
Mobile Thread Migration for Dynamic Load

Balancing in Grid

Masaya Miyashita1, Andrii Zhygmanovskyi1, Noriko Matsumoto1,

and Norihiko Yoshida1

Abstract

A Grid is mostly heterogeneous system where the computation capa-

bility of each node varies. Therefore, load distribution and load balancing

are among the most important issues in Grid. Some techniques have been

proposed for dynamic and adaptive load distribution, such as relocating

jobs from a high-loaded node to a low-loaded node while retaining job

execution state based on virtual machine and thread migration. In this

paper, we propose a method for dynamic and adaptive load distribution

between computation nodes using mobile thread migration which yields

lightweight job relocation without unnecessary overhead. Using an exam-

ple problem called parallel PrefixSpan, whose computation cost is abso-

lutely unpredictable and which is used in analysis of amino-acid sequences,

we demonstrate effectiveness of our technique through experiments.

1 Introduction

Grid systems, which are composed of a number of volunteer commodity PCs, are

already widely used for various scientific computations. A Grid is mostly hetero-

geneous system, and the computation capability (as well as network bandwidth)

of each node varies. In such system, computation cost of a job assigned to each

node often varies as well. Therefore, load distribution and load balancing are

among the most important issues in Grid, and several related techniques have

been proposed. Some of them are based on static prediction of the computation

cost of all the jobs before execution, and can only be applied to problems with

predictable computation cost.

Several techniques have been proposed for dynamic and adaptive load distri-

bution by relocating jobs while keeping their execution state from high-loaded

1Saitama University, e-mail:{masaya,andrew,noriko,yoshia}@ss.ics.saitama-u.ac.jp

1

node to low-loaded node during execution. Most of them utilize virtual machine

migration [1, 2, 3]. In this scheme, the cost of transferring the data presents

some overhead. Therefore, more lightweight ways of migration are required.

In this paper, we propose a dynamic and adaptive load distribution technique

for relocating jobs between computation nodes using mobile thread migration,

which leads to lightweight job relocation without unnecessary overhead. There

have already been some proposals on thread migration [4, 5, 6], however they are

based on distributed shared memory (DSM) systems. Mobile thread systems do

not require such underlying platform, therefore they are more lightweight than

DSM-based thread migration. We demonstrate effectiveness of our approach

using an example problem called parallel PrefixSpan used in analysis of amino-

acid sequences, whose computation cost is absolutely unpredictable. Based on

our preliminary study using two PCs [7], we conducted some extended exper-

iments towards practical evaluation. In this regard, this paper is an extended

version of our previous conference paper [7].

The organization of this paper is as follows. We explain mobile threads,

and our design principle for dynamic migration in Section 2. Section 3 is an

introduction of the example problem, and Section 4 describes a Grid system

based on our technique. We show the results of experiments in Section 5, and

Section 6 presents conclusions of this paper.

2 Migration based on mobile threads

A mobile thread, sometimes also called mobile agent, is a kind of thread, which

can move between computers in a network while keeping its own program code

and execution state [8]. This idea arose to help development and operation

of large-scale network applications. Conventional network applications are de-

signed based on ”communication”. The idea of mobile threads separates com-

putation and physical platform, and unifies computation and communication

instead. Communication is now enclosed within computation, and this encap-

sulation is also expected to reduce network traffic.

To implement this feature, a mobile thread must be able to transfer not

only its information but also its execution context over a network. The source

node suspends the mobile thread, transfer information required to continue

execution to the destination node, and the destination node resumes the thread.

Mobile thread systems already proposed so far include Aglets [9], MOBA [10],

AgentSpace [11], and JavaGo [12], all of which are based on the Java language.

2

The Java language and its environment provides multi-platform remote in-

vocation mechanism. Its serialization facility also enables us to send and receive

not only simple values (integers and strings) but also complex objects even in

heterogeneous network environments. However, Java only provides such mech-

anisms for mobile objects, but not for mobile threads. The execution context

of threads cannot be transferred. The systems mentioned above extend Java

language and/or its byte-code interpreter to provide context mobility and basic

mechanism for dynamic class loading.

