Simulation Results

We first use simulation to compare the performance of the RIP with respect to the optimal on a

small problem. We estimate ξ for the RIP and the optimal policy. Then, we use simulation to

estimate ξ for the RIP and the MWA on a realistic problem of large size. The code for all simulation

has been written using the C programming language. We use standard statistical estimators and

refer to our earlier paper [7] for details.

7.1 Simulation Parameters

We run every path of the Markov Chain for 106 time slots and use a warmup period of 5 ∗ 105 time

slots. We use the following TPM P of the channel state Markov Chain {Xn
u , n ≥ 0} for all users

u ∈ A:

P = αI +
1− α

M − 1
(D − I),

where I is an M ×M identity matrix and D is an M ×M matrix with all entries equal to 1. This

implies that the Markov Chain stays in a given state for Geometric(1 − α) number of time slots

and then moves to one of the remaining M − 1 states with equal probability.

Due to curse of dimensionality, we can not compare our policy with the optimal policy for a full

blown system with large number of users and channel states. However, just to get a flavor of the

extent of non-optimality, albeit on a small problem, we present the following comparison before

we launch into comparing our policy (RIP) with existing algorithms on a large example. In this

illustrative example, we consider N = 2 users and M = 2 available data rates, i.e., r ={1, 2}. We

assume a simple arrival process: for each user, in every slot, 1 packet arrives with a probability

p and no packet arrives with probability 1 − p. The optimal policy was derived using a matlab

code. The queue-length of each user increases at a very fast rate with increase in p, so we present

24

the comparative performance (with respect to the optimal) of the RIP for p ∈ {0.1, 0.2, 0.3}. The

computational effort required for higher values of p becomes prohibitively large, since the buffer

sizes (and consequently the size of the state space) required to hold the queues blow up. In table

1, we present simulation results comparing the ξ of RIP with ξ of the optimal policy.

[Table 1 about here.]

Now, to compare the RIP with existing algorithms, we consider a realistic scenario with M = 11

data rates. We use the following set of available data rates (kbps) [6]: r ={1, 2, 3, 4, 5, 8, 16, 24, 32,

48, 64}. Since P is doubly stochastic, πk = 1/M = 1/11 yielding R̄u = 18.8 for all u = 1, 2, . . . , N .

Further, the length of a time slot is 1.67∗10−3 seconds. We choose α = 0.9999 implying that on the

average the Markov Chain stays in one state for 104 time slots, i.e., 16.7 seconds, before changing

states.

7.2 Constant Number of Users

We use L = 100 sample paths of the Markov Chain {Xn
u , n ≥ 0}. Since all users are assumed

stochastically identical, we use the same λu = λp for all u = 1, 2, . . . , N . In the notation λp we use

the subscript p to indicate the mean arrival rate of packets. We use λ in sections 4.4 and 7.3 to

denote the arrival rate of users themselves. We vary λp from 0.1 to 1.7 and report the results in

table 2. We use 1.7 as the maximum value of λp for reporting results, since there are 10 users and

the total average departure rate is R̄u = 18.8.

[Table 2 about here.]

In table 2, ξ-RIP, ξ-MWA and ξ-EXP represent the total queue lengths under RIP, MWA and

the exponential rule respectively. The Imp-MWA column represents the absolute improvement of

RIP over MWA (= ξ-MWA - ξ-RIP) followed by percentage improvement (reported in parenthe-

ses, computed using % Imp = 100*Imp-MWA/ξ-MWA). Similarly Imp-EXP column displays the

25

corresponding improvement of RIP over the exponential rule. From the Table 2 we see that the

RIP performs better (lower ξ) than the MWA across the entire range of λp from 0.1 (low traffic)

to 1.7 (high traffic). The % Imp is more for lower values of λp. The similar performance of RIP

and MWA for higher λp is expected because in heavy traffic min(riu , yu + au) = riu for most time

slots. Thus the index given by (4.25) becomes similar to the MWA index given by (2.1). It is worth

noting, however, that although the % Imp decreases with increase in λp (except from 0.1 to 0.25),

the absolute improvement increases monotonically with λp. As expected, the RIP performs signif-

icantly better than the Exponential Rule because the RIP is designed to minimize ξ whereas the

Exponential Rule minimizes the maximum steady state (weighted) queue length among all users.

