ON LINEAR OPERATORS WITH CLOSED RANGE

S. KAMEL HOSSEINI

Abstract

Linear operators between Banach spaces such that the closedness of range of an operator implies the closedness of range of another operator are discussed.

1. Introduction

Let X and Y be normed spaces, $\mathcal{B}(X, Y)$ will denote the normed space of all continuous linear operators from X to $Y . R(T)$ and $N(T)$ will denote the range and null spaces of a linear operator T respectively. $\mathcal{C} \mathcal{L}(X, Y)$ will denote all continuous closed range linear operators from X to Y. There are many important applications of closed range unbounded operators in the spectral study of differential operators and also in the context of perturbation theory (see e.g. [1], [2]). In this paper, we deal with continuous linear operators between Banach spaces.

A characterization of closed range bounded linear operator between two Banach spaces is given in [3]. Using this characterization, we derive results which have conclusions of having closed range of an operator when the other operator has closed range. In this section we assume that the spaces are Banach unless otherwise specified.

An operator $T \in \mathcal{B}(X)$ is called Weyl if it is Fredholm of index zero. An operator $T \in \mathcal{B}(X)$ is called Browder if it is Fredholm of finite ascent and descent. In section 2, we define norm equivalent operators, and find some properties of norm equivalent operators. Is section 3, We study Linear operators between Banach spaces such that the closedness of range of an operator implies the closedness of range of another operator. In section 4, pseudo-inverse of operators are discussed.

2. NORM EQUIVALENT OPERATORS

Definition 2.1. Let $T, S \in \mathcal{B}(X, Y)$. Two operators S and T are said to be norm equivalent and denoted by $T \sim S$ if there exist two positive real numbers k_{1} and k_{2} such that $k_{1}\|S x\| \leq\|T x\| \leq k_{2}\|S x\|$, for all $x \in X$.

Theorem 2.2. Let $T \in \mathcal{B}(X, Y)$ and $[T]=\{S \in \mathcal{B}(X, Y): S \sim T\}$. Then \sim is an Equivalence relation, and $[T]$ is Equivalence class of T.

[^0]Proof. It is trivial.
Proposition 2.3. Let $T, S \in \mathcal{B}(X, Y)$ be norm equivalent. Then the following claims are true:
(a) T is bounded below if and only if S is bounded below;
(b) T is closed range if and only if S is closed range;
(c) T is one-to-one if and only if S is one-to-one;
(d) αT and βS are norm equivalent, where $\alpha, \beta \in \mathbb{C} \backslash\{0\}$.

Proof. It is trivial.
Proposition 2.4. Let $T, S \in \mathcal{B}(X, Y)$ be norm equivalent and let $T(X)=$ $S(X)$. Then the following claims are true:
(a) T is Fredholm if and only if S is Fredholm;
(b) T is semi-Fredholm if and only if S is semi-Fredholm;