In order to implement job relocation from a high-loaded node to a low-loaded

node during execution and achieve dynamic load distribution in Grid, mobile

threads have several advantages over virtual machine migration.

• Migration overhead:

The amount of data to be transferred for mobile threads is much smaller

than for virtual machines.

• Variation of execution platform:

Underlying hardware vary from node to node, and sometimes execution

of a virtual machine has some restrictions. Execution of mobile threads

does not have any.

To apply the mechanism of mobile threads to dynamic load distribution, the

system should migrate a thread executing a job from a high-loaded node to a

low-loaded node, or from a low-performance node to a high-performance node.

To realize this approach, we introduce the following two parameters:

• Performance of a computation node Enode.

• Estimated computation cost of a job Ecost.

Enode indicates the processing capacity which the node can execute in a unit

of time. Ecost indicates the workload of a job. We introduce time T required

to complete the job on the node as T = Ecost/Enode. We use T as a parameter

for job migration. Figure 1 shows some examples of criteria for job migration

in the case of two nodes, with the maximum number of jobs being executed

concurrently on a single node is set to 2 for simplicity.

We could make a node control the migration in an autonomous manner,

however it is actually difficult to find an appropriate destination node for mi-

gration in a decentralized manner, therefore we put a central manager which

3

always monitors the load of all nodes and controls every migration. Figure 2

shows an outline of the proposed procedure.

The process flow is shown in Figure 2 in general case of more nodes and

larger capacity.

(1) A worker tells its value T to the manager periodically, and asks the man-

ager for an appropriate destination node.

(2) The manager replies with the information about the lowest-loaded node,

which has the smallest value T out of all nodes.

(3) The worker determines whether to migrate its job or not, according to the

criteria whose simple version is shown in Figure 1.

3 Example problem: PrefixSpan

As an example problem in which the computation cost of each job changes

dynamically and cannot be predicted before computation, we use “PrefixSpan”

��� ������ �	
���� �

����� �����������

��� ������ �	
���� � ��� ������ �	
���� �

����� �����������

��� ������ �	
���� � ��� ������ �	
���� �

����� �����������

��� ������ �	
���� �

����� �!" !##$�% �& '()�!#(%%�"�)(�&!�*�"#(
!& +(% �"� �!" "!+(�% '��'(� '�" !����" "!+(,

����� �!" !##$�% �& � �%)!%%�-.(! �" �#�)� (
%'!� ("�"� !& #�.#$.� �!" �*(-/ (0#'�"��"�
 '(1!-%,

����� �!" +!(% "! !##$�,

��� ������ �	
���� �

����� �����������

��� ������ �	
���� � ��� ������ �	
���� �

����� �����������

��� ������ �	
���� � ��� ������ �	
���� �

����� �����������

��� ������ �	
���� �

����� �!" �.2�/% !##$�%, ����� �!" !##$�% �& � �%)!%%�-.(! �" �#�)� (
%'!� ("�"� !& #�.#$.� �!" �*(-/ *���� �"�
 '(1!-,

����� �!" +!(% "! !##$�,

Figure 1: Criteria for job migration.

345

678 98:;<=>;<?=
=?98 <: <=@A<B89C

678 98:;<=>;<?=
=?98 <: =?;<D<89C

E<FB>;<?= GA9FH8=; <: 8I8JA;89C

K?L <: H<FB>;89 >=9
MB?J8::<=F <: 8I8JA;89
?=F?<=FNOC

P?HMA;>;<?= =?98 Q P?HMA;>;<?= =?98 R

E>=>F8B

STU

SVU

SWU

SXU

Figure 2: Outline of migration mechanism.

4

proposed by Pei et al. [13] [14], which is an algorithm for sequential pattern min-

ing. Sequential pattern mining is extracting frequent substrings out of a given

database of sequences, and is often applied to analysis of amino-acid sequences.

The essence of PrefixSpan is as follows (quoted from [13]):

A sequence is a linear combination of characters such as alpha-

bets. A sequence database is a set of tuples 〈sid, s〉, where sid is a

sequence ID and s is a sequence. A tuples 〈sid, s〉 is said to contain

a sequence α, if α is a subsequence of s, i.e., α ⊑ s. The support

of a sequence α in a sequence database S is the number of tuples in

the database containing α, i.e.,

supportS(α) = | {〈sid, s〉 | (〈sid, s〉 ∈ S) ∧ (α ⊑ s)} |.