The above results come from high warmup period, and hence seem difficult to apply in real life

settings. Further, for the algorithm to be useful, it should work for various values of α corresponding

to various mobility scenarios. For instance, α = 0.9999 implies an average of 10,000 slots between

state change, while α = 0.999 implies 1000 and α = 0.99 implies 100 slots. We perform simulations

for a much lower value of warmup, i.e., 5000 and α = 0.999, 0.99 and observe that results look

similar. We report the results in table 3 below:

[Table 3 about here.]

7.3 Poisson Arrival of Users

The user dyanmics is as given in section 4.4. We choose a = 1 minute and Navg = 10.

We use L = 100, T = 5 ∗ 105 (106 total time slots and 5 ∗ 105 warmup slots). We report the

results in Table 4 using the same format as that for Table 2.

[Table 4 about here.]

It is clear from the Table 4 that the best improvement for UIP, close to 25 %, corresponds to

λp = 0.1. The results follow a similar trend as the static cell. As in the static cell, the index of

26

the MWA and the UI are similar in the high traffic regime yielding similar results. Even for the

dynamic cell, we have performed simulation for 5000 warmup slots and various values of α. As in

static cell, these results have relative trends (across different policies) that are similar to the base

mobility scenario (α = 0.9999) of table 4; hence we omit them here to keep the exposition from

being repetitive.

8 Conclusion

In this paper we have used the MDP formulation and the PIA to develop an Index policy for the data

transfer problem in a single cell of a wireless telecommunication network. Our main contribution

is the development of an explicit optimization based approach (using an MDP model, and use

of Policy Improvement Algorithm in a creative way) that yields the recommended policy as an

outcome. Exact computation of the index is intractable, so we use appropriate approximations to

yield a simple, intuitive, closed form index that is somewhat similar to the MWA in implementation,

and slightly better in performance over the existing MWA. The approximation 4.23 tends to reduce

this performance improvement, and better approximations for 4.23 are guaranteed to result in more

performance improvement. However, while we are working on it now, it is beyond the scope of this

paper whose main purpose is to demonstrate that an MDP-based explicit optimization approach can

yield well performing and easy to implement scheduling policies. The advantage of this approach,

other than those that follow from it being based on a systematic optimization procedure, is that

it can accommodate a variety of scenarios, for example different user types, giving more or less

weight to the queuing of data packets (by changing the penalty function in the one step reward

from linear to something else), incorporating additional measures of rewards for service to different

types of users and so on. Moreover, the framework can be extended to channel (condition) aware

scheduling by having the initial policy (the q policy, i.e. the initial policy of the policy improvement

27

algorithm) depend on the state.

Future extensions of this work can include developing effective policies under the setting of a

non-Markovian evolution of the state of the users, using admission control to limit the number

of arriving users to maintain target performance. The work can also be extended to evaluate the

performance of the IP when the parameters λp and the TPM P are no longer assumed to be known,

but estimated dynamically. This extension will get the IP really close to being implementable in

real life situations where none of the packet arrival and departure parameters are known.

APPENDIX

Proof of Theorem 4.1 Let gq, wq(i, y, a), {gqu , u = 1, 2, . . . , N} and {wqu(iu, yu, au), u = 1, 2, . . . , N}

satisfy (4.3), (4.10) and (4.11). Using (4.8) in the RHS of (4.11) and rearranging, we have

N
∑

u=1

gqu +
N
∑

u=1

wqu(iu, yu, au) =
N
∑

u=1

[

quKu(yu + au − riu)
+ + (1− qu)(Ku(yu + au)

]

+
N
∑

u=1

qu
∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, (yu + au − riu)
+, bu) +

N
∑

u=1

(1− qu)
∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, yu + au, bu).