Proof. By hypothesis, $N(T)=N(S), R(T)=R(S)$ and ind $T=$ ind S. Therefore, the proof is trivial.
Theorem 2.5. Let H be a Hilbert space and $T_{1}, T_{2} \in \mathcal{B}(H)$. Let T_{1} and T_{2} be norm equivalent. Let $T_{1}=V_{1} P_{1}$ and $T_{2}=V_{2} P_{2}$ be polar decompositions of T_{1} and T_{2}. Then $R\left(P_{1}\right)$ is closed if and only if $R\left(P_{2}\right)$ is closed.
Proof. By hypothesis, there exist two positive real numbers k_{1} and k_{2} such that $k_{1}\left\|T_{1} x\right\| \leq\left\|T_{2} x\right\| \leq k_{2}\left\|T_{1} x\right\|$, for all $x \in H$. Then for $x \in H,\left\|P_{i} x\right\|=$ $\left\|T_{i} x\right\|$ for $i=1,2$. Therefore, $k_{1}\left\|P_{1} x\right\| \leq\left\|P_{2} x\right\| \leq k_{2}\left\|P_{1} x\right\|$. Consequently, P_{1} and P_{2} are norm equivalent. Hence, $R\left(P_{1}\right)$ is closed if and only if $R\left(P_{2}\right)$ is closed.
Proposition 2.6. Let $P \in \mathcal{B}(X, Y)$ and let $T, S \in \mathcal{B}(Y, Z)$. If T and S are norm equivalent, then $R(T P)$ is closed if and only if $R(S P)$ is closed.
Proof. By hypothesis, there exist two positive real numbers k_{1} and k_{2} such that $k_{1}\|T y\| \leq\|S y\| \leq k_{2}\|T y\|$, for all $y \in Y$. Therefore, $k_{1}\|T P x\| \leq$ $\|S P x\| \leq k_{2}\|T P x\|$, for all $x \in X$. Consequently, $T P$ and $S P$ are norm equivalent. Hence, $R(T P)$ is closed if and only if $R(S P)$ is closed.
Corollary 2.7. Let $T, S \in \mathcal{B}(X)$ be norm equivalent and let $T S=S T$. Then
(a) ascent $T<\infty$ if and only if ascent $S<\infty$.
(b) T is nilpotent if and only if S is nilpotent.

Proof. It follows from Proposition 2.6
Proposition 2.8. Let $T, S \in \mathcal{B}(X, Y)$ and let $P \in \mathcal{B}(Y, Z)$ be an isometry. If T and S are norm equivalent, then $R(P T)$ is closed if and only if $R(P S)$ is closed.

Proof. By hypothesis, there exist two positive real numbers k_{1} and k_{2} such that $k_{1}\|S x\| \leq\|T x\| \leq k_{2}\|S x\|,\|P T x\|=\|T x\|$ and $\|P S x\|=\|S x\|$ for all $x \in X$. Therefore, $k_{1}\|P T x\| \leq\|P T x\| \leq k_{2}\|P T x\|$, for all $x \in X$. Consequently, $P T$ and $P S$ are norm equivalent. Hence, $R(P T)$ is closed if and only if $R(P S)$ is closed.

Proposition 2.9. Let $T_{1}, S_{1} \in \mathcal{B}\left(X_{1}, Y_{1}\right)$ be norm equivalent and let $T_{2}, S_{2} \in$ $\mathcal{B}\left(X_{2}, Y_{2}\right)$ be norm equivalent. Then $R\left(T_{1} \oplus T_{2}\right)$ is closed if and only if $R\left(S_{1} \oplus S_{2}\right)$ is closed.

Proof. By hypothesis, for $\mathrm{i}=1,2$, there exist two positive real numbers k_{1}^{i} and k_{2}^{i} such that $k_{1}^{i}\left\|T_{i} x_{i}\right\| \leq\left\|S_{i} x_{i}\right\| \leq k_{2}^{i}\left\|T_{i} x_{i}\right\|$, for all $x_{i} \in X_{i}$. Therefore,

$$
k_{1}\left(\left\|T_{1} x_{1}\right\|+\left\|T_{2} x_{2}\right\|\right) \leq\left\|S_{1} x_{1}\right\|+\left\|S_{2} x_{2}\right\| \leq k_{2}\left(\left\|T_{1} x_{1}\right\|+\left\|T_{2} x_{2}\right\|\right),
$$

where $k_{1}=\min \left\{k_{1}^{1}, k_{1}^{2}\right\}$ and $k_{2}=\max \left\{k_{2}^{1}, k_{2}^{2}\right\}$. Hence, $T_{1} \oplus T_{2}$ and $S_{1} \oplus S_{2}$ are norm equivalent. Therefore, $R\left(T_{1} \oplus T_{2}\right)$ is closed if and only if $R\left(S_{1} \oplus S_{2}\right)$ is closed.

3. Closed Range operators

Theorem 3.1. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ having polar decomposition $T=V P$. THen $R(T)$ is closed if and only if $R(P)$ is closed.