Given a positive integer ξ as the support threshold, a sequence α

is called a frequent sequential pattern in the sequence database S

if the sequence is contained by at least ξ tuples in the database,

i.e., supportS(α) ≥ ξ. Given a sequence database and a minimum

support threshold, the problem of sequential pattern mining is to

find the complete set of sequential patterns in the database.

Given a sequence s = 〈a1, a2, . . . , am〉, the sequence 〈a1, a2, . . . , aj〉

(1 ≤ j ≤ m) where a1 6= a, a2 6= a, . . . , aj−1 6= a, aj = a is called

a prefix of s for a(prefix(s, a)), and the sequence 〈aj+1, . . . , am〉 is

called a postfix of s for a(postfix(s, a)). Let α be a frequent sequen-

tial pattern in the sequence database S. A projected database S|a is

made by solving postfix(s, a) for each sequence s in S. Searching of

frequent sequential patterns is done by making projected databases

repeatedly.

Now we present a parallel processing version of PrefixSpan. It is based on

the master-worker framework. A frequent sequential pattern with length k is

called an k-frequent pattern. A job is to extract k + 1-frequent patterns and

the ones after them from a k-frequent pattern. Initially, the central manager

creates some jobs which correspond to k-frequent patterns extracted using the

user-specified threshold k. Each job is assigned to a thread extracting all the

following frequent sequential patterns with the depth-first search method. A

thread completing its job asks the manager for a new job repeatedly until all

the jobs in the manager are processed. There has been a proposal similar to this

[15], however they are a parallel version of their own “Modified PrefixSpan.”

5

The parallel PrefixSpan has the following characteristics:

(1) A job does not have any mutual dependences, and can be processed inde-

pendently.

(2) It is not possible to predict the number of frequent sequential patterns

extracted out of one job, nor the time required for extraction in a static

analysis before computation. This is because both of them depend on the

characteristic of the sequence.

(3) The difference between the computation cost of jobs tends to get larger

during execution.

4 System design and implementation

Our system prototype implements dynamic load distribution based on mo-

bile threads applied to a problem with inherently unpredictable characteristics,

namely the parallel PrefixSpan. Job migration is implemented using a mobile

thread system, JavaGo [12], because it does not require any special runtime

environment unlike other systems. Figure 3 shows an overview of our system,

in which the migration server is a part of JavaGo.

According to the process flow shown in Figure 3, each Grid node performs

the following steps.

(1) The master process extracts k-frequent patterns from given 1-frequent

patterns using a user-specified threshold k with breadth-first search.

YZ[\Z]^Z
_`a`

bcZdefYg`]
hijklmnopqrjsn skljtou

v`waZc gcx^Zww

y

y

z]g\a xd _`a`

{x||\]e^`aex]

vx}Z|Z]a xd ~x�

z]g\a xd _`a`

{x||\]e^`aex]

vx}Z|Z]a xd ~x�

�x^`� ~x�
gxx�

ve�c`aex] wZc}Zc

�xc�Zc gcx^Zww

���

��� ���

���
��� ���

���

bcZdefYg`]
hijklmnopqrjsn skljtou

bcZdefYg`]
hmk�nopqrjsn skljtou

v`]`�Zc
a�cZ`_ �

v`]`�Zc gcx^Zww

���

���

��x�`� ~x�
gxx�

�`a`�`wZ

�x^`� ~x�
gxx�

ve�c`aex] wZc}Zc

bcZdefYg`]
hijklmnopqrjsn skljtou

bcZdefYg`]
hmk�nopqrjsn skljtou

v`waZc
a�cZ`_ �

v`]`�Zc
a�cZ`_ �

v`waZc
a�cZ`_ �

Figure 3: System overview.

6

(2) All jobs are stored in the global job pool.

(3) The master thread picks a job out of the global job pool.

(4) The master thread receives a global job request from the worker process,

and sends a job to it. The worker process extracts s-frequent patterns

(where s > k) from the k-frequent pattern using breadth-first search.

(5) All jobs are stored in the local job pool.

