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Abstract. Linear operators between Banach spaces such that the closed-
ness of range of an operator implies the closedness of range of another
operator are discussed.

1. Introduction

Let X and Y be normed spaces, B(X,Y ) will denote the normed space
of all continuous linear operators from X to Y . R(T ) and N(T ) will denote
the range and null spaces of a linear operator T respectively. CL(X,Y ) will
denote all continuous closed range linear operators from X to Y . There are
many important applications of closed range unbounded operators in the
spectral study of differential operators and also in the context of perturba-
tion theory (see e.g. [1], [2]). In this paper, we deal with continuous linear
operators between Banach spaces.

A characterization of closed range bounded linear operator between two
Banach spaces is given in [3]. Using this characterization, we derive results
which have conclusions of having closed range of an operator when the other
operator has closed range. In this section we assume that the spaces are
Banach unless otherwise specified.

An operator T ∈ B(X) is called Weyl if it is Fredholm of index zero.
An operator T ∈ B(X) is called Browder if it is Fredholm of finite ascent
and descent. In section 2, we define norm equivalent operators, and find
some properties of norm equivalent operators. Is section 3, We study Linear
operators between Banach spaces such that the closedness of range of an
operator implies the closedness of range of another operator. In section 4,
pseudo-inverse of operators are discussed.

2. norm equivalent operators

Definition 2.1. Let T, S ∈ B(X,Y ). Two operators S and T are said to
be norm equivalent and denoted by T ∼ S if there exist two positive real
numbers k1 and k2 such that k1‖Sx‖ ≤ ‖Tx‖ ≤ k2‖Sx‖, for all x ∈ X .

Theorem 2.2. Let T ∈ B(X,Y ) and [T ] = {S ∈ B(X,Y ) : S ∼ T}. Then
∼ is an Equivalence relation, and [T ] is Equivalence class of T .
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Proof. It is trivial. �

Proposition 2.3. Let T, S ∈ B(X,Y ) be norm equivalent. Then the follow-
ing claims are true:

(a) T is bounded below if and only if S is bounded below;
(b) T is closed range if and only if S is closed range;
(c) T is one-to-one if and only if S is one-to-one;
(d) αT and βS are norm equivalent, where α, β ∈ C \ {0}.

Proof. It is trivial. �

Proposition 2.4. Let T, S ∈ B(X,Y ) be norm equivalent and let T (X) =
S(X). Then the following claims are true:

(a) T is Fredholm if and only if S is Fredholm;
(b) T is semi-Fredholm if and only if S is semi-Fredholm;

Proof. By hypothesis, N(T ) = N(S), R(T ) = R(S) and ind T = ind S.
Therefore, the proof is trivial. �

Theorem 2.5. Let H be a Hilbert space and T1, T2 ∈ B(H). Let T1 and T2
be norm equivalent. Let T1 = V1P1 and T2 = V2P2 be polar decompositions
of T1 and T2. Then R(P1) is closed if and only if R(P2) is closed.

Proof. By hypothesis, there exist two positive real numbers k1 and k2 such
that k1‖T1x‖ ≤ ‖T2x‖ ≤ k2‖T1x‖, for all x ∈ H. Then for x ∈ H, ‖Pix‖ =
‖Tix‖ for i = 1, 2. Therefore, k1‖P1x‖ ≤ ‖P2x‖ ≤ k2‖P1x‖. Consequently,
P1 and P2 are norm equivalent. Hence, R(P1) is closed if and only if R(P2)
is closed. �

Proposition 2.6. Let P ∈ B(X,Y ) and let T, S ∈ B(Y,Z). If T and S are
norm equivalent, then R(TP ) is closed if and only if R(SP ) is closed.

Proof. By hypothesis, there exist two positive real numbers k1 and k2 such
that k1‖Ty‖ ≤ ‖Sy‖ ≤ k2‖Ty‖, for all y ∈ Y . Therefore, k1‖TPx‖ ≤
‖SPx‖ ≤ k2‖TPx‖, for all x ∈ X. Consequently, TP and SP are norm
equivalent. Hence, R(TP ) is closed if and only if R(SP ) is closed. �

Corollary 2.7. Let T, S ∈ B(X) be norm equivalent and let TS = ST .
Then

(a) ascent T <∞ if and only if ascent S <∞.
(b) T is nilpotent if and only if S is nilpotent.