Proof. By hypothesis, P and T are norm equivalent. Therefore, according to [1, Lemma 2.2] $R(T)$ is closed if and only if $R(P)$ is closed.

Proposition 3.2. Let $T \in \mathcal{B}(X, Y)$ and $\lambda \in \mathbb{C} \backslash\{0\}$. Then $R(T)$ is closed if and only if $R(\lambda T)$ is closed.

Proof. Let $R(T)$ be closed. Then There is a constant $c>0$ such that for given $x \in X$, there is a $y \in X$ such that $T x=T y$ and $\|y\| \leq c\|T x\|$. Therefore, for $\lambda \in \mathbb{C} \backslash\{0\}$ we have $\lambda T x=\lambda T y$ and $\|y\| \leq \frac{c}{|\lambda|}\|\lambda T x\|$. Consequently $R(\lambda T)$ is closed.

Coversely, let $\lambda \in \mathbb{C} \backslash\{0\}$ and let $R(\lambda T)$ be closed, then $R(T)=R\left(\frac{1}{\lambda} \lambda T\right)$ is closed.

Proposition 3.3. Let $T \in \mathcal{B}(X, Y)$ be onto and let $S \in \mathcal{B}(Y, Z)$. If $R(S T)$ is closed, then $R(S)$ is closed.

Proof. Let $y_{1} \in Y$. Then there is $x_{1} \in X$ such that $T x_{1}=y_{1}$. By hypothesis, there is a constant $c>0$ such that for $x_{1} \in X$, there is $x_{2} \in X$ such that $S T x_{1}=S T x_{2}$ and $\left\|x_{2}\right\| \leq c\left\|S T x_{1}\right\|$. Therefore, $S y_{1}=S y_{2}$ where $y_{2}=T x_{2}$ and $\left\|y_{2}\right\| \leq c\|T\|\left\|S y_{1}\right\|$. Consequently, $R(S)$ is closed.

Proposition 3.4. Let $T \in \mathcal{B}(X, Y)$ be invertible and let $S \in \mathcal{B}(Y, Z)$ be closed range. Then $R(S T)$ is closed.

Proof. By hypothesis, there is a constant $c>0$ such that for given $x_{1} \in X$, there is a $y_{2} \in Y$ such that $S T x_{1}=S y_{2}$ and $\left\|y_{2}\right\| \leq c\left\|S T x_{1}\right\|$. Also, There is $\varepsilon>0$ such that for y_{2}, there is a $x_{2} \in X$ such that $T x_{2}=y_{2}$ and $\varepsilon\left\|x_{2}\right\| \leq\left\|T x_{2}\right\|=\left\|y_{2}\right\| \leq c\left\|S T x_{1}\right\|$. Therefore, STx $x_{1}=S T x_{2}$ and $\left\|x_{2}\right\| \leq \frac{c}{\varepsilon}\left\|S T x_{1}\right\|$. Consequently $R(S T)$ is closed.
Theorem 3.5. Let $T \in \mathcal{B}(X, Y)$ be invertible and let $S \in \mathcal{B}(Y, Z)$. Then $R(S T)$ is closed if and only if $R(S)$ is closed.

Proof. It follows from Proposition 3.3 and Proposition 3.4.
Proposition 3.6. Let $T \in \mathcal{B}(X, Y)$ and let $S \in \mathcal{B}(Y, Z)$ be one-to-one. If $R(S T)$ is closed, then $R(T)$ is closed.

Proof. By hypothesis, there is a constant $c>0$ such that for given $x_{1} \in X$, there is a $x_{2} \in X$ such that $S T x_{1}=S T x_{2}$ and $\left\|x_{2}\right\| \leq c\left\|S T x_{1}\right\|$. Therefore, $T x_{1}=T x_{2}$ and $\left\|x_{2}\right\| \leq c\|S\|\left\|T x_{1}\right\|$. Consequently, $R(T)$ is closed.