(6) The worker process picks a job out of the local job pool unless the local job

pool is empty, and does extraction using depth-first search.

(7) The worker process periodically communicates with the manager process

during extraction, reporting its searching cost, and asking for appropriate

destination migration server.

(8) The manager thread updates and maintains the database based on the

reports and requests from the worker process.

(9) If necessary, a thread is migrated to themigration server in another process

on another node.

(10) When the local job pool is empty, the flow goes to (11). Otherwise, it goes

back to (6).

(11) When the global job pool is empty, all the processes terminate. Otherwise,

the flow goes back to (3).

We need two parameters to realize the flow, which are mentioned in Section

2: the performance of a computation node and the estimated computation cost

of a job.

The performance is approximated by the number of branches in a search

tree which the computation node can search in one second. The value can be

obtained from a preliminary benchmarking of the system.

The estimated computation cost of a job must be estimated using both

(1) the current progress of searching Ndone, and (2) the number of branches

already traversed Tpast. From the computation cost for the past search Tpast,

the computation cost for the remaining search Tfuture is calculated as

Tfuture = Tpast × (1 −Ndone)/Ndone

7

����

���

� � � � � � � �

�� ��� ¡� �¢�� � �£� �¢¤�¥

����¦¢ §�� ¨¤£¤�¢�¥ §¢�£ �

¡��¢�¥ ¦�©© ��� �£�¥ª

«�¦ ��¤¬� ¦�©© �¨ ¡��¢�¥ª

­¢� ����¦¢�¥ £ ¡®�� �¨

®��£¦¢�� ¤� ��¦��¥�¥ ��

�£¯ �¤¡�ª

Figure 4: Example of cost prediction.

We estimate Ndone assuming that the search tree is balanced, i.e. the size

of each subtree is the same. Figure 4 shows the detail of estimation using three

subtrees. In this case, after completing the search in one subtree, we estimate

that Ndone = 1/3.

5 Experiments and evaluation

We conducted some preliminary experiments, using two and four PCs.

5.1 Experiments using two PCs

We have implemented a prototype for experimental evaluation of our system

design. It is composed of two PCs of different performance as shown in Table

1. Table 2 shows migration overhead between PCs measured during the exper-

iments. JavaGo does not actually achieve the optimal performance compared

to other mobile thread systems, however it is much faster than virtual machine

Table 1: Experiment setup.
High-perf. PC Low-perf. PC

CPU Intel 3.00GHz AMD 1.80GHz
Memory 2GB 1GB

OS Linux 2.6
Network 1000Base-T

Mobile threads JavaGo 3.1.1
Performance

180,000 17,000
(branches/sec)

Table 2: Migration overhead.
Maximum 1,356 [ms] Minimum 598 [ms] Average 820 [ms]

8

migration [16].

Character strings of the alphabet used in the experiments are taken from

public sequence data at PROSITE [17]. They contain 6 sequences of 50 char-

acters with 300 characters in total. The minimum support is set to 6. The

threshold of the workers is between 1 and 3, and the threshold of the master is

also between 1 and 3. The number of jobs that a node can execute simultane-

ously is set to 2. Therefore, the policy of the job migration is the same as one

shown in Figure 1.

We compared the processing times of execution without migration and ex-

ecution with migration. The results are shown in Figures 5 (a), (b), (c) and

Figures 6 (a), (b). The numbers in parentheses indicate the threshold of the

master and the threshold of the workers. Each worker communicates with the

master every 100,000 cycles of branch traversals.