Proof. It follows from Proposition 2.6 �

Proposition 2.8. Let T, S ∈ B(X,Y ) and let P ∈ B(Y,Z) be an isometry.
If T and S are norm equivalent, then R(PT ) is closed if and only if R(PS)
is closed.

Proof. By hypothesis, there exist two positive real numbers k1 and k2 such
that k1‖Sx‖ ≤ ‖Tx‖ ≤ k2‖Sx‖, ‖PTx‖ = ‖Tx‖ and ‖PSx‖ = ‖Sx‖ for
all x ∈ X. Therefore, k1‖PTx‖ ≤ ‖PTx‖ ≤ k2‖PTx‖, for all x ∈ X.
Consequently, PT and PS are norm equivalent. Hence, R(PT ) is closed if
and only if R(PS) is closed. �
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Proposition 2.9. Let T1, S1 ∈ B(X1, Y1) be norm equivalent and let T2, S2 ∈
B(X2, Y2) be norm equivalent. Then R(T1 ⊕ T2) is closed if and only if
R(S1 ⊕ S2) is closed.

Proof. By hypothesis, for i=1,2, there exist two positive real numbers ki1
and ki2 such that ki1‖Tixi‖ ≤ ‖Sixi‖ ≤ ki2‖Tixi‖, for all xi ∈ Xi. Therefore,

k1(‖T1x1‖+ ‖T2x2‖) ≤ ‖S1x1‖+ ‖S2x2‖ ≤ k2(‖T1x1‖+ ‖T2x2‖),
where k1 = min{k11, k21} and k2 = max{k12, k22}. Hence, T1⊕ T2 and S1⊕S2
are norm equivalent. Therefore, R(T1⊕T2) is closed if and only if R(S1⊕S2)
is closed. �

3. Closed Range operators

Theorem 3.1. Let H be a Hilbert space and let T ∈ B(H) having polar
decomposition T = V P . THen R(T ) is closed if and only if R(P ) is closed.

Proof. By hypothesis, P and T are norm equivalent. Therefore, according
to [1, Lemma 2.2] R(T ) is closed if and only if R(P ) is closed. �

Proposition 3.2. Let T ∈ B(X,Y ) and λ ∈ C \ {0}. Then R(T ) is closed
if and only if R(λT ) is closed.

Proof. Let R(T ) be closed. Then There is a constant c > 0 such that for
given x ∈ X, there is a y ∈ X such that Tx = Ty and ‖y‖ ≤ c‖Tx‖.
Therefore, for λ ∈ C \ {0} we have λTx = λTy and ‖y‖ ≤ c

|λ|‖λTx‖.
Consequently R(λT ) is closed.

Coversely, let λ ∈ C \ {0} and let R(λT ) be closed, then R(T ) = R( 1
λλT )

is closed. �

Proposition 3.3. Let T ∈ B(X,Y ) be onto and let S ∈ B(Y,Z). If R(ST )
is closed, then R(S) is closed.

Proof. Let y1 ∈ Y . Then there is x1 ∈ X such that Tx1 = y1. By hypothesis,
there is a constant c > 0 such that for x1 ∈ X, there is x2 ∈ X such that
STx1 = STx2 and ‖x2‖ ≤ c‖STx1‖. Therefore, Sy1 = Sy2 where y2 = Tx2
and ‖y2‖ ≤ c‖T‖‖Sy1‖. Consequently, R(S) is closed.

�

Proposition 3.4. Let T ∈ B(X,Y ) be invertible and let S ∈ B(Y,Z) be
closed range. Then R(ST ) is closed.

Proof. By hypothesis, there is a constant c > 0 such that for given x1 ∈ X,
there is a y2 ∈ Y such that STx1 = Sy2 and ‖y2‖ ≤ c‖STx1‖. Also,
There is ε > 0 such that for y2, there is a x2 ∈ X such that Tx2 = y2
and ε‖x2‖ ≤ ‖Tx2‖ = ‖y2‖ ≤ c‖STx1‖. Therefore, STx1 = STx2 and
‖x2‖ ≤ c

ε‖STx1‖. Consequently R(ST ) is closed. �

Theorem 3.5. Let T ∈ B(X,Y ) be invertible and let S ∈ B(Y,Z). Then
R(ST ) is closed if and only if R(S) is closed.
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Proof. It follows from Proposition 3.3 and Proposition 3.4. �

Proposition 3.6. Let T ∈ B(X,Y ) and let S ∈ B(Y,Z) be one-to-one. If
R(ST ) is closed, then R(T ) is closed.