(.1)

Algebraic rearrangement of some terms yields

N
∑

u=1

(1− qu)
∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, yu + au, bu) =
N
∑

u=1

qu
∑

l 6=u

∑

(jl,bl)

pliljlh
l
albl

wql(jl, yl + al, bl),

N
∑

u=1

(1− qu){Ku(yu + au)} =
N
∑

u=1

qu
∑

l 6=u

{Kl(yl + al)}. (.2)

28

From (.1) and (.2), and using (3.2) for the definition of Wu(i, y + a), we have

N
∑

u=1

gqu +
N
∑

u=1

wqu(iu, yu, au) =
N
∑

u=1

[quWu(i, y + a)]

+
N
∑

u=1

qu[(
∑

(ju,bu)

puiujuh
u
aubu

wqu(ju, (yu + au − riu)
+, bu)) + (

∑

l 6=u

∑

(jl,bl)

pliljlh
l
albl

wql(jl, yl + al, bl))]

(.3)

Since ∀k,m ∈ A, k 6= m wqm(·, ·, ·) is independent of pkikjkh
k
akbk

, and from (3.3) for the definitions

of pij and hab, and (3.4) for the definition of (y + a, i)u, (.3) reduces to

N
∑

u=1

gqu +
N
∑

u=1

wqu(iu, yu, au) =
N
∑

u=1

quWu(i, y + a) +
N
∑

u=1

qu
∑

j,b

pijhabwq(j, (y + a, i)u, b), (.4)

which yields (4.3) by setting

gqu = quKu(yu + au − riu)
+ + (1− qu)[Ku(yu + au)] and

gq =
N
∑

u=1

gqu , wq(i, y, a) =
N
∑

u=1

wqu(iu, yu, au),

as required.

Proof of Theorem 4.2 From (4.11),

w∆
q (j, y, (y + a, i)u, b) =

∑

l

wql(il, (y + a, i)ul , al)−
∑

l

wql(il, yl + al, al)

= wqu(iu, (yu + au − riu)
+, au)− wqu(iu, yu + au, au)

(.5)

Therefore, we only need to consider user u for computing w∆
q (j, y, (y+a, i)u, b). Now consider path

1 and path 2. We plot the queue lengths of user u along these paths in figure 8. Recall that Zu(·, ·, ·)

and Tu(·, ·, ·) are defined by equations (4.13) and (4.14) respectively. We define Zm
u , m = 1, 2 to be

29

the first time when the queue length of user u in path m goes to zero. Then

Z1
u = Zu(ju, (yu + au − riu)

+, au), Z2
u = Zu(ju, yu + au, au), (.6)

T 1
u = Tu(ju, (yu + au − riu)

+, au), T 2
u = Tu(ju, yu + au, au). (.7)

[Figure 1 about here.]

Let Cm
n be the cost incurred by user u along path m in time slot n and let Cn = C1

n − C2
n be the

corresponding difference in costs. Then from equation .5,

w∆
q (j, y, (y + a, i)u, b) = E

∑

n≥0

[Cn]

 . (.8)

It is easy to see from the coupling of paths in (4.15) and (4.17) and figure 8 that

Cn = 0, n ≥ Z2
u (.9)

Using (.5) through (.7) and (.9) in (.8)

w∆
q (j, y, (y + a, i)u, b) = E

∑

n<Z2
u

Cn

 (.10)

Clearly,

Cn = Ku(Q
n,1
u −Qn,2

u). (.11)

Consider the queue lengths Qn,1
u and Qn,2

u in paths 1 and 2 respectively. Both get the same number

of data packets in every time slot and serve the same number of packets to user u whenever

enough data is available in both the queues. Thus for n ≤ Z1
u the difference Qn,2

u − Qn,1
u remains

the same as Q0,2
u − Q0,1

u . For Z2
u > n > Z1

u, the difference Qn,2
u − Qn,1

u remains the same as

30

Qn−1,2
u −Qn−1,1

u when either user u is not served or user u is served and Qn,1
u ≥ r

X
n,1
u

, Qn,2
u ≥ r

X
n,2
u

.