Figures 5 (a), (b), and (c) show that the processing times of the PCs differ

°±²±

³´³µ¶

·¸¸¹µ¸

³´³µ³

º»º

¼ºº»º

½ºº»º

¾ºº»º

¿ºº»º

Àººº»º

À¼ºº»º

À½ºº»º

À¾ºº»º

À¿ºº»º

ÁÂÃÄÅÆÃ ÇÂÈÉÊÃÂÅË ÁÂÃÄ ÇÂÈÉÊÃÂÅË

Ì
ÍÎ
ÏÐ
ÑÑ
ÒÓ
Ô
ÕÒ
Ö
Ð
×Ñ
Ð
ÏØ

ÙÚÛ ÚÜ

ÝÂÈÄÞßàÉáÅÉâÊËãà äå æÅçÞßàÉáÅÉâÊËãà äå

ÇÂÈÉÊÃÂÅË áÉàèÆàËãé
æÅç ê ÝÂÈÄë ì ÃÂâàí
ÝÂÈÄ ê æÅçë À ÃÂâàí

îïðñ

òóòôó

õö÷øôù

òóòôó

úûú

üúúûú

ýúúûú

þúúûú

ÿúúûú

�úúúûú

�üúúûú

�ýúúûú

�þúúûú

�ÿúúûú

	������ ����
���� 	��� ����
����

�

�
��
��
��
�
��
�
�
��
�
��

��� ��

����� !�"��#
�$! %& '�(� !�"��#
�$! %&

����
���� "�!)�!�$*
'�(+ ����, ü- ��#!.
���� + '�(, � ��#!.

(a) The case of (1,1). (b) The case of (1,2).

/012

34564

737868

39869

:;:

<::;:

=::;:

>::;:

?::;:

@:::;:

@<::;:

@=::;:

@>::;:

@?::;:

ABCDEFC GBHIJCBEK ABCD GBHIJCBEK

L
MN
OP
QQ
RS
T
UR
V
P
WQ
P
OX

YZ[\]

^BHD_`aIbEIcJKda ef gEh_`aIbEIcJKda ef

GBHIJCBEK bIaiFaKdj
gEhk ^BHDl >? CBcam
^BHDk gEhl : CBcam

(c) The case of (1,3).

Figure 5: Simulation results (1).

9

much without migration, while they are almost equal with migration. This is

because a job with high computation cost is migrated from the low-performance

PC to the high-performance one.

Figures 6 (a) and (b) show that without migration, the difference of the

processing times between two PCs becomes small when the threshold of master

is increased. This is because when the threshold is high, the master makes many

jobs, each of which is small enough, so that the load of workers is well balanced.

However, in this case, most searches are done not on the workers but on the

master. Such case does not make sense in practical Grid systems. Figures 6 (a)

and (b) also show that the processing time is shorter without migration. This

is because of the migration overhead.

Figure 7 shows the result when the communication intervals between the

workers and the master are changed from 100,000 to 300,000 cycles of branch

traversals. The figure shows that the communication interval does not affect

the outcome much.

nopqr stuvwsxxvy stuvx

z{z

|zz{z

}zz{z

~zz{z

�zz{z

�zzz{z

�|zz{z

�}zz{z

�~zz{z

��zz{z

������� ��������� ���� ���������

�
��
��
��
��
�
��
�
�
��
�
��

��� ��

����� ¡�¢��£��¤¡ ¥¦ §�¨� ¡�¢��£��¤¡ ¥¦

��������� ¢�¡©�¡�¤ª
§�¨« ����¬ ­ ��£¡®
���� « §�¨¬ z ��£¡®

¯°±²± ³´µ¶·³¸·¶¹ ³´µ¶¸

º»º

¼ºº»º

½ºº»º

¾ºº»º

¿ºº»º

Àººº»º

À¼ºº»º

À½ºº»º

À¾ºº»º

À¿ºº»º

ÁÂÃÄÅÆÃ ÇÂÈÉÊÃÂÅË ÁÂÃÄ ÇÂÈÉÊÃÂÅË

Ì
ÍÎ
ÏÐ
ÑÑ
ÒÓ
Ô
ÕÒ
Ö
Ð
×Ñ
Ð
ÏØ

ÙÚÛ ÜÝ

ÞÂÈÄßàáÉâÅÉãÊËäá åæ çÅèßàáÉâÅÉãÊËäá åæ

ÇÂÈÉÊÃÂÅË âÉáéÆáËäê
çÅèë ÞÂÈÄì í ÃÂãáî
ÞÂÈÄ ë çÅèì º ÃÂãáî

(a) The case of (2,1). (b) The case of (3,1).

Figure 6: Simulation results (2).