Proof. By hypothesis, there is a constant c > 0 such that for given x1 ∈ X,
there is a x2 ∈ X such that STx1 = STx2 and ‖x2‖ ≤ c‖STx1‖. Therefore,
Tx1 = Tx2 and ‖x2‖ ≤ c‖S‖‖Tx1‖. Consequently, R(T ) is closed. �

Proposition 3.7. Let T ∈ B(X,Y ) be closed range and let S ∈ B(Y, Z) be
bounded below. Then R(ST ) is closed.

Proof. By hypothesis, there is a constant c > 0 such that for given x ∈ X,
there is a y ∈ X such that Tx = Ty and ‖y‖ ≤ c‖Tx‖. Also, There
is ε > 0 such that ε‖Tx‖ ≤ ‖S(Tx)‖. Therefore, S(Tx) = S(Ty) and
‖y‖ ≤ c

ε‖STx‖. Consequently R(ST ) is closed. �

Theorem 3.8. Let T ∈ B(X,Y ) and let S ∈ B(Y, Z) be invertible. Then
R(ST ) is closed if and only if R(T ) is closed.

Proof. It follows from Proposition 3.6 and Proposition 3.7. �

Corollary 3.9. Let T ∈ B(X) be closed range and let S be invertible. then
R(ST ) and R(TS) are closed.

Proof. It follows from Theorem 3.5 and Theorem 3.8. �

Corollary 3.10. Let T ∈ B(X) be bounded below and let n ∈ N. Then
R(Tn) is closed.

Proof. By hypothesis, There is ε > 0 such that ε‖x‖ ≤ ‖Tx‖ for all x ∈ X.
Therefore, εn‖x‖ ≤ ‖Tnx‖ for all x ∈ X. Consequently, Tn is bounded
below, then R(Tn) is closed. �

Theorem 3.11. CL(X) is open in B(X).

Proof. Let T ∈ CL(X) and let A = {ST : S ∈ B(X) is invertible}. Then
A is open and T ∈ A. Moreover A ⊆ CL(X) by Corollary 3.9. �

Corollary 3.12. Let T, Tn ∈ B(X). Let limTn = T . If T ∈ CL(X) then,
there is N ∈ N such that Tn ∈ CL(X) for all n > N .

Proof. It follows from Theorem 3.11. �

Proposition 3.13. Let Ti ∈ B(Xi, Yi) i = 1, 2. If R(T1) and R(T2) are
closed, then

(a) R(T1 ⊕ T2) is closed;
(b) R(T1 ⊗ T2) is closed.

Proof. (a) By hypothesis, there is a constant ci > 0 such that for given
x1i ∈ Xi, there is a x2i ∈ Xi such that Tix1i = Tix2i and ‖x2i‖ ≤ ci‖Tix1i‖.
Therefore, ‖(x21, x22)‖ ≤ max{c1, c2}‖(T1 ⊕ T2)(x11, x12)‖. Consequently,
R(T1 ⊕ T2) is closed.
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(b)By hypothesis, there is a constant ci > 0 such that for given x1i ∈ Xi,
there is a x2i ∈ Xi such that Tix1i = Tix2i and ‖x2i‖ ≤ ci‖Tix1i‖. Therefore,
‖(x21 ⊗ x22)‖ ≤ c1c2‖(T1 ⊗ T2)(x11 ⊗ x12)‖. Consequently, R(T1 ⊗ T2) is
closed. �

We know that if T1 is a linear bounded operator on a Hilbert space H1

and T2 is a linear bounded operator on a Hilbert space H2 there exists a
unique linear bounded operator T on H1 ⊗H2 such that

T (x1 ⊗ x2) = T1x1 ⊗ T2x2
for all x1 in H1 and x2 in H2. This operator is called a tensor product of
operators T1 and T2 and denoted by T1 ⊗ T2.

Corollary 3.14. Let T1 ∈ B(H1) and let T2 ∈ B(H2). If R(T1) and R(T2)
are closed, then R(T1 ⊗ T2) is closed.