Also Qn,2
u −Qn,1

u < Qn−1,2
u −Qn−1,1

u if Qn,1
u < r

X
n,1
u

. Thus as indicated in figure 8,

Qn,2
u −Qn,1

u = min(riu , yu + au), n ≤ Z1
u, (.12)

Qn,2
u −Qn,1

u < min(riu , yu + au), Z2
u > n > Z1

u. (.13)

Using (.11), (.12) and (.13) in (.10), and the definitions (4.14), (.6) and (.7) of T 1
u and T 2

u respectively

yields (4.18), as required.

Proof of Theorem 4.3 Using (3.5) for the definition of Wu(i, y + a) and (4.19) we have

I
′′′

u (i, y, a) = −Kumin(riu , yu + au) +
∑

(j,b)

pijhab [wq(j, (y + a, i)u, b)− wq(j, y + a, b)] (.14)

Thus (4.18) and (.14) yield,

−Kumin(riu , yu + au)[1 +
∑

(ju,bu)

puiujuhaubuTu(ju, (yu + au − riu)
+, au)] ≥ I

′′′

u (i, y, a) (.15)

−Kumin(riu , yu + au)[1 +
∑

(ju,bu)

puiujuhaubuTu(ju, yu + au, au)] ≤ I
′′′

u (i, y, a). (.16)

Further, we know that {(Xn
u , A

n
u), n ≥ 0} is a DTMC with state space Ω × Z because both the

components {Xn
u , n ≥ 0} and {An

u, n ≥ 0} are independent DTMC’s with P u and Qu as the TPM’s

respectively. Therefore using standard DTMC theory [11]

Tu(iu, yu, au) = 1 +
∑

(ju,bu)

puiujuhaubuTu(ju, (yu + au − riu)
+, au) (.17)

Tu(iu, yu + riu , au) = 1 +
∑

(ju,bu)

puiujuhaubuTu(ju, yu + au, au). (.18)

Using (.17) in (.15) and (.18) in (.16) yields (4.21) and (4.20), as required.

31

References

[1] M. Andrews. A survey of scheduling theory in wireless data networks. IMA Volumes in

Mathematics and its applications, 143:1–18, 1999.

[2] M. Andrews, K. Jung, and A. Stoylar. Stability of the max-weight routing and scheduling

protocol in dynamic networks and at critical loads abstract, 2007.

[3] M. Andrews, K. Kumaran, K. Ramanan, A.L. Stolyar, R. Vijayakumar, and P. Whiting.

Scheduling in a queueing system with asynchronously varying service rates. Probability in the

Engineering and Informational Sciences, 18:191–217, 2004.

[4] S. Asmussen. Applied Probability and Queues. John Wiley & Sons, Inc, 1987.

[5] B. Awerbuch and T. Leighton. A simple local-control approximation algorithm for multi-

commodity flow. In Proceedings of the 34th Annual Symposium on Foundations of Computer

Science, pages 459 – 468, 1993.

[6] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi. A bandwidth

efficient high speed data service for nomadic users. IEEE Communications Magazine, 38:70–77,

July 2000.

[7] N. Bolia and V. Kulkarni. Index policies for resource allocation in wireless networks. IEEE

Transactions on Vehicular Technology, 58:1823–1835, 2009.

[8] G. D. Celik, Long B. Le, and E. Modiano. Scheduling in parallel queues with randomly varying

connectivity and switchover delay. In Proc. IEEE INFOCOM’11, April 2011.