ïðñð
òóòôõ ö÷øôö ö÷øôö

ùúúûôú

òóòôò öù÷ôò ö÷üôö

ýþý
ÿýýþý
�ýýþý
�ýýþý
�ýýþý

�ýýýþý
�ÿýýþý
��ýýþý
��ýýþý
��ýýþý

ý
	�����
� ���
������

�ýý�ýýý ÿýý�ýýý �ýý�ýýý

�
��
��
��
��
�
��
�
�
��
�
��

 !"#$%&' () *+,$&"+(! -./,#*#!" 01$&!23#45

678 79

:���;<=
>�
?��@= AB C�D;<=
>�
?��@= AB

���
����� >
=E
=�@F
GHIJ KLMNO P QLRST U QLRST P QLRST
KLMN J GHIO V QLRST W QLRST V QLRST

Figure 7: Result of (1,1) with different intervals.

10

Next, we investigated the effect of the PC performance. We used two high-

performance PCs, one of which had variable CPU utilization from 10% to 100%

and acted as a low-performance PC. Then we measured the performance increase

rate (or improvement), which is defined as

(1 − Tmig/Tnomig)× 100 [%]

where Tmig is the processing time with migration, and Tnomig is the one

without migration. Figure 8 shows that the larger is the difference between

the PC performance, the more is the effect of migration. If one PC has only

10% power of the other, the migration improves 87.7% of the processing time,

while if two PCs have the same performance, migration actually degrades the

processing time.

We also measured load transition in two PCs. Figure 9 shows the transition

when one PC’s CPU utilization is limited to 50%. The solid line corresponds

XYZY[

\]^_`

ab^c`

d_^a`

de^]`

e_^_`

e]^]`

\^c`

d^d`

f\^b`

ghij

ij

hij

kij

lij

mij

niij

nij hij oij kij pij lij qij mij rij niij

s
t
uv
w
ux
y
z
{
t
|z
{
ut
y
}
t
uy
~t

��� ����������� �� ��������������� ��

���������� �������� ����

Figure 8: Performance improvement by variable PC performance.

�

��

 �

¡�

¢�

£�

¤�

¥�

¦�

§�

���

� ��� �� ¡�� ¢�� £�� ¤��

¨
©ª
«¬
­®
ª«
©ª̄
°¬
±¬
±²
³©́
­
ªµ
µ¬
±²
®¬̄
ª
¶µ
ª­
·

¸¹º »¼º½¾¿À¾ÁÂ ÂÃÄÅº¼ ÁÆ À¾ÄºÇ ÁÆ ¿ÁÄ»ÃÀÈÀ¾ÁÂ ¿ÁÇÀ

ÉÊËÌ ÍÎËÏÐÑÍÑÊÏ

ÒÓÔÕÖ×ØÙÚÛÙÜÝÞßØ àá âÛãÖ×ØÙÚÛÙÜÝÞßØ àá

Figure 9: Load transition in two PCs.

11

to the high-performance PC, while the dashed line shows the low-performance

PC. Migration took place around the 370th time slot, then the load of the low-

performance PC decreased and the load of high-performance PC increased. The

same was observed around the 20th, 490th, 540th, and 660th time slots as well.

The load of the low-performance PC was rising from the 220th time slot to the

370th, however the migration took place when the high-performance PC became

ready to accept a new job after completing its own jobs.

5.2 Experiments using four PCs

The system configuration composed of four PCs is shown in Table 3. Table 4

shows migration overheads between PCs measured during the below experiments

in this configuration. The thresholds of the master and workers are set to 1.

We compared the processing times of following three executions:

(1) Execution without migration.

(2) Execution with random migration.

(3) Execution with migration based on the appropriate cost prediction.

In random migration, a job is migrated to any random destination node with

a fixed probability. The probability is determined so that the total migration

number of times becomes almost the same as (3). In the experiment 1, CPU

Table 3: Experiment setup.
PC1 & PC2 PC3 PC4

CPU Intel Intel Intel
CPU Core 2 Duo Pentium 4 Core Duo

3.00GHz 3.06GHz 1.20GHz
Memory 2GB 1GB 1GB

OS Linux 2.6
Network 1000Base-T

Mobile threads JavaGo 3.1.1
Performance ratio

100 36 30
(PC1 as 100)

Table 4: Migration overhead.
Maximum 1,216 [ms] Minimum 583 [ms] Average 836 [ms]

12

utilization is not limited in each PC. In the experiment 2, CPU utilization of

PC2 is limited to 60%. By repeating each experiment five times, we obtained

average values. The results are shown in Figure 10 (a) and (b).