Proof. Let R(T1) and R(T2) be closed. Then R(T1⊗T2) is closed by propo-
sition 3.13. �

Theorem 3.15. Let T, S ∈ B(X,Y ) and let T 6= 0. If k1|f(Tx)| ≤
|f(Sx)| ≤ k2|f(Tx)|, for all x ∈ X, for all f ∈ Y ∗, and for some k1 > 0
and k2 > 0, then

(a) S is a Ferholm operator if and only if T a Ferholm operator;
(b) S is a Weyl operator if and only if T a Weyl operator;
(c) S is a Browder operator if and only if T a Browder operator;
(d) S is a compact operator if and only if T a compact operator;
(e) S is an invertible operator if and only if T an invertible operator.

Proof. By hypothesis, S = αT for some α 6= 0. Therefore, N(T ) = N(S),
R(T ) = R(S), indT = indS, ascentT = ascentS and descentT = descentS.
Hence, the proof is trivial. �

4. pseudo-inverse of operator

Let T ∈ B(X,Y ). A pseudo-inverse of T is a S ∈ B(Y,X) such that
TST = T .

Proposition 4.1. Let Ti ∈ B(Xi, Yi) and let Si ∈ B(Yi, Xi) be a pseudo-
inverse of Ti (i = 1, 2). Then
S1 ⊕ S2 is a pseudo-inverse of T1 ⊕ T2;

Proof. Let x1 ∈ X1 and x2 ∈ X2. Then,

(T1 ⊕ T2)(S1 ⊕ S2)(T1 ⊕ T2)(x1, x2) =(T1 ⊕ T2)(S1 ⊕ S2)(T1x1, T2x2)
=(T1 ⊕ T2)(S1T1x1, S2T2x2)
=(T1S1T1x1, T2S2T2x2)

=(T1x1, T2x2)

=(T1 ⊕ T2)(x1, x2)
Therefore,S1 ⊕ S2 is a pseudo-inverse of T1 ⊕ T2.
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�

Proposition 4.2. Let T ∈ B(X,Y ) and let S ∈ B(Y,X) be a pseudo-inverse
of T . Then

(a) If T is Fredholm operator, then S is Fredholm operator;
(b) If S is compact operator, then T is compact operator.

Proof. (a) Let T be Fredholm operator. Then TST is a Fredholm operator.
Therefore, TS is a Fredholm operator. Hence, S is Fredholm operator.

(b) Let S be a compact operator. Therefore, TST is a compact operator.
Hence, T is compact operator. �

Theorem 4.3. Let T ∈ B(X) and let S ∈ B(X) be a pseudo-inverse of T .
Then

(a) If T is Freholm operator, then S is Fredholm operator;
(b) If T is Weyl operator, then S is Weyl operator;
(c) If T is invertible operator, then S is invertible operator and S = T−1.

Proof. (a) It follows from Theorem 4.3 (a).
(b) Let T be a Weyl operator. Then S is Fredholm operator. Also

0 = indT = indT + indS + indT = 0 + indS + 0.

Therefore, indS = 0. Consequently, S is Weyl operator.
(c) Let T be invertible operator. Then TS = I and ST = I. Therefore,

S is invertible operator and S = T−1. �

Proposition 4.4. Let T ∈ B(H) and let S ∈ B(H) be a pseudo-inverse of
T . Then

(a) S∗ is a pseudo-inverse of T ∗;
(b)If T is unitary operator, then S is unitary operator;

Proof. (a) Let TST = T . Then T ∗S∗T ∗ = (TST )∗ = T ∗. Therefore, S∗ is
a pseudo-inverse of T ∗.

(b) Let T be unitary operator, then T is invertible and S = T ∗. Therefore,
SS∗ = S∗S = I. Consequently, S is unitary operator; �

Proposition 4.5. Let T ∈ B(X,Y ). let PT = {S ∈ B(Y,X) : TST = T}.
Then, PT is convex;

Proof. (a) Let S1, S2 ∈ PT and let 0 < λ < 1. Then, T (λS1 + (1−λ)S2)T =
λTS1T +(1−λ)TS2T = T . Therefore, λS1 +(1−λ)S2 ∈ PT . Consequently,
PT is convex. �
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