Proposition 3.7. Let $T \in \mathcal{B}(X, Y)$ be closed range and let $S \in \mathcal{B}(Y, Z)$ be bounded below. Then $R(S T)$ is closed.

Proof. By hypothesis, there is a constant $c>0$ such that for given $x \in X$, there is a $y \in X$ such that $T x=T y$ and $\|y\| \leq c\|T x\|$. Also, There is $\varepsilon>0$ such that $\varepsilon\|T x\| \leq\|S(T x)\|$. Therefore, $S(T x)=S(T y)$ and $\|y\| \leq \frac{c}{\varepsilon}\|S T x\|$. Consequently $R(S T)$ is closed.

Theorem 3.8. Let $T \in \mathcal{B}(X, Y)$ and let $S \in \mathcal{B}(Y, Z)$ be invertible. Then $R(S T)$ is closed if and only if $R(T)$ is closed.

Proof. It follows from Proposition 3.6 and Proposition 3.7.
Corollary 3.9. Let $T \in \mathcal{B}(X)$ be closed range and let S be invertible. then $R(S T)$ and $R(T S)$ are closed.

Proof. It follows from Theorem 3.5 and Theorem 3.8.
Corollary 3.10. Let $T \in \mathcal{B}(X)$ be bounded below and let $n \in \mathbb{N}$. Then $R\left(T^{n}\right)$ is closed.

Proof. By hypothesis, There is $\varepsilon>0$ such that $\varepsilon\|x\| \leq\|T x\|$ for all $x \in X$. Therefore, $\varepsilon^{n}\|x\| \leq\left\|T^{n} x\right\|$ for all $x \in X$. Consequently, T^{n} is bounded below, then $R\left(T^{n}\right)$ is closed.

Theorem 3.11. $\mathcal{C} \mathcal{L}(X)$ is open in $\mathcal{B}(X)$.
Proof. Let $T \in \mathcal{C} \mathcal{L}(X)$ and let $A=\{S T: S \in \mathcal{B}(X)$ is invertible $\}$. Then A is open and $T \in A$. Moreover $A \subseteq \mathcal{C} \mathcal{L}(X)$ by Corollary 3.9.

Corollary 3.12. Let $T, T_{n} \in \mathcal{B}(X)$. Let $\lim T_{n}=T$. If $T \in \mathcal{C} \mathcal{L}(X)$ then, there is $N \in \mathbb{N}$ such that $T_{n} \in \mathcal{C} \mathcal{L}(X)$ for all $n>N$.

Proof. It follows from Theorem 3.11.
Proposition 3.13. Let $T_{i} \in \mathcal{B}\left(X_{i}, Y_{i}\right) \quad i=1$, 2. If $R\left(T_{1}\right)$ and $R\left(T_{2}\right)$ are closed, then
(a) $R\left(T_{1} \oplus T_{2}\right)$ is closed;
(b) $R\left(T_{1} \otimes T_{2}\right)$ is closed.

Proof. (a) By hypothesis, there is a constant $c_{i}>0$ such that for given $x_{1 i} \in X_{i}$, there is a $x_{2 i} \in X_{i}$ such that $T_{i} x_{1 i}=T_{i} x_{2 i}$ and $\left\|x_{2 i}\right\| \leq c_{i}\left\|T_{i} x_{1 i}\right\|$. Therefore, $\left\|\left(x_{21}, x_{22}\right)\right\| \leq \max \left\{c_{1}, c_{2}\right\}\left\|\left(T_{1} \oplus T_{2}\right)\left(x_{11}, x_{12}\right)\right\|$. Consequently, $R\left(T_{1} \oplus T_{2}\right)$ is closed.
(b)By hypothesis, there is a constant $c_{i}>0$ such that for given $x_{1 i} \in X_{i}$, there is a $x_{2 i} \in X_{i}$ such that $T_{i} x_{1 i}=T_{i} x_{2 i}$ and $\left\|x_{2 i}\right\| \leq c_{i}\left\|T_{i} x_{1 i}\right\|$. Therefore, $\left\|\left(x_{21} \otimes x_{22}\right)\right\| \leq c_{1} c_{2}\left\|\left(T_{1} \otimes T_{2}\right)\left(x_{11} \otimes x_{12}\right)\right\|$. Consequently, $R\left(T_{1} \otimes T_{2}\right)$ is closed.