Figure 10 (a) and (b) reveal that the processing times of the PCs differ

much without migration, while they are almost the same with random migration

and with our migration technique. Furthermore, the processing time with our

migration technique is faster than the time with random migration. This is

because a job with much computation cost is migrated from the low-performance

PC to the high-performance one appropriately.

We also measured working ratio in four PCs. Working ratio is defined as

Trun/Tmax × 100 [%]

where Trun is the running time of the PC, and Tmax is the latest processing

time in four PCs. The results are shown in Figure 11 (a) and (b). All values

are average of five trials.

ä

åææ

çææ

èææ

éææ

êæææ

êåææ

ëìíîïðí ñìòóôóíìïõ ëìíî öóõ÷ïø

ñìòôóíìïõ

ëìíî ñìòôóíìïõ

ù
úû
ü
ý
þ
þ
ÿ�
�
�ÿ
�
ý
�þ
ý
ü
�

�� � �� 	 ��
 �� �

�

��

���

���

���

����

�
��

������� ���������� ���� �����
���������

�������������

!
"#
$%
&&
'(
)
*'
+
%
,&
%
$-

./ 0 ./ 1 ./ 2 ./ 3

(a) Experiment 1. (b) Experiment 2.

Figure 10: Processing time.

45
678
978
:78
;78
<78
=78
>78
?78
@78
6778

ABCDEFC GBHIJICBEK ABCD LIKMEN
GBHJICBEK

ABCD GBHJICBEK

O
P
QR
ST
U
QV
WS
P

XY Z XY [XY \ XY]

^_
`ab
cab
dab
eab
fab
gab
hab
iab
jab
`aab

klmnopm qlrstsmlou klmn vsuwox
qlrtsmlou

klmnqlrtsmlou

y
z
{|
}~
�
{�
�}
z

�� � �� � �� � �� �

(a) Experiment 1. (b) Experiment 2.

Figure 11: Working ratio.

13

Figure 11 (a) and (b) reveal that the working ratios of the other than PC4

are low without migration and with random migration. As a result, the entire

processing time gets longer. With our migration technique, the working ratios

of more than 80% are kept for PCs, and any PC of the computation resource

is used effectively. The results of Experiment 1 and 2 are similar regarding

processing time and working ratio.

Finally, we show an example of load transition. Figure 12 shows the load

transition of four PCs with random migration and Figure 13 shows the one

with our migration technique. In Figure 12, the loads of PC3 and PC4 are high,

while the loads of PC1 and PC2 are low, and the entire processing time becomes

long. Meanwhile, Figure 13 shows that the loads of PC3 and PC4 are less than

half of those with random migration, and as a result, the entire processing time

becomes short.

�

��

���

���

���

���

���

���

���

���

���

� �� ��� ��� ��� ��� ��� ��� ��� ���
��
��
��
��
�
��
�
��
��
��
��
��
��
��
��
���
�
��
��
�

� ¡¢£¤¥ ¦§¨¤ ©£¤ª«

¬­ � ¬­ � ¬­ � ¬­ �

Figure 12: Load transition with random migration.

®

¯°

±°°

±¯°

²°°

²¯°

³°°

³¯°

´°°

´¯°

¯°°

° ¯° ±°° ±¯° ²°° ²¯° ³°° ³¯° ´°° ´¯°
µ¶
·̧
¹º
»·̧
¶·
¼
½¹
¾¹
¾¿
À¶
Áº
·Â
Â¹
¾¿
»¹¼
·
ÃÂ
·º
Ä

ÅÆÇÈÉÊË ÌÍÎÊ ÏÉÊÐÑ

ÒÓ ± ÒÓ ² ÒÓ ³ ÒÓ ´

Figure 13: Load transition with migration.