[9] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks using queue-length

based scheduling and congestion control. In Proceedings of IEEE INFOCOM ’05, pages 1794–

1803, 2005.

32

[10] K. Glazebrook, J. Nino-Mora, and P.S. Ansell. Index policies for a class of discounted restless

bandits. Advances in Applied Probability, 34:754–774, December 2002.

[11] V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, Inc, New York,

USA, 1995.

[12] S. Liu, Lei Ying, and R. Srikant. Throughput-optimal opportunistic scheduling in the presence

of flow-level dynamics. IEEE/ACM Transactions on Networking, 19:1–15, August 2011.

[13] N. W. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-

queued switch. In Proceedings of IEEE INFOCOM ’02, pages 1451–1460, 2002.

[14] M. J. Neely, E. Modiano, and C. E. Rohrs. Power and server allocation in a multi-beam

satellite with time varying channels. In Proceedings of IEEE INFOCOM ’02, pages 1451–1460,

2002.

[15] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach.

The Johns Hopkins University Press, 1981.

[16] M. Opp, K. Glazebrook, and V. Kulkarni. Outsourcing warranty repairs: Dynamic allocation.

Naval Research Logistics Quarterly, 52:381–398, December 2005.

[17] M. Puterman. Markov Decision Processes - Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc, New York, USA, 1994.

[18] S. Shakkottai and A. L. Stolyar. Scheduling for multiple flows sharing a time-varying chan-

nel: The exponential rule. Analytic Methods in Applied Probability. In Memory of Fridrih

Karpelevich. Yu. M. Suhov, Editor, 207:185–202, 2002.

[19] S. Shakkottai, A. L. Stolyar, and R. Srikant. Pathwise optimality of the exponential scheduling

rule for wireless channels. Advances in Applied Probability, 36:1021–1045, 2004.

33

[20] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions

on Automatic Control, 37:1936–1948, December 1992.

[21] R. Weber. On the gittins index for multiarmed bandits. The Annals of Applied Probability,

2:1024–1033, November 1992.

[22] P. Whittle. Multi-armed bandits and the gittins index. Journal of the Royal Statistical Society,

42:143–149, 1980.

34

List of Figures

1 Queue lengths for user u along paths 1 and 2 until both hit zero 36

35

path 2 ()

path 1 ()

T 2
u

(yu + au)

time n

m
in
(r

i u
,y

u
+
a
u
)

(yu + au − riu)
+

Queue length Y n
u

T 1
u

Figure 1: Queue lengths for user u along paths 1 and 2 for 0 ≤ n ≤ Z2
u. The queue length remains

the same during a time slot. The difference Qn,2
u − Qn,1

u remains equal to min(riu , yu + au) for
0 ≤ n ≤ Z1

u because equal amount of data can be served along both paths. For Z2
u > n > Z1

u,
0 ≤ Qn,2

u − Qn,1
u ≤ min(riu , yu + au). The difference Qn,2

u − Qn,1
u goes down in every slot in which

there isn’t enough data to serve for user u along path 1. For n ≥ Z2
u, Q

n,2
u = Qn,1

u and are therefore
not shown in the figure.

36

List of Tables

1 Comparison of the RIP with the Optimal Policy cell 38
2 Performance of the index policy, the MWA and the Exponential Rule in the static cell 39
3 Performance of the index policy, the MWA and the Exponential Rule in the static cell 40
4 Performance of the index policy, the MWA and the Exponential Rule in the dynamic

cell . 41

37

p ξ-optimal ξ-RIP % Difference

0.1 0.11 0.12 9.1

0.2 0.24 0.28 16.7

0.3 0.44 0.52 18.2

Table 1: Performance of the RIP, the optimal policy in the static cell: ξ for RIP, optimal policy
and percentage increase of ξ for RIP with respect to the optimal policy.