We know that if T_{1} is a linear bounded operator on a Hilbert space H_{1} and T_{2} is a linear bounded operator on a Hilbert space H_{2} there exists a unique linear bounded operator T on $H_{1} \otimes H_{2}$ such that

$$
T\left(x_{1} \otimes x_{2}\right)=T_{1} x_{1} \otimes T_{2} x_{2}
$$

for all x_{1} in H_{1} and x_{2} in H_{2}. This operator is called a tensor product of operators T_{1} and T_{2} and denoted by $T_{1} \otimes T_{2}$.

Corollary 3.14. Let $T_{1} \in \mathcal{B}\left(H_{1}\right)$ and let $T_{2} \in \mathcal{B}\left(H_{2}\right)$. If $R\left(T_{1}\right)$ and $R\left(T_{2}\right)$ are closed, then $R\left(T_{1} \otimes T_{2}\right)$ is closed.

Proof. Let $R\left(T_{1}\right)$ and $R\left(T_{2}\right)$ be closed. Then $R\left(T_{1} \otimes T_{2}\right)$ is closed by proposition 3.13.

Theorem 3.15. Let $T, S \in \mathcal{B}(X, Y)$ and let $T \neq 0$. If $k_{1}|f(T x)| \leq$ $|f(S x)| \leq k_{2}|f(T x)|$, for all $x \in X$, for all $f \in Y^{*}$, and for some $k_{1}>0$ and $k_{2}>0$, then
(a) S is a Ferholm operator if and only if T a Ferholm operator;
(b) S is a Weyl operator if and only if T a Weyl operator;
(c) S is a Browder operator if and only if T a Browder operator;
(d) S is a compact operator if and only if T a compact operator;
(e) S is an invertible operator if and only if T an invertible operator.

Proof. By hypothesis, $S=\alpha T$ for some $\alpha \neq 0$. Therefore, $N(T)=N(S)$, $R(T)=R(S)$, indT $=$ indS, ascent $T=$ ascent S and descent $T=$ descent S. Hence, the proof is trivial.

4. PSEUDO-INVERSE OF OPERATOR

Let $T \in \mathcal{B}(X, Y)$. A pseudo-inverse of T is a $S \in \mathcal{B}(Y, X)$ such that $T S T=T$.

Proposition 4.1. Let $T_{i} \in \mathcal{B}\left(X_{i}, Y_{i}\right)$ and let $S_{i} \in \mathcal{B}\left(Y_{i}, X_{i}\right)$ be a pseudoinverse of $T_{i} \quad(i=1,2)$. Then
$S_{1} \oplus S_{2}$ is a pseudo-inverse of $T_{1} \oplus T_{2} ;$
Proof. Let $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$. Then,

$$
\begin{aligned}
\left(T_{1} \oplus T_{2}\right)\left(S_{1} \oplus S_{2}\right)\left(T_{1} \oplus T_{2}\right)\left(x_{1}, x_{2}\right) & =\left(T_{1} \oplus T_{2}\right)\left(S_{1} \oplus S_{2}\right)\left(T_{1} x_{1}, T_{2} x_{2}\right) \\
& =\left(T_{1} \oplus T_{2}\right)\left(S_{1} T_{1} x_{1}, S_{2} T_{2} x_{2}\right) \\
& =\left(T_{1} S_{1} T_{1} x_{1}, T_{2} S_{2} T_{2} x_{2}\right) \\
& =\left(T_{1} x_{1}, T_{2} x_{2}\right) \\
& =\left(T_{1} \oplus T_{2}\right)\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Therefore, $S_{1} \oplus S_{2}$ is a pseudo-inverse of $T_{1} \oplus T_{2}$.