14

6 Conclusion

In this paper, we proposed dynamic live migration for Grid using the mobile

thread mechanism and proved its efficiency compared to Grid without migration

and with random migration, especially in the case where the disproportion of the

jobs’ computation cost is large. Our migration technique is especially effective

for applications of dynamic nature such as PrefixSpan. However, it is necessary

to design an appropriate system for each specific application, for example, to

introduce appropriate parameters.

We are still at the starting point of this research, therefore there are still

many issues that must be dealt with, such as examining our design in more

rigorous manner on a practical Grid platform.

References

[1] Franco, T., et al., “Seamless Live Migration of Virtual Machines over the

MAN/WAN”, Future Generation Computer Systems, Vol.22, No.8, 2006,

pp.901–907.

[2] Clark, C., et al., “Live Migration of Virtual Machines”, Proc. 2nd

ACM/USENIX Symp. on Networked Systems Design and Implementation,

2005, pp.273–286.

[3] Tatezono, M., et al., “Making Wide-Area, Multi-Site MPI Feasible Us-

ing Xen VM”, Frontiers of High Performance Computing and Networking,

Lecture Notes in Computer Science, No.4331, Springer, 2006, pp.387–396.

[4] Thitikamol, K. and Keleher, P., “Thread Migration and Load balancing

in Non-Dedicated Environments”, Proc. 14th IEEE International Parallel

and Distributed Processing Symposium, 2000, pp.583–588.

[5] Hai, J. and Chaudhary, V., “MigThread: Thread Migration in DSM Sys-

tems”, Proc. IEEE Workshop on Compile/Runtime Techniques for Parallel

Computing, 2002, pp.583–588.

[6] Cheng, P.C., et al., “A Multi-Layer Resource Reconfiguration Framework

for Grid Computing”, Proc. 4th ACM International Workshop on Middle-

ware for Grid Computing, 2006, 13 pages.

15

[7] Miyashita, M., et al. “Dynamic Load Distribution in Grid Using Mobile

Threads”, Proc. 3rd IEEE International Workshop on Internet and Dis-

tributed Computing Systems, 2010, pp.629–634.

[8] Chess, D., et al., “Mobile Agents: Are They a Good Idea?”, Mobile Object

Systems towards the Programmable Internet, Lecture Notes in Computer

Science, No.1222, Springer, 1997, pp.25–45.

[9] Lange, D.B. and Oshima, M., Programming and Deploying Java Mobile

Agents with Aglets, Addison-Wesley, 1998.

[10] Shudo, K. and Muraoka, Y., “Asynchronous Migration of Execution Con-

text in Java Virtual Machines”, Future Generation Computer Systems,

Vol.18, No.2, 2001, pp.225–233.

[11] Satoh, I., “A Mobile Agent-Based Framework for Active Networks”, Proc.

IEEE Systems, Man, and Cybernetics Conference, 1999, pp.71–76.

[12] Sekiguchi, T., et al., “A Simple Extension of Java Language for Control-

lable Transparent Migration and Its Portable Implementation”, Coordina-

tion Languages and Models, Lecture Notes in Computer Science, No.1594,

Springer, 1999, pp.211–226.

[13] Pei, J., et al., “PrefixSpan: Mining Sequential Patterns Efficiently by

Prefix-Projected Pattern Growth”, Proc. 17th IEEE International Conf.

on Data Engineering, 2001, pp.215–224.

[14] Yamamoto, K., et al., “Learning Sequence-to-Sequence Correspondences

from Parallel Corpora via Sequential Pattern Mining”, Proc. 2003 Work-

shop on Building and Using Parallel Texts: Data Driven Machine Transla-

tion and Beyond, Vol.3, 2003, pp.73–80.

[15] Sutou, T., et al., “Design and Implementation of Parallel Modified PrefixS-

pan Method”, High Performance Computing, Lecture Notes in Computer

Science, No.2858, Springer, 2003, pp.412–422.

[16] Voorsluys, W., et al., “Cost of Virtual Machine Live Migration in Clouds:

A Performance Evaluation”, Cloud Computing, Lecture Notes in Computer

Science, No.5931, Springer, 2009, pp.254–265.

16

[17] Swiss Institute of Bioinformatics, PROSITE - Database of Protein Do-

mains, Families and functional sites, http://prosite.expasy.org/ (Last ac-

cessed on 27 July 2016), 2014.

17