38

λp ξ-RIP ξ-MWA ξ-EXP Imp-MWA Imp-EXP

0.1 1.77 1.98 11.98 0.21 (10.61) 10.21 (85.22)

0.5 6320.02 6427.75 32023.15 107.73 (1.68) 25703.13 (80.26)

0.75 26245.1 26385.78 236538.67 140.68 (0.53) 210293.57 (88.90)

1.0 59211.02 59384.51 536662.19 173.49 (0.29) 477451.17 (88.97)

1.1 78763.46 78945.77 698849.4 182.31 (0.23) 620085.94 (88.73)

1.25 105715.01 105906.88 948331.77 191.87 (0.18) 842616.76 (88.85)

1.5 158305.29 158503.72 1438472.14 198.43 (0.13) 1280166.85 (89.0)

1.6 186283.35 186486.07 1629874.98 202.72 (0.11) 1443591.63 (88.57)

1.7 209638.7 209847.32 1840995.63 208.62 (0.10) 1631356.93 (88.61)

Table 2: Performance of the index policy, the MWA, the Exponential Rule in the static cell: ξ
for RIP, MWA, Exponential Rule; absolute improvement and percentage improvement of RIP with
respect to the MWA and the Exponential Rule.

39

λp ξ-RIP ξ-MWA ξ-EXP Imp-MWA Imp-EXP

— α = 0.9999 —

0.1 1.76 1.97 11.99 0.21 (10.66) 10.23 (85.32)

1.0 57594.51 57765.83 475768.71 171.32 (0.3) 418174.2 (87.89)

1.5 152933.76 153131.43 1197014.63 197.67 (0.13) 1044080.87 (87.22)

1.7 205557.48 205760.48 1501240.82 203 (0.10) 1295683.34 (86.31)

— α = 0.999 —

0.1 1.76 1.85 11.94 0.09 (4.86) 10.18 (85.26)

1.0 5885.2 5988.86 54137.12 103.66 (1.73) 48251.92 (89.13)

1.5 15662.01 15852.29 146678.39 190.28 (1.2) 131016.38 (89.32)

1.7 20970.08 21172.55 194130.23 202.47 (0.96) 173160.15 (89.2)

— α = 0.99 —

0.1 1.7 1.85 10.63 0.15 (8.11) 8.93 (84.01)

1.0 658.91 698.38 4805.1 39.47 (5.65) 4146.19 (86.29)

1.5 1509.1 1565.18 14082.92 56.08 (3.58) 12573.82 (89.28)

1.7 1981.7 2050.84 19040.07 69.14 (3.37) 17058.37 (89.59)

Table 3: Performance of various policies for 5000 warmup slots and different mobility scenarios
(different α values). The results are similar to those of table 2.

40

λp ξ-UIP ξ-MWA ξ-EXP Imp-MWA Imp-EXP

0.1 14.26 19.06 322989908.9 4.8 (25.18) 322989894.6 (100.0)

0.5 5805.52 5897.56 1861730045.5 92.04 (1.56) 1861724239.98 (100.0)

0.75 17905.93 18010.79 2990814203.07 104.86 (0.58) 2990796297.14 (100.0)

1 37271.5 37393.96 4295218011.30 122.46 (0.33) 4294880739.80 (100.0)

1.1 46920.62 47048.08 4668219754.69 127.46 (0.27) 4668172834.07 (100.0)

1.25 62684.45 62812.31 5316113575.45 127.86 (0.20) 5316050891.00 (100.0)

1.5 84970.78 85090.1 7291982154.77 119.32 (0.14) 7291897183.99 (100.0)

1.6 103527.23 103654.22 7403769958.26 126.99 (0.12) 7403666431.03 (100.0)

1.7 109686.71 109812.72 8156028950.81 126.01 (0.11) 8155919264.10 (100.0)

Table 4: Performance of the index policy, the MWA and the Exponential Rule in the dynamic
cell: ξ for UIP, MWA, Exponential Rule and Improvement (absolute and percentage) of UIP with
respect to the MWA and the Exponential Rule.

41