Proposition 4.2. Let $T \in \mathcal{B}(X, Y)$ and let $S \in \mathcal{B}(Y, X)$ be a pseudo-inverse of T. Then
(a) If T is Fredholm operator, then S is Fredholm operator;
(b) If S is compact operator, then T is compact operator.

Proof. (a) Let T be Fredholm operator. Then TST is a Fredholm operator. Therefore, $T S$ is a Fredholm operator. Hence, S is Fredholm operator.
(b) Let S be a compact operator. Therefore, TST is a compact operator. Hence, T is compact operator.

Theorem 4.3. Let $T \in \mathcal{B}(X)$ and let $S \in \mathcal{B}(X)$ be a pseudo-inverse of T. Then
(a) If T is Freholm operator, then S is Fredholm operator;
(b) If T is Weyl operator, then S is Weyl operator;
(c) If T is invertible operator, then S is invertible operator and $S=T^{-1}$.

Proof. (a) It follows from Theorem 4.3 (a).
(b) Let T be a Weyl operator. Then S is Fredholm operator. Also

$$
0=i n d T=i n d T+i n d S+i n d T=0+i n d S+0 .
$$

Therefore, $i n d S=0$. Consequently, S is Weyl operator.
(c) Let T be invertible operator. Then $T S=I$ and $S T=I$. Therefore, S is invertible operator and $S=T^{-1}$.

Proposition 4.4. Let $T \in \mathcal{B}(H)$ and let $S \in \mathcal{B}(H)$ be a pseudo-inverse of T. Then
(a) S^{*} is a pseudo-inverse of T^{*};
(b)If T is unitary operator, then S is unitary operator;

Proof. (a) Let TST $=T$. Then $T^{*} S^{*} T^{*}=(T S T)^{*}=T^{*}$. Therefore, S^{*} is a pseudo-inverse of T^{*}.
(b) Let T be unitary operator, then T is invertible and $S=T^{*}$. Therefore, $S S^{*}=S^{*} S=I$. Consequently, S is unitary operator;

Proposition 4.5. Let $T \in \mathcal{B}(X, Y)$. let $P_{T}=\{S \in \mathcal{B}(Y, X): T S T=T\}$. Then, P_{T} is convex;

Proof. (a) Let $S_{1}, S_{2} \in P_{T}$ and let $0<\lambda<1$. Then, $T\left(\lambda S_{1}+(1-\lambda) S_{2}\right) T=$ $\lambda T S_{1} T+(1-\lambda) T S_{2} T=T$. Therefore, $\lambda S_{1}+(1-\lambda) S_{2} \in P_{T}$. Consequently, P_{T} is convex.

References

[1] S. Goldberg, Unbounded Linear Operators - Theory and Applications, McGraw-Hill, New York, 1966.
[2] S.H. Kulkarni, M.T. Nair and G. Ramesh, Some Properties of Unbounded Operators with Closed Range,Proc.Indian Acad. Sci. (Math. Sci.), 118(4), November 2008, 613625.
[3] C. Ganesa Moorthy and P. Sam Johnson, Composition of Closed Range Operators, Journal of Analysis, 12, (2004), 165-169.
[4] W. Rudin, Functional Analysis, McGraw-Hill, New Delhi, 1991.
[5] J. A. Virtanen, Operator Theory, Fall 2007.
[6] P. Sam Johnson and S. Balaji, Journal of Applied Mathematics \& Bioinformatics, vol.1, no.2, 2011, 175-182
S.K. Hosseini

E-mail address: kamelhosseini@chmail.ir
faculty of mathematical sciences, Payame Noor University, P. O. BOX 19395-3697, Tehran, I. R. IRAN.

[^0]: 2000 Mathematics Subject Classification. Primary 47A05; Secondary 47A30.
 Key words and phrases. closed range operators, norm equivalent operators, pseudoinverse of operator.

